• español
    • English
  • Self-archive
  • Browse
    • Communities & Collections
    • By Issue Date
    • Authors
    • Titles
    • Subjects
    • Document types
  • English 
    • español
    • English
  • Help
  • Login
 
View Item 
  •   Repositorio Institucional Universidad EAFIT
  • Investigación
  • Escuela de Ingeniería
  • Laboratorio CAD/CAM/CAE
  • Artículos
  • View Item
  •   Repositorio Institucional Universidad EAFIT
  • Investigación
  • Escuela de Ingeniería
  • Laboratorio CAD/CAM/CAE
  • Artículos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Approximation of the mechanical response of large lattice domains using homogenization and design of experiments

Thumbnail
Date
2020-01-01
Author
Montoya-Zapata D.
Acosta D.A.
Cortés C.
Pareja-Corcho J.
Moreno A.
Posada J.
Ruiz-Salguero O.
Metrics
Metadata
Show full item record
Abstract
Abstract
Lattice-based workpieces contain patterned repetition of individuals of a basic topology (Schwarz, ortho-walls, gyroid, etc.) with each individual having distinct geometric grading. In the context of the design, analysis and manufacturing of lattice workpieces, the problem of rapidly assessing the mechanical behavior of large domains is relevant for pre-evaluation of designs. In this realm, two approaches can be identified: (1) numerical simulations which usually bring accuracy but limit the size of the domains that can be studied due to intractable data sizes, and (2) material homogenization strategies that sacrifice precision to favor efficiency and allow for simulations of large domains. Material homogenization synthesizes diluted material properties in a lattice, according to the volume occupancy factor of such a lattice. Preliminary publications show that material homogenization is reasonable in predicting displacements, but is not in predicting stresses (highly sensitive to local geometry). As a response to such shortcomings, this paper presents a methodology that systematically uses design of experiments (DOE) to produce simple mathematical expressions (meta-models) that relate the stress-strain behavior of the lattice domain and the displacements of the homogeneous domain. The implementation in this paper estimates the von Mises stress in large Schwarz primitive lattice domains under compressive loads. The results of our experiments show that (1) material homogenization can efficiently and accurately approximate the displacements field, even in complex lattice domains, and (2) material homogenization and DOE can produce rough estimations of the von Mises stress in large domains (more than 100 cells). The errors in the von Mises stress estimations reach 42% for domains of up to 24 cells. This result means that coarse stress-strain estimations may be possible in lattice domains by combining DOE and homogenized material properties. This option is not suitable for precise stress prediction in sensitive contexts wherein high accuracy is needed. Future work is required to refine the meta-models to improve the accuracies of the estimations. © 2020 by the authors.
URI
http://hdl.handle.net/10784/29563
Source / Editor URL

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85086117403&doi=10.3390%2fapp10113858&partnerID=40&md5=d6e96d3a7398d22ac3db62d85e9df9b8
DOI
10.3390/app10113858
Collections
  • Artículos [110]

My Account

LoginRegister

Statistics

View Usage Statistics

universidad eafit medellin repositorio institucional

Vigilada Mineducación
Universidad con Acreditación Institucional hasta 2026
Resolución MEN 2158 de 2018

Líneas de Atención

Medellín: (57) (604) - 448 95 00
Resto del país: 01 8000 515 900
Conmutador: (57) (604) - 2619500
Carrera 49 N 7 Sur - 50
Medellín, Colombia, Suramérica

Derechos Reservados

DSpace software
copyright © 2002-2016 
Duraspace

Theme by 
@mire NV