Coupled CFD Shape Optimization for aerodynamic profiles

dc.contributor.advisorGarcía Ruíz, Manuel Julio
dc.contributor.authorGiraldo Arias, Santiago
dc.coverage.spatialMedellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degreeseng
dc.creator.degreeMagíster en Ingenieríaspa
dc.creator.emailsgiral6@eafit.edu.cospa
dc.date.accessioned2016-06-03T20:56:06Z
dc.date.available2016-06-03T20:56:06Z
dc.date.issued2015
dc.description.abstractThe present document deals with the optimization of shape of aerodynamic profiles -- The objective is to reduce the drag coefficient on a given profile without penalising the lift coefficient -- A set of control points defining the geometry are passed and parameterized as a B-Spline curve -- These points are modified automatically by means of CFD analysis -- A given shape is defined by an user and a valid volumetric CFD domain is constructed from this planar data and a set of user-defined parameters -- The construction process involves the usage of 2D and 3D meshing algorithms that were coupled into own- code -- The volume of air surrounding the airfoil and mesh quality are also parametrically defined -- Some standard NACA profiles were used by obtaining first its control points in order to test the algorithm -- Navier-Stokes equations were solved for turbulent, steady-state ow of compressible uids using the k-epsilon model and SIMPLE algorithm -- In order to obtain data for the optimization process an utility to extract drag and lift data from the CFD simulation was added -- After a simulation is run drag and lift data are passed to the optimization process -- A gradient-based method using the steepest descent was implemented in order to define the magnitude and direction of the displacement of each control point -- The control points and other parameters defined as the design variables are iteratively modified in order to achieve an optimum -- Preliminary results on conceptual examples show a decrease in drag and a change in geometry that obeys to aerodynamic behavior principlesspa
dc.identifier.other620.1064CDG516C
dc.identifier.urihttp://hdl.handle.net/10784/8545
dc.language.isospaspa
dc.publisherUniversidad EAFITspa
dc.publisher.departmentEscuela de Ingenieríaspa
dc.publisher.programMaestría en Ingenieríaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesseng
dc.rights.localAcceso abiertospa
dc.subjectCFD (Cálculos computacionales de mecánica de fluídos)spa
dc.subject.keywordMathematical optimizationspa
dc.subject.keywordNavier-stokes equationsspa
dc.subject.keywordFluid dynamicsspa
dc.subject.keywordAerodynamicsspa
dc.subject.keywordFinite element methodspa
dc.subject.keywordComputer simulationspa
dc.subject.lembOPTIMIZACIÓN MATEMÁTICAspa
dc.subject.lembECUACIONES DE NAVIER - STOKESspa
dc.subject.lembDINÁMICA DE FLUÍDOSspa
dc.subject.lembAERODINÁMICAspa
dc.subject.lembMÉTODO DE ELEMENTOS FINITOSspa
dc.subject.lembSIMULACIÓN POR COMPUTADORESspa
dc.titleCoupled CFD Shape Optimization for aerodynamic profilesspa
dc.typemasterThesiseng
dc.typeinfo:eu-repo/semantics/masterThesiseng
dc.type.hasVersionacceptedVersioneng
dc.type.localTesis de Maestríaspa

Archivos

Bloque original
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
Santiago_GiraldoArias_2015.pdf
Tamaño:
3.93 MB
Formato:
Adobe Portable Document Format
Descripción:
Texto Completo
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.5 KB
Formato:
Item-specific license agreed upon to submission
Descripción: