Computational characterization of the wave propagation behavior of multi-stable periodic cellular materials

dc.citation.journalTitleExtreme Mechanics Letters
dc.contributor.authorValencia, Camilo Andres
dc.contributor.authorRestrepo D.
dc.contributor.authorMankame N.D.
dc.contributor.authorZavattieri P.D.
dc.contributor.authorGomez, Juan David
dc.contributor.researchgroupMecánica Aplicadaspa
dc.date.accessioned2021-04-16T20:10:42Z
dc.date.available2021-04-16T20:10:42Z
dc.date.issued2019-01-01
dc.description.abstractIn this work, we present a computational analysis of the planar wave propagation behavior of a one-dimensional periodic multi-stable cellular material. Wave propagation in these materials is interesting because they combine the ability of periodic cellular materials to exhibit stop and pass bands with the ability to dissipate energy through cell-level elastic instabilities. Here, we use Bloch periodic boundary conditions to compute the dispersion curves and introduce a new approach for computing wide band directionality plots. Also, we deconstruct the wave propagation behavior of this material to identify the contributions from its various structural elements by progressively building the unit cell, structural element by element, from a simple, homogeneous, isotropic primitive. Direct integration time domain analyses of a representative volume element at a few salient frequencies in the stop and pass bands are used to confirm the existence of partial band gaps in the response of the cellular material. Insights gained from the above analyses are then used to explore modifications of the unit cell that allow the user to tune the band gaps in the response of the material. We show that this material behaves like a locally resonant material that exhibits low frequency band gaps for small amplitude planar waves. Moreover, modulating the geometry or material of the central bar in the unit cell provides a path to adjust the position of the band gaps in the material response. Also, our results show that the material exhibits highly anisotropic wave propagation behavior that stems from the anisotropy in its mechanical structure. Notably, we found that unlike other multi-stable cellular materials reported in the literature, in the system studied in this work, the configurational changes in the unit cell corresponding to its different stable phases do not significantly alter the wave propagation behavior of the material. © 2019eng
dc.identifierhttps://eafit.fundanetsuite.com/Publicaciones/ProdCientif/PublicacionFrw.aspx?id=9212
dc.identifier.doi10.1016/j.eml.2019.100565
dc.identifier.issn23524316
dc.identifier.otherWOS;000503434700005
dc.identifier.otherSCOPUS;2-s2.0-85072782626
dc.identifier.urihttp://hdl.handle.net/10784/29219
dc.language.isoengeng
dc.publisherElsevier Limited
dc.publisher.departmentUniversidad EAFIT. Departamento de Ingeniería Mecánicaspa
dc.relation.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85072782626&doi=10.1016%2fj.eml.2019.100565&partnerID=40&md5=59dedb10627b9d90cf8882b15aa9fe7f
dc.rightshttps://v2.sherpa.ac.uk/id/publication/issn/2352-4316
dc.sourceExtreme Mechanics Letters
dc.subject.keywordAnisotropyeng
dc.subject.keywordCellseng
dc.subject.keywordComposite structureseng
dc.subject.keywordCytologyeng
dc.subject.keywordEnergy gapeng
dc.subject.keywordOne dimensionaleng
dc.subject.keywordWave propagationeng
dc.subject.keywordAnisotropic wave propagationeng
dc.subject.keywordBloch analysiseng
dc.subject.keywordCellular materialeng
dc.subject.keywordDirectional behavioreng
dc.subject.keywordPeriodic boundary conditionseng
dc.subject.keywordPeriodic cellular materialseng
dc.subject.keywordPosition of the band gapseng
dc.subject.keywordRepresentative volume element (RVE)eng
dc.subject.keywordTime domain analysiseng
dc.titleComputational characterization of the wave propagation behavior of multi-stable periodic cellular materialseng
dc.typeinfo:eu-repo/semantics/articleeng
dc.typearticleeng
dc.typeinfo:eu-repo/semantics/publishedVersioneng
dc.typepublishedVersioneng
dc.type.localArtículospa

Archivos

Bloque original
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
Computational_characterization_of_the_wave_propaga.pdf
Tamaño:
3.18 MB
Formato:
Adobe Portable Document Format
Descripción:

Colecciones