Examinando por Materia "Tensile testing"
Mostrando 1 - 3 de 3
Resultados por página
Opciones de ordenación
Ítem Effect of chemical composition and microstructure on the mechanical behavior of fish scales from Megalops Atlanticus(ELSEVIER SCIENCE BV, 2016-03-01) Gil-Duran, S.; Arola, D.; Ossa, E.A.; Gil-Duran, S.; Arola, D.; Ossa, E.A.; Universidad EAFIT. Departamento de Ingeniería de Producción; Materiales de IngenieríaThis paper presents an experimental study of the composition, microstructure and mechanical behavior of scales from the Megalops Atlanticus (Atlantic tarpon). The microstructure and composition were evaluated by Scanning Electron Microscopy (SEM) and RAMAN spectroscopy, respectively. The mechanical properties were evaluated in uniaxial tension as a function of position along the length of the fish (head, mid-length and tail). Results showed that the scales are composed of collagen and hydroxyapatite, and these constituents are distributed within three well-defined layers from the bottom to the top of the scale. The proportion of these layers with respect to the total scale thickness varies radially. The collagen fibers are arranged in plies with different orientations and with preferred orientation in the longitudinal direction of the fish. Results from the tensile tests showed that scales from Megalops Atlanticus exhibit variations in the elastic modulus as a function of body position. Additional testing performed with and without the highly mineralized top layers of the scale revealed that the mechanical behavior is anisotropic and that the highest strength was exhibited along the fish length. Furthermore, removing the top mineralized layers resulted in an increase in the tensile strength of the scale. © 2015 Elsevier Ltd.Ítem In vitro mechanical evaluation of mandibular bone transport devices(ASME, 2014-06-01) Zapata, Uriel; Watanabe, Ikuya; Opperman, Lynne A.; Dechow, Paul C.; Mulone, Timothy; Elsalanty, Mohammed E.; Zapata, Uriel; Watanabe, Ikuya; Opperman, Lynne A.; Dechow, Paul C.; Mulone, Timothy; Elsalanty, Mohammed E.; Universidad EAFIT. Departamento de Ingeniería de Producción; Materiales de IngenieríaBone transport distraction osteogenesis (BTDO) is a surgical procedure that has been used over the last 30 years for the correction of segmental defects produced mainly by trauma and oncological resections. Application of BTDO has several clinical advantages over traditional surgical techniques. Over the past few years, several BTDO devices have been introduced to reconstruct mandibular bone defects. Based on the location and outline of the defect, each device requires a uniquely shaped reconstruction plate. To date, no biomechanical evaluations of mandibular BTDO devices have been reported in the literature. The present study evaluated the mechanical behavior of three different shaped prototypes of a novel mandibular bone transport reconstruction plate and its transport unit for the reconstruction of segmental bone defects of the mandible by using numerical models complemented with mechanical laboratory tests to characterize strength, fatigue, and stability. The strength test evaluated device failures under extreme loads and was complemented with optimization procedures to improve the biomechanical behavior of the devices. The responses of the prototypes were characterized to improve their design and identify weak and strong regions in order to avoid posterior device failure in clinical applications. Combinations of the numerical and mechanical laboratory results were used to compare and validate the models. In addition, the results remark the importance of reducing the number of animals used in experimental tests by increasing computational and in vitro trials. © VC 2014 by ASME.Ítem In vitro mechanical evaluation of mandibular bone transport devices(ASME, 2014-06-01) Zapata, Uriel; Watanabe, Ikuya; Opperman, Lynne A.; Dechow, Paul C.; Mulone, Timothy; Elsalanty, Mohammed E.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Bioingeniería GIB (CES – EAFIT)Bone transport distraction osteogenesis (BTDO) is a surgical procedure that has been used over the last 30 years for the correction of segmental defects produced mainly by trauma and oncological resections. Application of BTDO has several clinical advantages over traditional surgical techniques. Over the past few years, several BTDO devices have been introduced to reconstruct mandibular bone defects. Based on the location and outline of the defect, each device requires a uniquely shaped reconstruction plate. To date, no biomechanical evaluations of mandibular BTDO devices have been reported in the literature. The present study evaluated the mechanical behavior of three different shaped prototypes of a novel mandibular bone transport reconstruction plate and its transport unit for the reconstruction of segmental bone defects of the mandible by using numerical models complemented with mechanical laboratory tests to characterize strength, fatigue, and stability. The strength test evaluated device failures under extreme loads and was complemented with optimization procedures to improve the biomechanical behavior of the devices. The responses of the prototypes were characterized to improve their design and identify weak and strong regions in order to avoid posterior device failure in clinical applications. Combinations of the numerical and mechanical laboratory results were used to compare and validate the models. In addition, the results remark the importance of reducing the number of animals used in experimental tests by increasing computational and in vitro trials. © VC 2014 by ASME.