In vitro mechanical evaluation of mandibular bone transport devices
Fecha
2014-06-01
Autores
Zapata, Uriel
Watanabe, Ikuya
Opperman, Lynne A.
Dechow, Paul C.
Mulone, Timothy
Elsalanty, Mohammed E.
Título de la revista
ISSN de la revista
Título del volumen
Editor
ASME
Resumen
Bone transport distraction osteogenesis (BTDO) is a surgical procedure that has been used over the last 30 years for the correction of segmental defects produced mainly by trauma and oncological resections. Application of BTDO has several clinical advantages over traditional surgical techniques. Over the past few years, several BTDO devices have been introduced to reconstruct mandibular bone defects. Based on the location and outline of the defect, each device requires a uniquely shaped reconstruction plate. To date, no biomechanical evaluations of mandibular BTDO devices have been reported in the literature. The present study evaluated the mechanical behavior of three different shaped prototypes of a novel mandibular bone transport reconstruction plate and its transport unit for the reconstruction of segmental bone defects of the mandible by using numerical models complemented with mechanical laboratory tests to characterize strength, fatigue, and stability. The strength test evaluated device failures under extreme loads and was complemented with optimization procedures to improve the biomechanical behavior of the devices. The responses of the prototypes were characterized to improve their design and identify weak and strong regions in order to avoid posterior device failure in clinical applications. Combinations of the numerical and mechanical laboratory results were used to compare and validate the models. In addition, the results remark the importance of reducing the number of animals used in experimental tests by increasing computational and in vitro trials. © VC 2014 by ASME.
Descripción
Palabras clave
Bending tests , Biomechanics , Biomedical equipment , Finite element method , Surgery , Tensile testing , Biomechanical behavior , Biomechanical evaluation , Distraction osteogenesis , Mechanical evaluation , Medical Devices , Optimization procedures , Reconstruction plates , Tension tests , Bone , animal tissue , Article , biomechanics , bone plating system , clinical evaluation , compression , controlled study , device comparison , device failure analysis , equipment design , finite element analysis , in vitro study , jaw malformation , laboratory test , mandible reconstruction , mandibular bone transport device , nonhuman , physical parameters , quality control , rigidity , simulation , standard bone plate , strength , tension