Examinando por Materia "wastewater"
Mostrando 1 - 11 de 11
Resultados por página
Opciones de ordenación
Ítem The Box-Benkhen experimental design for the optimization of the electrocatalytic treatment of wastewaters with high concentrations of phenol and organic matter.(IWA PUBLISHING, 2009-01-01) GilPavas, Edison; Betancourt, Alejandra; Angulo, Monica; Dobrosz-Gomez, Izabela; Angel Gomez-Garcia, Miguel; GilPavas, Edison; Betancourt, Alejandra; Angulo, Monica; Dobrosz-Gomez, Izabela; Angel Gomez-Garcia, Miguel; Universidad EAFIT. Departamento de Ingeniería de Procesos; Procesos Ambientales (GIPAB)In this work, the Box-Benkhen experimental Design (BBD) was applied for the optimization of the parameters of the electrocatalytic degradation of wastewaters resulting from a phenolic resins industry placed in the suburbs of Medellin (Colombia). The direct and the oxidant assisted electro-oxidation experiments were carried out in a laboratory scale batch cell reactor, with monopolar configuration, and electrodes made of graphite (anode) and titanium (cathode). A multifactorial experimental design was proposed, including the following experimental variables: initial phenol concentration, conductivity, and pH. The direct electro-oxidation process allowed to reach ca. 88% of phenol degradation, 38% of mineralization (TOC), 52% of Chemical Oxygen Demand (COD) degradation, and an increase in water biodegradability of 13%. The synergetic effect of the electro-oxidation process and the respective oxidant agent (Fenton reactant, potassium permanganate, or sodium persulfate) let to a significant increase in the rate of the degradation process. At the optimized variables values, it was possible to reach ca. 99% of phenol degradation, 80% of TOC and 88% of COD degradation. A kinetic study was accomplished, which included the identification of the intermediate compounds generated during the oxidation process.Ítem Decolorization and mineralization of Diarylide Yellow 12 (PY12) by photo-Fenton process: the Response Surface Methodology as the optimization tool.(IWA PUBLISHING, 2012-01-01) GilPavas, Edison; Dobrosz-Gomez, Izabela; Angel Gomez-Garcia, Miguel; GilPavas, Edison; Dobrosz-Gomez, Izabela; Angel Gomez-Garcia, Miguel; Universidad EAFIT. Departamento de Ingeniería de Procesos; Procesos Ambientales (GIPAB)The Response Surface Methodology (RSM) was applied as a tool for the optimization of the operational conditions of the photo-degradation of highly concentrated PY12 wastewater, resulting from a textile industry located in the suburbs of Medellin (Colombia). The Box-Behnken experimental Design (BBD) was chosen for the purpose of response optimization. The photo-Fenton process was carried out in a laboratory-scale batch photo-reactor. A multifactorial experimental design was proposed, including the following variables: the initial dyestuff concentration, the H(2)O(2) and the Fe(+2) concentrations, as well as the UV wavelength radiation. The photo-Fenton process performed at the optimized conditions resulted in ca. 100% of dyestuff decolorization, 92% of COD and 82% of TOC degradation. A kinetic study was accomplished, including the identification of some intermediate compounds generated during the oxidation process. The water biodegradability reached a final DBO(5)/DQO = 0.86 value.Ítem Degradation of Yellow 12 Dye in Industrial Wastewater using Zero-Valent Iron, Hydrogen Peroxide and Ultraviolet Radiation(Centro de Informacion Tecnologica, 2016-09-17) GIL PAVAS EDISON; Medina, J.; Dobrosz-Gómez, I.; Gómez, Miguel Angel; Universidad EAFIT. Departamento de Ingeniería de Procesos; Desarrollo y Diseño de ProcesosThe Fenton heterogeneous process in a fluidized bed reactor using Zero Valent Iron (ZVI), in the metallic state, for the treatment of textile wastewater has been used an analyzed. The aim of this work was to optimize the following...Ítem Degradation of Yellow 12 Dye in Industrial Wastewater using Zero-Valent Iron, Hydrogen Peroxide and Ultraviolet Radiation(Centro de Informacion Tecnologica, 2016-09-17) GIL PAVAS EDISON; Medina, J.; Dobrosz-Gómez, I.; Gómez, Miguel Angel; GIL PAVAS EDISON; Medina, J.; Dobrosz-Gómez, I.; Gómez, Miguel Angel; Universidad EAFIT. Departamento de Ingeniería de Procesos; Procesos Ambientales (GIPAB)The Fenton heterogeneous process in a fluidized bed reactor using Zero Valent Iron (ZVI), in the metallic state, for the treatment of textile wastewater has been used an analyzed. The aim of this work was to optimize the following...Ítem An integrated approach for the assessment of land-based pollution loads in the coastal zone(ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD, 2018-10-31) Tosic M.; Restrepo J.D.; Izquierdo A.; Lonin S.; Martins F.; Escobar R.; Universidad EAFIT. Departamento de Geología; Ciencias del MarThe identification and prioritization of pollution sources is essential to coastal zone management. This task is complicated when a variety of pollution sources are found and by limited data availability, which can result in an inconclusive assessment and differing public perceptions, ultimately hindering the progress of management actions. This is the case in Cartagena Bay (Colombia), a Caribbean hot-spot of pollution, which receives large freshwater discharges from the Magdalena River drained via the Dique Canal along with coastal industrial effluents and untreated domestic wastewater from parts of the coastal population. This study presents a methodology for the integrated assessment of anthropogenic pollution sources discharged into the coastal zone by estimating their loads and comparing their relative contributions to receiving coastal waters. Given the lack of available data on discharges and water quality, an integrated approach is applied by combining various methods of load estimation while emphasizing the importance of calculating confidence intervals for each load value. Pollution loads from nearby sources of domestic wastewater, coastal industrial effluents and continental runoff were assessed with respect to their contributions of coliforms, total suspended solids, nitrogen, phosphorus, and biological oxygen demand (BOD). Loads from the canal's surface runoff were calculated with monthly discharge and water quality data. Domestic loads were computed using GIS analyses of population and sewerage coverage in combination with export coefficients of daily load per capita. Industrial loads were estimated based on previous studies. Results show that each type of land-based source is responsible for different pollution impacts observed in Cartagena Bay. Occasionally, inadequate recreational water quality can be attributed to nearby sources of domestic wastewater, which contribute the highest coliform load (6.7 ± 3.9 × 1015 MPN/day). Continental runoff via the Dique Canal contributes the greatest sediment load (2.5 ± 1.9 × 103 t/day) causing the bay's turbid plumes and related ecosystem issues. Hypoxic conditions in the bay can be attributed to all three pollution sources which all discharge significant BOD loads (2–8 t/day), while the highest total phosphorus load comes from the Dique Canal (3.2 ± 2.4 t/day) and the highest nitrogen loads flow from the canal (3.7 ± 3.1 t·NO3-N/day) and the industrial sector (3.1 ± 4.1 t·N/day). Given that these loads are projected to increase in future years, this study highlights the importance of prioritization and mitigation in coastal pollution management and demonstrates a method that could be applied in other places with similar problems in the Wider Caribbean Region. © 2017 Elsevier LtdÍtem Microalgae clean wastewater - Teleantioquia Noticias(Universidad EAFIT, 2023) Aristizábal Castrillón, Adriana; Cardona Rendon, Lorena; Arroyave Quiceno, Catalina; Universidad EAFITMicroalgae system developed by EAFIT-UdeMedellín-IUPB for wastewater treatment.Ítem Multifactorial optimization of the decolorisation parameters of wastewaters resulting from dyeing flowers.(IWA PUBLISHING, 2009-01-01) Gil Pavas, Edison; Angel Gomez-Garcia, Miguel; Gil Pavas, Edison; Angel Gomez-Garcia, Miguel; Universidad EAFIT. Departamento de Ingeniería de Procesos; Procesos Ambientales (GIPAB)This work deals with the treatment of the wastewaters resulting from the process of dyeing flowers. In some local cases for growing flowers near to Medellin (Colombia), wastewater color was found to be one of the main problems in meeting local effluent standards. Wastewaters were treated by photodegradation process (which includes photocatalysis) to achieve the degradation of dyes mixture and organic matter in the wastewater. A multifactorial experimental design was proposed, including as experimental factors the following variables: pH, and the concentration of both catalyst (TiO(2)) and hydrogen peroxide (H(2)O(2)). According to the obtained results, at the optimized variables values, it is possible to reach a 99% reduction of dyes, a 76.9% of mineralization (TOC) and a final biodegradability of 0.834. Kinetic analysis allows proposing a pseudo first order reaction for the reduction, the mineralization, and the biodegradation processes.Ítem Optimization of the Operating Cost for the Electrochemical-Oxidation Process in a Water Treatment Plant Using Response Surface Statistical Analysis(Centro de Informacion Tecnologica, 2016-01-01) GIL PAVAS EDISON; Medina, J.; Dobrosz-Gómez, I.; Gómez, Miguel Angel; GIL PAVAS EDISON; Medina, J.; Dobrosz-Gómez, I.; Gómez, Miguel Angel; Universidad EAFIT. Departamento de Ingeniería de Procesos; Procesos Ambientales (GIPAB)The statistical optimization of the implementation and operational costs of an electrochemical-oxidation process for treatment of wastewater containing dye Yellow 23 was done. The aim was to optimize the operational parameters for the current...Ítem The removal of the trivalent chromium from the leather tannery wastewater: the optimisation of the electro-coagulation process parameters.(IWA PUBLISHING, 2011-02-01) GilPavas, E.; Dobrosz-Gomez, I.; Gomez-Garcia, M. A.; GilPavas, E.; Dobrosz-Gomez, I.; Gomez-Garcia, M. A.; Universidad EAFIT. Departamento de Ingeniería de Procesos; Procesos Ambientales (GIPAB)The capacity of the electro-coagulation (EC) process for the treatment of the wastewater containing Cr3+, resulting from a leather tannery industry placed in Medellin (Colombia), was evaluated. In order to assess the effect of some parameters, such as: the electrode type (Al and/or Fe), the distance between electrodes, the current density, the stirring velocity, and the initial Cr3+ concentration on its efficiency of removal (%RCr+3), a multifactorial experimental design was used. The %RCr3+ was defined as the response variable for the statistical analysis. In order to optimise the operational values for the chosen parameters, the response surface method (RSM) was applied. Additionally, the Biological Oxygen Demand (BOD5), the Chemical Oxygen Demand (COD), and the Total Organic Carbon (TOC) were monitored during the EC process. The electrodes made of aluminium appeared to be the most effective in the chromium removal from the wastewater under study. At pH equal to 4.52 and at 28 degrees C, the optimal conditions of Cr3+ removal using the EC process were found, as follows: the initial Cr3+ concentration=3,596 mg/L, the electrode gap=0.5 cm, the stirring velocity=382.3 rpm, and the current density=57.87 mA/cm2. At those conditions, it was possible to reach 99.76% of Cr3+ removal, and 64% and 61% of mineralisation (TOC) and COD removal, respectively. A kinetic analysis was performed in order to verify the response capacity of the EC process at optimised parameter values.Ítem Treatment of automotive industry oily wastewater by electrocoagulation: statistical optimization of the operational parameters.(IWA PUBLISHING, 2009-11-01) GilPavas, Edison; Molina-Tirado, Kevin; Angel Gomez-Garcia, Miguel; GilPavas, Edison; Molina-Tirado, Kevin; Angel Gomez-Garcia, Miguel; Universidad EAFIT. Departamento de Ingeniería de Procesos; Procesos Ambientales (GIPAB)An electrocoagulation process was used for the treatment of oily wastewater generated from an automotive industry in Medellin (Colombia). An electrochemical cell consisting of four parallel electrodes (Fe and Al) in bipolar configuration was implemented. A multifactorial experimental design was used for evaluating the influence of several parameters including: type and arrangement of electrodes, pH, and current density. Oil and grease removal was defined as the response variable for the statistical analysis. Additionally, the BOD(5), COD, and TOC were monitored during the treatment process. According to the results, at the optimum parameter values (current density = 4.3 mA/cm(2), distance between electrodes = 1.5 cm, Fe as anode, and pH = 12) it was possible to reach a c.a. 95% oils removal, COD and mineralization of 87.4% and 70.6%, respectively. A final biodegradability (BOD(5)/COD) of 0.54 was reached.Ítem Water and sediment quality in Cartagena Bay, Colombia: Seasonal variability and potential impacts of pollution(ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD, 2019-01-05) Tosic M.; Restrepo J.D.; Lonin S.; Izquierdo A.; Martins F.; Universidad EAFIT. Departamento de Geología; Ciencias del MarCartagena Bay, one of the Caribbean's hot spots of pollution, is an estuarine system connected to the Caribbean Sea by two straits. Large freshwater discharges from the Dique Canal into the south of the bay produce estuarine conditions strongly related to the seasonal variability of runoff from the Magdalena River watershed. The bay's seasonal conditions may be characterized by three seasons: strong winds/low runoff (Jan.–April), weak winds/intermediate runoff (May–Aug.), and weak winds/high runoff (Sept.–Dec.). This coastal zone is known to be impacted by land-based sources of pollution, including continental runoff, industrial effluents and domestic wastewater. However, previous studies have not sufficiently ascertained the spatio-temporal extent of this pollution. This study addresses the following research question: What is the current extent of water and sediment pollution in Cartagena Bay and which factors control its seasonal variability? Monthly seawater samples (Sept.2014–Aug.2015) were taken from surface and bottom depths at 16 stations in and around Cartagena Bay and analyzed for physical, chemical, and biological parameters. Surface sediments were sampled from the bay's bottom every three months and analyzed for various trace metals. Seasonal variability was observed in nearly all of the water quality parameters, with higher concentrations usually coinciding with the high runoff season. Potential pollution impacts are shown by wet-season averages of total suspended solids (45.0 ± 89.5 mg/l), turbidity (26.1 ± 59.7 NTU), biological oxygen demand (1.20 ± 0.91 mg/l), chlorophyll-a (2.47 ± 2.17 µg/l), nitrate (171.1 ± 112.6 µg/l), phosphate (43.1 ± 63.5 µg/l), total phosphorus (85.3 ± 77.2 µg/l), phenol (2.9 ± 17.4 mg/l), faecal coliforms (798 ± 714 MPN/100 ml) and enterococci (32 ± 30 CFU/100 ml) in excess of recommended threshold values for marine conservation and recreational adequacy. The bay's hypoxic conditions are evident with low dissolved oxygen concentrations (<4 mg/l) found at bottom depths during the wet season, moderate concentrations in the windy season, and low concentrations approaching surface waters during the transitional season, showing a seasonality related to the variability of water circulation and vertical stratification. Lower chlorophyll-a levels found in the water column during the wet season suggest that primary productivity in this eutrophic system is not limited by nutrients, which are abundant due to land-based effluents, but rather by water transparency which is significantly reduced during the wet season due to large sediment loads discharged from the Dique Canal. Sediments from the bay's bottom were found to have concentrations of mercury, cadmium, chromium, copper and nickel in excess of the Threshold Effects Levels (TEL) used as an indicator of potential impacts on marine life. © 2017 Elsevier Ltd