Parametric Curve Reconstruction from Point Clouds using Minimization Techniques
dc.contributor.author | Ruíz, Óscar E. | |
dc.contributor.author | Cortés, C. | |
dc.contributor.author | Aristizábal, M. | |
dc.contributor.author | Acosta, Diego A. | |
dc.contributor.author | Vanegas, Carlos A. | |
dc.contributor.department | Universidad EAFIT. Departamento de Ingeniería Mecánica | spa |
dc.contributor.researchgroup | Laboratorio CAD/CAM/CAE | spa |
dc.date.accessioned | 2016-11-18T22:45:51Z | |
dc.date.available | 2016-11-18T22:45:51Z | |
dc.date.issued | 2013 | |
dc.description.abstract | Smooth (C1-, C2-,...) curve reconstruction from noisy point samples is central to reverse engineering, medical imaging, etc -- Unresolved issues in this problem are (1) high computational expenses, (2) presence of artifacts and outlier curls, (3) erratic behavior at self-intersections and sharp corners -- Some of these issues are related to non-Nyquist (i.e. sparse) samples -- Our work reconstructs curves by minimizing the accumulative distance curve cs. point sample -- We address the open issues above by using (a) Principal Component Analysis (PCA) pre-processing to obtain a topologically correct approximation of the sampled curve -- (b) Numerical, instead of algebraic, calculation of roots in point-to-curve distances -- (c) Penalties for curve excursions by using point cloud to - curve and curve to point cloud -- (d) Objective functions which are economic to minimize -- The implemented algorithms successfully deal with self - intersecting and / or non-Nyquist samples -- Ongoing research includes self-tuning of the algorithms and decimation of the point cloud and the control polygon | eng |
dc.description.sponsorship | INSTICC | spa |
dc.format | application/pdf | eng |
dc.identifier.citation | @inproceedings{oruiz2013parametric, author ={Oscar E. Ruiz and C. Cortes and M. Aristizabal and Diego A. Acosta and Carlos A. Vanegas}, title ={Parametric Curve Reconstruction from Point Clouds using Minimization Techniques}, booktitle ={Proceedings of the International Conference on Computer Graphics Theory (GRAPP2013) and Applications and International Conference on Information Visualization Theory and Applications (IVAPP2013)}, year ={2013}, editor ={Sabine Coquillart and Carlos Andujar and Robert S. Laramee and Andreas Kerren and Jose Braz}, month ={February 21-24}, address ={Barcelona, Spain}, keys ={Parametric Curve Reconstruction, Noisy Point Cloud, Principal Component Analysis, Minimization}, organization ={INSTICC}, pages ={35--48}, publisher ={SCITEPRESS}, abstract ={Curve reconstruction from noisy point samples is central to surface reconstruction and therefore to reverse engineering, medical imaging, etc. Although Piecewise Linear (PL) curve reconstruction plays an important role, smooth (C^1-, C^2-,...) curves are needed for many applications. In reconstruction of parametric curves from noisy point samples there remain unsolved issues such as (1) high computational expenses, (2) presence of artifacts and outlier curls, (3) erratic behavior of self-intersecting curves, and (4) erratic excursions at sharp corners. Some of these issues are related to non-Nyquist (i.e. sparse) samples. In response to these shortcomings, this article reports the minimization-based �tting of parametric curves for noisy point clouds. Our approach features: (a) Principal Component Analysis (PCA) pre-processing to obtain a topologically correct approximation of the sampled curve. (b) Numerical, instead of algebraic, calculation of roots in point- to-curve distances. (c) Penalties for curve excursions by using point cloud to - curve and curve to point cloud. (d) Objective functions which are economic to minimize. The implemented algorithms successfully deal with self - intersecting and / or non-Nyquist samples. Ongoing research includes self-tuning of the algorithms and decimation of the point cloud and the control polygon}, isbn ={978-989-8565-46-4}, } | spa |
dc.identifier.isbn | 978-989-8565-46-4 | |
dc.identifier.uri | http://hdl.handle.net/10784/9715 | |
dc.language.iso | eng | spa |
dc.publisher | SCITEPRESS | spa |
dc.relation.ispartof | Proceedings of the International Conference on Computer Graphics Theory and Applications and International Conference on Information Visualization Theory and Applications, vol.1, pp.35,48, 2013 | spa |
dc.relation.isversionof | http://www.scitepress.org/DigitalLibrary/PublicationsDetail.aspx?ID=KumbOOOFkhU=&t=1 | spa |
dc.rights.accessrights | info:eu-repo/semantics/closedAccess | eng |
dc.rights.local | Acceso cerrado | spa |
dc.subject.keyword | Computer vision | eng |
dc.subject.keyword | Stochastic processes | eng |
dc.subject.keyword | Mathematical optimization | eng |
dc.subject.keyword | Computer-aided Design | eng |
dc.subject.keyword | Euclidean geometry | eng |
dc.subject.keyword | Nube de puntos | spa |
dc.subject.keyword | Reducción de ruido | spa |
dc.subject.keyword | Ingeniería inversa | spa |
dc.subject.keyword | Reconstrucción 3D | spa |
dc.subject.keyword | Matriz Hessiana | spa |
dc.subject.lemb | VISIÓN POR COMPUTADOR | spa |
dc.subject.lemb | PROCESOS ESTOCÁSTICOS | spa |
dc.subject.lemb | OPTIMIZACIÓN MATEMÁTICA | spa |
dc.subject.lemb | DISEÑO CON AYUDA DE COMPUTADOR | spa |
dc.subject.lemb | GEOMETRÍA EUCLIDIANA | spa |
dc.title | Parametric Curve Reconstruction from Point Clouds using Minimization Techniques | eng |
dc.type | info:eu-repo/semantics/conferencePaper | eng |
dc.type | conferencePaper | eng |
dc.type | info:eu-repo/semantics/publishedVersion | eng |
dc.type | publishedVersion | eng |
dc.type.local | Documento de conferencia | spa |
Archivos
Bloque original
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- draft_optim_fit_param_curve_GRAPP2013.pdf
- Tamaño:
- 1.92 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 2.5 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: