Possible topological quantum computation via khovanov homology: D-brane topological quantum computer
dc.contributor.author | Vélez, M. | |
dc.contributor.author | Ospina, J. | |
dc.contributor.department | Universidad EAFIT. Departamento de Ciencias | spa |
dc.contributor.researchgroup | Lógica y Computación | spa |
dc.creator | Vélez, M. | |
dc.creator | Ospina, J. | |
dc.date.accessioned | 2021-03-26T21:35:21Z | |
dc.date.available | 2021-03-26T21:35:21Z | |
dc.date.issued | 2009-01-01 | |
dc.description.abstract | A model of a D-Brane Topological Quantum Computer (DBTQC) is presented and sustained. The model isbased on four-dimensional TQFTs of the Donaldson-Witten and Seiber-Witten kinds. It is argued that the DBTQC is able to compute Khovanov homology for knots, links and graphs. The DBTQC physically incorporates the mathematical process of categorification according to which the invariant polynomials for knots, links and graphs such as Jones, HOMFLY, Tutte and Bollobás-Riordan polynomials can be computed as the Euler characteristics corresponding to special homology complexes associated with knots, links and graphs. The DBTQC is conjectured as a powerful universal quantum computer in the sense that the DBTQC computes Khovanov homology which is considered like powerful that the Jones polynomial. © 2009 SPIE. | eng |
dc.identifier | https://eafit.fundanetsuite.com/Publicaciones/ProdCientif/PublicacionFrw.aspx?id=2442 | |
dc.identifier.doi | 10.1117/12.818551 | |
dc.identifier.issn | 0277786X | |
dc.identifier.issn | 1996756X | |
dc.identifier.other | WOS;000311280400019 | |
dc.identifier.other | SCOPUS;2-s2.0-69849093047 | |
dc.identifier.uri | http://hdl.handle.net/10784/27421 | |
dc.language.iso | eng | eng |
dc.publisher | SPIE-INT SOC OPTICAL ENGINEERING | |
dc.relation.uri | https://www.scopus.com/inward/record.uri?eid=2-s2.0-69849093047&doi=10.1117%2f12.818551&partnerID=40&md5=4ef3e6ca0191818dab1fb4b63eefd68e | |
dc.rights | https://v2.sherpa.ac.uk/id/publication/issn/0277-786X | |
dc.source | Proceedings of SPIE | |
dc.subject.keyword | 4d-TQFTs | eng |
dc.subject.keyword | D-brane | eng |
dc.subject.keyword | D-Brane Topological Quantum Computation | eng |
dc.subject.keyword | Donaldson | eng |
dc.subject.keyword | Euler characteristic | eng |
dc.subject.keyword | Invariant polynomials | eng |
dc.subject.keyword | Jones polynomial | eng |
dc.subject.keyword | Khovanov Homology | eng |
dc.subject.keyword | Quantum computation | eng |
dc.subject.keyword | Graph theory | eng |
dc.subject.keyword | Mathematical operators | eng |
dc.subject.keyword | Polynomials | eng |
dc.subject.keyword | Quantum optics | eng |
dc.subject.keyword | Quantum theory | eng |
dc.subject.keyword | Quantum computers | eng |
dc.title | Possible topological quantum computation via khovanov homology: D-brane topological quantum computer | eng |
dc.type | info:eu-repo/semantics/conferencePaper | eng |
dc.type | conferencePaper | eng |
dc.type | info:eu-repo/semantics/publishedVersion | eng |
dc.type | publishedVersion | eng |
dc.type.local | Documento de conferencia | spa |