Examinando por Materia "cortical bone"
Mostrando 1 - 8 de 8
Resultados por página
Opciones de ordenación
Ítem Architecture and microstructure of cortical bone in reconstructed canine mandibles after bone transport distraction osteogenesis(SPRINGER, 2011-11-01) Zapata, Uriel; Halvachs, Emily K.; Dechow, Paul C.; Elsalanty, Mohammed E.; Opperman, Lynne A.; Zapata, Uriel; Halvachs, Emily K.; Dechow, Paul C.; Elsalanty, Mohammed E.; Opperman, Lynne A.; Universidad EAFIT. Departamento de Ingeniería de Producción; Materiales de IngenieríaReconstruction of the canine mandible using bone transport distraction osteogenesis has been shown to be a suitable method for correcting segmental bone defects produced by cancer, gunshots, and trauma. Although the mechanical quality of the new regenerate cortical bone seems to be related to the mineralization process, several questions regarding the microstructural patterns of the new bony tissue remain unanswered. The purpose of this study was to quantify any microstructural differences that may exist between the regenerate and control cortical bone. Five adult American foxhound dogs underwent unilateral bone transport distraction of the mandible to repair bone defects of 30-35 mm. Animals were killed 12 weeks after the beginning of the consolidation period. Fourteen cylindrical cortical samples were extracted from the superior, medial, and inferior aspects of the lingual and buccal plates of the reconstructed aspect of the mandible, and 21 specimens were collected similarly from the contralateral aspect of the mandible. Specimens were evaluated using histomorphometric and micro-computed tomographic techniques to compare their microstructure. Except for differences in haversian canal area, histomorphometric analyses suggested no statistical differences in microstructure between regenerate and control cortical bone. Morphological evaluation suggested a consistent level of anisotropy, possibly related to the distraction vector. After 12 weeks' consolidation, bone created during bone transport distraction osteogenesis was comparable to native bone in microstructure, architecture, and mechanical properties. It is proposed that, after enough time, the properties of the regenerate bone will be identical to that of native bone. © Springer Science+Business Media, LLC 2010.Ítem Architecture and microstructure of cortical bone in reconstructed canine mandibles after bone transport distraction osteogenesis(SPRINGER, 2011-11-01) Zapata, Uriel; Halvachs, Emily K.; Dechow, Paul C.; Elsalanty, Mohammed E.; Opperman, Lynne A.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Bioingeniería GIB (CES – EAFIT)Reconstruction of the canine mandible using bone transport distraction osteogenesis has been shown to be a suitable method for correcting segmental bone defects produced by cancer, gunshots, and trauma. Although the mechanical quality of the new regenerate cortical bone seems to be related to the mineralization process, several questions regarding the microstructural patterns of the new bony tissue remain unanswered. The purpose of this study was to quantify any microstructural differences that may exist between the regenerate and control cortical bone. Five adult American foxhound dogs underwent unilateral bone transport distraction of the mandible to repair bone defects of 30-35 mm. Animals were killed 12 weeks after the beginning of the consolidation period. Fourteen cylindrical cortical samples were extracted from the superior, medial, and inferior aspects of the lingual and buccal plates of the reconstructed aspect of the mandible, and 21 specimens were collected similarly from the contralateral aspect of the mandible. Specimens were evaluated using histomorphometric and micro-computed tomographic techniques to compare their microstructure. Except for differences in haversian canal area, histomorphometric analyses suggested no statistical differences in microstructure between regenerate and control cortical bone. Morphological evaluation suggested a consistent level of anisotropy, possibly related to the distraction vector. After 12 weeks' consolidation, bone created during bone transport distraction osteogenesis was comparable to native bone in microstructure, architecture, and mechanical properties. It is proposed that, after enough time, the properties of the regenerate bone will be identical to that of native bone. © Springer Science+Business Media, LLC 2010.Ítem Biomechanical characteristics of regenerated cortical bone in the canine mandible(WILEY-BLACKWELL, 2011-07-01) Zapata, Uriel; Opperman, Lynne A.; Kontogiorgos, Elias; Elsalanty, Mohammed E.; Dechow, Paul C.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Bioingeniería GIB (CES – EAFIT)To test the mechanical properties of regenerate cortical bone created using mandibular bone transport (MBT) distraction, five adult male American foxhound dogs underwent unilateral distraction of the mandible with a novel MBT device placed to linearly repair a 30-35 mm bone defect. The animals were sacrificed 12 weeks after the beginning of the consolidation period. Fourteen cylindrical specimens were taken from the inner (lingual) and outer (buccal) plates of the reconstructed mandible and 21 control specimens were removed from the contralateral aspect of the mandible. The mechanical properties of the 35 cylindrical cortical bone specimens were assessed by using a non-destructive pulse ultrasound technique. Results showed that all of the cortical mechanical properties exhibit higher numerical values on the control side than the MBT regenerate side. In addition, both densities and the elastic moduli in the direction of maximum stiffness of the regenerate cortical bone specimens are higher on the lingual side than the buccal side. Interestingly, there is no statistical difference between elastic modulus (E1 and E2) in orthogonal directions throughout the 35 cortical specimens. The data suggest that not only is the regenerate canine cortical bone heterogeneous, but the elastic mechanical properties tend to approximate transverse isotropy at a tissue level, as opposed to control cortical bone, which is orthotropic. In addition, the elastic mechanical properties are higher not only on the control side but also in the lingual anatomical position, suggesting a stress shielding effect from the presence of the reconstruction plate. © 2011 John Wiley & Sons, Ltd.Ítem Material properties of mandibular cortical bone in the American alligator, Alligator mississippiensis(ELSEVIER SCIENCE INC, 2010-03-01) Zapata, Uriel; Metzger, Keith; Wang, Qian; Elsey, Ruth M.; Ross, Callum F.; Dechow, Paul C.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Bioingeniería GIB (CES – EAFIT)This study reports the elastic material properties of cortical bone in the mandible of juvenile Alligator mississippiensis obtained by using an ultrasonic wave technique. The elastic modulus, the shear modulus, and Poisson's ratio were measured on 42 cylindrical Alligator bone specimens obtained from the lingual and facial surfaces of 4 fresh Alligator mandibles. The data suggest that the elastic properties of alligator mandibular cortical bone are similar to those found in mammals and are orthotropic. The properties most resemble those found in the cortex of mammalian postcranial long bones where the bone is most stiff in one direction and much less stiff in the two remaining orthogonal directions. This is different from cortical bone found in the mandibles of humans and some monkeys, where the bone has greatest stiffness in one direction, much less stiffness in another direction, and an intermediate amount in the third orthogonal direction. This difference suggests a relationship between levels of orthotropy and bending stress. The comparability of these elastic moduli to those of other vertebrates suggest that the high bone strain magnitudes recorded from the alligator mandible in vivo are not attributable to a lower stiffness of alligator mandibular bone. © 2009 Elsevier Inc.Ítem Material properties of the skull layers of the primate parietal bone: A single-subject study(Public Library of Science, 2020-01-01) Zapata, U.; Wang, Q.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Bioingeniería GIB (CES – EAFIT)The outer cortical table of the parietal bone has been commonly used as a calvarial bone graft site for the craniofacial reconstruction. However, little is known about how removing the outer table may affect the function and structure of the inner table, and how the knowledge of the biomechanics and material properties of cortical bones will help the calvarial graft to better integrate into the biological and mechanical functions of its surrounding native tissues. In this study, it was hypothesized that there were significant differences in both density and material properties between inner and outer cortical plates in cranial bones. Twelve cylindrical specimens, including inner-outer layers, of cortical parietal bone of a female baboon were collected. Cortical thicknesses and densities were measured, and elastic properties were assessed using an ultrasonic technique. Results demonstrated remarkable difference in both thickness (t = 8.248, p .0.05) and density (t = 4.926, p.0.05) between inner and outer cortical paired samples. Orthotropic characteristics of the cortical plates were detected as well, these findings suggest that there are differences in biomechanical properties between two surfaces of cranial bones at both tissue and organ levels. How these differences are linked to the stress environments of the inner and outer cranial cortical layers awaits further studies. Further study will greatly enhance our ability to address questions derived from both morphological and craniofacial medicine fields about the development and biomechanics of craniofacial skeletons. © 2020 Zapata, Wang.Ítem Material properties of the skull layers of the primate parietal bone: A single-subject study(Public Library of Science, 2020-01-01) Zapata, U.; Wang, Q.; Zapata, U.; Wang, Q.; Universidad EAFIT. Departamento de Ingeniería de Producción; Materiales de IngenieríaThe outer cortical table of the parietal bone has been commonly used as a calvarial bone graft site for the craniofacial reconstruction. However, little is known about how removing the outer table may affect the function and structure of the inner table, and how the knowledge of the biomechanics and material properties of cortical bones will help the calvarial graft to better integrate into the biological and mechanical functions of its surrounding native tissues. In this study, it was hypothesized that there were significant differences in both density and material properties between inner and outer cortical plates in cranial bones. Twelve cylindrical specimens, including inner-outer layers, of cortical parietal bone of a female baboon were collected. Cortical thicknesses and densities were measured, and elastic properties were assessed using an ultrasonic technique. Results demonstrated remarkable difference in both thickness (t = 8.248, p .0.05) and density (t = 4.926, p.0.05) between inner and outer cortical paired samples. Orthotropic characteristics of the cortical plates were detected as well, these findings suggest that there are differences in biomechanical properties between two surfaces of cranial bones at both tissue and organ levels. How these differences are linked to the stress environments of the inner and outer cranial cortical layers awaits further studies. Further study will greatly enhance our ability to address questions derived from both morphological and craniofacial medicine fields about the development and biomechanics of craniofacial skeletons. © 2020 Zapata, Wang.Ítem Three-dimensional evaluation of mandibular bone regenerated by bone transport distraction osteogenesis(SPRINGER, 2011-07-01) Kontogiorgos, E.; Elsalanty, M.E.; Zapata, U.; Zakhary, I.; Nagy, W.W.; Dechow, P.C.; Opperman, L.A.; Kontogiorgos, E.; Elsalanty, M.E.; Zapata, U.; Zakhary, I.; Nagy, W.W.; Dechow, P.C.; Opperman, L.A.; Universidad EAFIT. Departamento de Ingeniería de Producción; Materiales de IngenieríaThe purpose of this study was to evaluate the structure and material properties of native mandibular bone and those of early regenerate bone, produced by bone transport distraction osteogenesis. Ten adult foxhounds were divided into two groups of five animals each. In all animals, a 3- to 4-cm defect was created on one side of the mandible. A bone transport reconstruction plate, consisting of a reconstruction plate with an attached intraoral transport unit, was utilized to stabilize the mandible and regenerate bone at a rate of 1 mm/day. After the distraction period was finished, the animals were killed at 6 and 12 weeks of consolidation. Micro-computed tomography was used to assess the morphometric and structural indices of regenerate bone and matching bone from the unoperated contralateral side. Significant new bone was formed within the defect in the 6- and 12-week groups. Significant differences (P = 0.05) between mandibular regenerated and native bone were found in regard to bone volume fraction, mineral density, bone surface ratio, trabecular thickness, trabecular separation, and connectivity density, which increased from 12 to 18 weeks of consolidation. We showed that regenerated bone is still mineralizing and that native bone appears denser because of a thick outer layer of cortical bone that is not yet formed in the regenerate. However, the regenerate showed a significantly higher number of thicker trabeculae. © 2011 Springer Science+Business Media, LLC.Ítem Three-dimensional evaluation of mandibular bone regenerated by bone transport distraction osteogenesis(SPRINGER, 2011-07-01) Kontogiorgos, E.; Elsalanty, M.E.; Zapata, U.; Zakhary, I.; Nagy, W.W.; Dechow, P.C.; Opperman, L.A.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Bioingeniería GIB (CES – EAFIT)The purpose of this study was to evaluate the structure and material properties of native mandibular bone and those of early regenerate bone, produced by bone transport distraction osteogenesis. Ten adult foxhounds were divided into two groups of five animals each. In all animals, a 3- to 4-cm defect was created on one side of the mandible. A bone transport reconstruction plate, consisting of a reconstruction plate with an attached intraoral transport unit, was utilized to stabilize the mandible and regenerate bone at a rate of 1 mm/day. After the distraction period was finished, the animals were killed at 6 and 12 weeks of consolidation. Micro-computed tomography was used to assess the morphometric and structural indices of regenerate bone and matching bone from the unoperated contralateral side. Significant new bone was formed within the defect in the 6- and 12-week groups. Significant differences (P = 0.05) between mandibular regenerated and native bone were found in regard to bone volume fraction, mineral density, bone surface ratio, trabecular thickness, trabecular separation, and connectivity density, which increased from 12 to 18 weeks of consolidation. We showed that regenerated bone is still mineralizing and that native bone appears denser because of a thick outer layer of cortical bone that is not yet formed in the regenerate. However, the regenerate showed a significantly higher number of thicker trabeculae. © 2011 Springer Science+Business Media, LLC.