Hybrid geometry / topology based mesh segmentation for reverse engineering

dc.citation.journalTitleCOMPUTERS & GRAPHICS-UKeng
dc.contributor.authorMejia D.
dc.contributor.authorRuiz-Salguero O.
dc.contributor.authorSánchez J.R.
dc.contributor.authorPosada J.
dc.contributor.authorMoreno A.
dc.contributor.authorCadavid C.A.
dc.contributor.departmentUniversidad EAFIT. Departamento de Ingeniería Mecánicaspa
dc.contributor.researchgroupLaboratorio CAD/CAM/CAEspa
dc.date.accessioned2021-04-16T21:59:58Z
dc.date.available2021-04-16T21:59:58Z
dc.date.issued2018-06-01
dc.description.abstractMesh segmentation and parameterization are crucial for Reverse Engineering (RE). Bijective parameterizations of the sub-meshes are a sine-qua-non test for segmentation. Current segmentation methods use either (1) topologic or (2) geometric criteria to partition the mesh. Reported topology-based segmentations produce large sub-meshes which reject parameterizations. Geometry-based segmentations are very sensitive to local variations in dihedral angle or curvatures, thus producing an exaggerated large number of small sub-meshes. Although small sub-meshes accept nearly isometric parameterizations, this significant granulation defeats the intent of synthesizing a usable Boundary Representation (compulsory for RE). In response to these limitations, this article presents an implementation of a hybrid geometry / topology segmentation algorithm for mechanical workpieces. This method locates heat transfer constraints (topological criterion) in low frequency neighborhoods of the mesh (geometric criterion) and solves for the resulting temperature distribution on the mesh. The mesh partition dictated by the temperature scalar map results in large, albeit parameterizable, sub-meshes. Our algorithm is tested with both benchmark repository and physical piece scans data. The experiments are successful, except for the well - known cases of topological cylinders, which require a user - introduced boundary along the cylinder generatrices. © 2018 Elsevier Ltdeng
dc.identifierhttps://eafit.fundanetsuite.com/Publicaciones/ProdCientif/PublicacionFrw.aspx?id=8009
dc.identifier.doi10.1016/j.cag.2018.03.004
dc.identifier.issn978493
dc.identifier.issn18737684spa
dc.identifier.otherWOS;000436219500005
dc.identifier.otherSCOPUS;2-s2.0-85045197970
dc.identifier.urihttp://hdl.handle.net/10784/29543
dc.languageeng
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD
dc.relation.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85045197970&doi=10.1016%2fj.cag.2018.03.004&partnerID=40&md5=a5852e742f7962cc5d7547415c011871
dc.rightshttps://v2.sherpa.ac.uk/id/publication/issn/0097-8493
dc.sourceCOMPUTERS & GRAPHICS-UK
dc.subject.keywordComputer aided designeng
dc.subject.keywordComputer aided engineeringeng
dc.subject.keywordCylinders (shapes)eng
dc.subject.keywordDihedral angleeng
dc.subject.keywordHeat transfereng
dc.subject.keywordImage segmentationeng
dc.subject.keywordParameterizationeng
dc.subject.keywordReverse engineeringeng
dc.subject.keywordTopologyeng
dc.subject.keywordBoundary representationseng
dc.subject.keywordCAD/CAM/CAEeng
dc.subject.keywordHybrid geometrieseng
dc.subject.keywordLocal variationseng
dc.subject.keywordMesh segmentationeng
dc.subject.keywordSegmentation algorithmseng
dc.subject.keywordSegmentation methodseng
dc.subject.keywordTopological criteriaeng
dc.subject.keywordMesh generationeng
dc.titleHybrid geometry / topology based mesh segmentation for reverse engineeringeng
dc.typeinfo:eu-repo/semantics/articleeng
dc.typearticleeng
dc.typeinfo:eu-repo/semantics/publishedVersioneng
dc.typepublishedVersioneng
dc.type.localArtículospa

Archivos

Colecciones