Drug dosage individualization based on a random-effects linear lodel
dc.citation.journalTitle | Journal Of Biopharmaceutical Statistics | eng |
dc.contributor.author | Diaz, Francisco J. | |
dc.contributor.author | Cogollo, Myladis R. | |
dc.contributor.author | Spina, Edoardo | |
dc.contributor.author | Santoro, Vincenza | |
dc.contributor.author | Rendon, Diego M. | |
dc.contributor.author | de Leon, Jose | |
dc.contributor.department | Universidad EAFIT. Escuela de Ciencias | spa |
dc.contributor.researchgroup | Modelado Matemático | spa |
dc.date.accessioned | 2021-04-12T14:07:10Z | |
dc.date.available | 2021-04-12T14:07:10Z | |
dc.date.issued | 2012-01-01 | |
dc.description.abstract | This article investigates drug dosage individualization when the patient population can be described with a random-effects linear model of a continuous pharmacokinetic or pharmacodynamic response. Specifically, we show through both decision-theoretic arguments and simulations that a published clinical algorithm may produce better individualized dosages than some traditional methods of therapeutic drug monitoring. Since empirical evidence suggests that the linear model may adequately describe drugs and patient populations, and linear models are easier to handle than the nonlinear models traditionally used in population pharmacokinetics, our results highlight the potential applicability of linear mixed models to dosage computations and personalized medicine. Copyright © Taylor & Francis Group, LLC. | eng |
dc.identifier | https://eafit.fundanetsuite.com/Publicaciones/ProdCientif/PublicacionFrw.aspx?id=1369 | |
dc.identifier.doi | 10.1080/10543406.2010.547264 | |
dc.identifier.issn | 10543406 | |
dc.identifier.issn | 15205711 | |
dc.identifier.other | WOS;000304678600003 | |
dc.identifier.other | PUBMED;22416835 | |
dc.identifier.other | SCOPUS;2-s2.0-84859191400 | |
dc.identifier.uri | http://hdl.handle.net/10784/27756 | |
dc.language.iso | eng | eng |
dc.publisher | TAYLOR & FRANCIS INC | |
dc.relation.uri | https://www.scopus.com/inward/record.uri?eid=2-s2.0-84859191400&doi=10.1080%2f10543406.2010.547264&partnerID=40&md5=5233b238e63b9e257ccb59f654518199 | |
dc.rights | https://v2.sherpa.ac.uk/id/publication/issn/1054-3406 | |
dc.source | Journal Of Biopharmaceutical Statistics | |
dc.subject.keyword | clozapine | eng |
dc.subject.keyword | fluoxetine | eng |
dc.subject.keyword | fluvoxamine | eng |
dc.subject.keyword | paroxetine | eng |
dc.subject.keyword | phenobarbital | eng |
dc.subject.keyword | valproic acid | eng |
dc.subject.keyword | algorithm | eng |
dc.subject.keyword | article | eng |
dc.subject.keyword | clinical practice | eng |
dc.subject.keyword | comparative study | eng |
dc.subject.keyword | computer simulation | eng |
dc.subject.keyword | dose calculation | eng |
dc.subject.keyword | dose response | eng |
dc.subject.keyword | drug blood level | eng |
dc.subject.keyword | drug dose sequence | eng |
dc.subject.keyword | drug monitoring | eng |
dc.subject.keyword | human | eng |
dc.subject.keyword | individualization | eng |
dc.subject.keyword | optimal drug dose | eng |
dc.subject.keyword | personalized medicine | eng |
dc.subject.keyword | priority journal | eng |
dc.subject.keyword | schizophrenia | eng |
dc.subject.keyword | smoking | eng |
dc.subject.keyword | statistical model | eng |
dc.subject.keyword | steady state | eng |
dc.subject.keyword | Dose-Response Relationship | eng |
dc.subject.keyword | Drug | eng |
dc.subject.keyword | Humans | eng |
dc.subject.keyword | Individualized Medicine | eng |
dc.subject.keyword | Linear Models | eng |
dc.subject.keyword | Pharmaceutical Preparations | eng |
dc.subject.keyword | Random Allocation | eng |
dc.title | Drug dosage individualization based on a random-effects linear lodel | eng |
dc.type | article | eng |
dc.type | info:eu-repo/semantics/article | eng |
dc.type | info:eu-repo/semantics/publishedVersion | eng |
dc.type | publishedVersion | eng |
dc.type.local | Artículo | spa |