• español
    • English
  • Self-archive
  • Browse
    • Communities & Collections
    • By Issue Date
    • Authors
    • Titles
    • Subjects
    • Document types
  • English 
    • español
    • English
  • Help
  • Login
 
View Item 
  •   Repositorio Institucional Universidad EAFIT
  • Investigación
  • Escuela de Ingeniería
  • Laboratorio CAD/CAM/CAE
  • Artículos
  • View Item
  •   Repositorio Institucional Universidad EAFIT
  • Investigación
  • Escuela de Ingeniería
  • Laboratorio CAD/CAM/CAE
  • Artículos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Estimation of large domain Al foam permeability by Finite Difference methods

Thumbnail
View/Open
Estimation-of-large.html (266bytes)
Web Page Print (178.5Kb)
Date
2013
Author
Osorno, María
Steeb, Holger
Uribe, David
Ruíz, Óscar
Metrics
Metadata
Show full item record
Abstract
Classical methods to calculate permeability of porous media have been proposed mainly for high density (e.g. granular) materials -- These methods present shortcomings in high porosity, i.e. high permeability media (e.g. metallic foams) -- While for dense materials permeability seems to be a function of bulk properties and occupancy averaged over the volume, for highly porous materials these parameters fail to predict it -- Several authors have attacked the problem by solving the Navier-Stokes equations for the pressure and velocity of a liquid flowing through a small domain (Ωs) of aluminium foam and by comparing the numerical results with experimental values (prediction error approx. 9%) -- In this article, we present calculations for much larger domains (ΩL) using the Finite Difference (FD) method, solving also for the pressure and velocity of a viscous liquid flowing through the Packed Spheres scenario -- The ratio Vol(ΩL)/Vol(Ωs) is around 103 -- The comparison of our results with the Packed Spheres example yields a prediction error of 5% for the intrinsic permeability -- Additionally, numerical permeability calculations have been performed for Al foam samples -- Our geometric modelling of the porous domain stems from 3D X-ray tomography, yielding voxel information, which is particularly appropriate for FD -- Ongoing work concerns the reduction in computing times of the FD method, consideration of other materials and fluids, and comparison with experimental data
Documents PDF

loading
URI
http://hdl.handle.net/10784/9667
Editor URL
PAMM, Volume 13, Issue 1, pp 247-248
DOI
10.1002/pamm.201310119
Collections
  • Artículos [45]

My Account

LoginRegister

Statistics

View Usage Statistics

universidad eafit medellin repositorio institucional

Vigilada Mineducación
Universidad con Acreditación Institucional hasta 2026
Resolución MEN 2158 de 2018

Líneas de Atención

Medellín: (57) (4) - 448 95 00
Resto del país: 01 8000 515 900
Conmutador: (57) (4) - 2619500
Carrera 49 N 7 Sur - 50
Medellín, Colombia, Suramérica

Derechos Reservados

DSpace software
copyright © 2002-2016 
Duraspace

Theme by 
@mire NV