• español
    • English
  • Self-archive
  • Browse
    • Communities & Collections
    • By Issue Date
    • Authors
    • Titles
    • Subjects
    • Document types
  • English 
    • español
    • English
  • Help
  • Login
 
View Item 
  •   Repositorio Institucional Universidad EAFIT
  • Investigación
  • Escuela de Ingeniería
  • Laboratorio CAD/CAM/CAE
  • Documento de conferencia
  • View Item
  •   Repositorio Institucional Universidad EAFIT
  • Investigación
  • Escuela de Ingeniería
  • Laboratorio CAD/CAM/CAE
  • Documento de conferencia
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A curvature-sensitive parameterization-independent triangulation algorithm

Thumbnail
View/Open
paper_Triangs_RuizCongote_Ukraine_2008.pdf (889.3Kb)
Date
2008-09
Author
Ruíz, Óscar
Congote, John
Cadavid, Carlos
Lalinde, Juan G.
ISBN
967-966-02-4892-2
Metrics
Metadata
Show full item record
Abstract
Triangulations of a connected subset F of parametric surfaces S(u,v) (with continuity C2 or higher) are required because a C0 approximation of such F(called a FACE) is widely required for finite element analysis, rendering, manufacturing, design, reverse engineering, etc -- The triangulation T is such an approximation, when its piecewise linear subsets are triangles (which, on the other hand, is not a compulsory condition for being C0) -- A serious obstacle for algorithms which triangulate in the parametric space u−v is that such a space may be extremely warped, and the distances in parametric space be dramatically different of the distances in R3 -- Recent publications have reported parameter -independent triangulations, which triangulate in R3 space -- However, such triangulations are not sensitive to the curvature of the S(u,v) -- The present article presents an algorithm to obtain parameter-independent, curvature-sensitive triangulations -- The invariant of the algorithm is that a vertex v of the triangulation if identified, and a quasiequilateral triangulation around v is performed on the plane P tangent to S(u,v) at v -- The size of the triangles incident to v is a function of K(v), the curvature of S(u,v) at v -- The algorithm was extensively and successfully tested, rendering short running times, with very demanding boundary representations
Documents PDF

loading
URI
http://hdl.handle.net/10784/9713
Editor URL
Kyiv Conference on Analytic Number Theory and Spatial Tessellations, vol. 2, Sept. 2008
Collections
  • Documento de conferencia [51]

My Account

LoginRegister

Statistics

View Usage Statistics

universidad eafit medellin repositorio institucional

Vigilada Mineducación
Universidad con Acreditación Institucional hasta 2026
Resolución MEN 2158 de 2018

Líneas de Atención

Medellín: (57) (4) - 448 95 00
Resto del país: 01 8000 515 900
Conmutador: (57) (4) - 2619500
Carrera 49 N 7 Sur - 50
Medellín, Colombia, Suramérica

Derechos Reservados

DSpace software
copyright © 2002-2016 
Duraspace

Theme by 
@mire NV