Finite difference calculations of permeability in large domains in a wide porosity range

dc.citation.journalTitleARCHIVE OF APPLIED MECHANICSeng
dc.contributor.authorOsorno, M.
dc.contributor.authorUribe, D.
dc.contributor.authorRuiz, O.E.
dc.contributor.authorSteeb, H.
dc.contributor.departmentUniversidad EAFIT. Departamento de Ingeniería Mecánicaspa
dc.contributor.researchgroupLaboratorio CAD/CAM/CAEspa
dc.date.accessioned2021-04-16T21:59:55Z
dc.date.available2021-04-16T21:59:55Z
dc.date.issued2015-08-01
dc.description.abstractDetermining effective hydraulic, thermal, mechanical and electrical properties of porous materials by means of classical physical experiments is often time-consuming and expensive. Thus, accurate numerical calculations of material properties are of increasing interest in geophysical, manufacturing, bio-mechanical and environmental applications, among other fields. Characteristic material properties (e.g. intrinsic permeability, thermal conductivity and elastic moduli) depend on morphological details on the porescale such as shape and size of pores and pore throats or cracks. To obtain reliable predictions of these properties it is necessary to perform numerical analyses of sufficiently large unit cells. Such representative volume elements require optimized numerical simulation techniques. Current state-of-the-art simulation tools to calculate effective permeabilities of porous materials are based on various methods, e.g. lattice Boltzmann, finite volumes or explicit jump Stokes methods. All approaches still have limitations in the maximum size of the simulation domain. In response to these deficits of the well-established methods we propose an efficient and reliable numerical method which allows to calculate intrinsic permeabilities directly from voxel-based data obtained from 3D imaging techniques like X-ray microtomography. We present a modelling framework based on a parallel finite differences solver, allowing the calculation of large domains with relative low computing requirements (i.e. desktop computers). The presented method is validated in a diverse selection of materials, obtaining accurate results for a large range of porosities, wider than the ranges previously reported. Ongoing work includes the estimation of other effective properties of porous media. © 2015, Springer-Verlag Berlin Heidelberg.eng
dc.identifierhttps://eafit.fundanetsuite.com/Publicaciones/ProdCientif/PublicacionFrw.aspx?id=1697
dc.identifier.doi10.1007/s00419-015-1025-4
dc.identifier.issn9391533
dc.identifier.issn14320681spa
dc.identifier.otherWOS;000358025800005
dc.identifier.otherSCOPUS;2-s2.0-84937863891
dc.identifier.urihttp://hdl.handle.net/10784/29521
dc.languageeng
dc.publisherSpringer Verlag
dc.relation.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84937863891&doi=10.1007%2fs00419-015-1025-4&partnerID=40&md5=8fbc0e261714dbb10d0ec0efa6135cff
dc.rightshttps://v2.sherpa.ac.uk/id/publication/issn/0939-1533
dc.sourceARCHIVE OF APPLIED MECHANICS
dc.subject.keywordImaging techniqueseng
dc.subject.keywordNumerical methodseng
dc.subject.keywordPersonal computerseng
dc.subject.keywordPorosityeng
dc.subject.keywordPorous materialseng
dc.subject.keywordThermal conductivityeng
dc.subject.keywordEffective permeabilityeng
dc.subject.keywordEnvironmental applicationseng
dc.subject.keywordFinite difference calculationseng
dc.subject.keywordIntrinsic permeabilityeng
dc.subject.keywordMechanical and electrical propertieseng
dc.subject.keywordRepresentative volume element (RVE)eng
dc.subject.keywordRock physicseng
dc.subject.keywordSelection of materialseng
dc.subject.keywordMaterials propertieseng
dc.titleFinite difference calculations of permeability in large domains in a wide porosity rangeeng
dc.typeinfo:eu-repo/semantics/articleeng
dc.typearticleeng
dc.typeinfo:eu-repo/semantics/publishedVersioneng
dc.typepublishedVersioneng
dc.type.localArtículospa

Archivos

Colecciones