Examinando por Materia "Real time control"
Mostrando 1 - 9 de 9
Resultados por página
Opciones de ordenación
Ítem Design of computer experiments applied to modeling compliant mechanisms(DELFT UNIV TECHNOLOGY, FAC INDUST DESIGN ENG, 2010-01-01) Arango, D.R.; Acosta, D.A.; Durango, S.; Ruiz, O.E.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Laboratorio CAD/CAM/CAEThis article discusses a procedure for force-displacement modeling compliant mechanisms by using a design of computer experiments methodology. This approach produces a force-displacement metamodel that is suited for real-time control of compliant mechanisms. The term metamodel is used to represent a simplified and efficient mathematical model of unknown phenomenon or computer codes. The metamodeling of compliant mechanisms is performed from virtual experiments based on factorial and space filling design of experiments. The procedure is used to modeling the quasi-static behavior of the HexFlex compliant mechanism. The HexFlex is a parallel compliant mechanism for nanomanipulating that allows six degrees of freedom of its moving stage. The metamodel of the HexFlex is performed from virtual experiments by the Finite Element Method (FEM). The obtained metamodel for the HexFlex is linear for the movement range of the mechanism. Simulations of the metamodel were conducted, finding good accuracy with respect to the virtual experiments. © Organizing Committee of TMCE 2010 Symposium.Ítem Design of computer experiments applied to modeling compliant mechanisms(DELFT UNIV TECHNOLOGY, FAC INDUST DESIGN ENG, 2010-01-01) Arango, D.R.; Acosta, D.A.; Durango, S.; Ruiz, O.E.; Universidad EAFIT. Departamento de Ingeniería de Procesos; Desarrollo y Diseño de ProcesosThis article discusses a procedure for force-displacement modeling compliant mechanisms by using a design of computer experiments methodology. This approach produces a force-displacement metamodel that is suited for real-time control of compliant mechanisms. The term metamodel is used to represent a simplified and efficient mathematical model of unknown phenomenon or computer codes. The metamodeling of compliant mechanisms is performed from virtual experiments based on factorial and space filling design of experiments. The procedure is used to modeling the quasi-static behavior of the HexFlex compliant mechanism. The HexFlex is a parallel compliant mechanism for nanomanipulating that allows six degrees of freedom of its moving stage. The metamodel of the HexFlex is performed from virtual experiments by the Finite Element Method (FEM). The obtained metamodel for the HexFlex is linear for the movement range of the mechanism. Simulations of the metamodel were conducted, finding good accuracy with respect to the virtual experiments. © Organizing Committee of TMCE 2010 Symposium.Ítem Design of computer experiments applied to modeling of compliant mechanisms for real-time control(SPRINGER, 2013-07-01) Acosta, Diego A.; Restrepo, David; Durango, Sebastian; Ruiz, Oscar E.; Universidad EAFIT. Departamento de Ingeniería de Procesos; Desarrollo y Diseño de ProcesosThis article discusses the use of design of computer experiments (DOCE) (i.e., experiments run with a computer model to find how a set of inputs affects a set of outputs) to obtain a force-displacement meta-model (i.e., a mathematical equation that summarizes and aids in analyzing the input-output data of a DOCE) of compliant mechanisms (CMs). The procedure discussed produces a force-displacement meta-model, or closed analytic vector function, that aims to control CMs in real-time. In our work, the factorial and space-filling DOCE meta-model of CMs is supported by finite element analysis (FEA). The protocol discussed is used to model the HexFlex mechanism functioning under quasi-static conditions. The HexFlex is a parallel CM for nano-manipulation that allows six degrees of freedom (x, y, z, ? x, ? y, ? z ) of its moving platform. In the multi-linear model fit of the HexFlex, the products or interactions proved to be negligible, yielding a linear model (i.e., linear in the inputs) for the operating range. The accuracy of the meta-model was calculated by conducting a set of computer experiments with random uniform distribution of the input forces. Three error criteria were recorded comparing the meta-model prediction with respect to the results of the FEA experiments by determining: (1) maximum of the absolute value of the error, (2) relative error, and (3) root mean square error. The maximum errors of our model are lower than high-precision manufacturing tolerances and are also lower than those reported by other researchers who have tried to fit meta-models to the HexFlex mechanism. © 2012 Springer-Verlag London Limited.Ítem Design of computer experiments applied to modeling of compliant mechanisms for real-time control(SPRINGER, 2013-07-01) Acosta, Diego A.; Restrepo, David; Durango, Sebastian; Ruiz, Oscar E.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Laboratorio CAD/CAM/CAEThis article discusses the use of design of computer experiments (DOCE) (i.e., experiments run with a computer model to find how a set of inputs affects a set of outputs) to obtain a force-displacement meta-model (i.e., a mathematical equation that summarizes and aids in analyzing the input-output data of a DOCE) of compliant mechanisms (CMs). The procedure discussed produces a force-displacement meta-model, or closed analytic vector function, that aims to control CMs in real-time. In our work, the factorial and space-filling DOCE meta-model of CMs is supported by finite element analysis (FEA). The protocol discussed is used to model the HexFlex mechanism functioning under quasi-static conditions. The HexFlex is a parallel CM for nano-manipulation that allows six degrees of freedom (x, y, z, ? x, ? y, ? z ) of its moving platform. In the multi-linear model fit of the HexFlex, the products or interactions proved to be negligible, yielding a linear model (i.e., linear in the inputs) for the operating range. The accuracy of the meta-model was calculated by conducting a set of computer experiments with random uniform distribution of the input forces. Three error criteria were recorded comparing the meta-model prediction with respect to the results of the FEA experiments by determining: (1) maximum of the absolute value of the error, (2) relative error, and (3) root mean square error. The maximum errors of our model are lower than high-precision manufacturing tolerances and are also lower than those reported by other researchers who have tried to fit meta-models to the HexFlex mechanism. © 2012 Springer-Verlag London Limited.Ítem Multi-modal interface for a real-time CFD solver(2007-01-01) Kasakevich, M.; Boulanger, P.; Bischof, W.F.; Garcia, M.; Kasakevich, M.; Boulanger, P.; Bischof, W.F.; Garcia, M.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Mecánica AplicadaAdvances in computer processing power and networking over the past few years have brought significant changes to the modeling and simulation of complex phenomena. Problems that formerly could only be tackled in batch mode, with their results visualized afterwards, can now be monitored whilst in progress using graphical means. In certain cases, it is even possible to alter parameters of the computation whilst it is running, depending on what the scientist perceives in the current visual output. This ability to monitor and change parameters of the computational process at any time and from anywhere is called computational steering. Combining this capability with advanced multi-modal tools to explore the data produced by these systems are key to our approach. In this paper, we present an advanced multi-modal interface where sonification and 3D visualization are used in a computational steering environment specialized to solve real-time Computational Fluid Dynamics (CFD) problems. More specifically, this paper describes how sonification of CFD data can be used to augment 3D visualization. © 2006 IEEE.Ítem NMPC controller applied to the operation of an internal combustion engine: formulation and solution of the optimization problem in real time(Springer-Verlag France, 2018-02-01) Chica, J.A.V.; Torres, A.G.D.; Acosta Maya, Diego Andres; Chica, J.A.V.; Torres, A.G.D.; Acosta Maya, Diego Andres; Universidad EAFIT. Departamento de Ingeniería de Producción; Ingeniería, Energía, Exergía y Sostenibilidad (IEXS)Numerical optimization solve problems efficiently where such efficiency is focused on the speed with which the optimal x* is achieved, is open line of research and strong work in the scientific community in order to achieve control systems in dynamic processes with response times of the order of milliseconds. A clear example of this, is the implementation of optimal controller’s combustion engines. For subsequent approach to the design and implementation of nonlinear model predictive control controllers, it has made a comparison of yields algorithms quadratic programming by active set with linearization restrictions, and sequential quadratic programming with single shooting technique to solve quadratic optimization problem formulation referred to a dynamic internal combustion engine of spark ignition, in embedded systems with real-time processing. © 2016, Springer-Verlag France.Ítem NMPC controller applied to the operation of an internal combustion engine: formulation and solution of the optimization problem in real time(Springer-Verlag France, 2018-02-01) Chica, J.A.V.; Torres, A.G.D.; Acosta Maya, Diego Andres; Universidad EAFIT. Departamento de Ingeniería de Procesos; Desarrollo y Diseño de ProcesosNumerical optimization solve problems efficiently where such efficiency is focused on the speed with which the optimal x* is achieved, is open line of research and strong work in the scientific community in order to achieve control systems in dynamic processes with response times of the order of milliseconds. A clear example of this, is the implementation of optimal controller’s combustion engines. For subsequent approach to the design and implementation of nonlinear model predictive control controllers, it has made a comparison of yields algorithms quadratic programming by active set with linearization restrictions, and sequential quadratic programming with single shooting technique to solve quadratic optimization problem formulation referred to a dynamic internal combustion engine of spark ignition, in embedded systems with real-time processing. © 2016, Springer-Verlag France.Ítem NMPC controller applied to the operation of an internal combustion engine: formulation and solution of the optimization problem in real time(Springer-Verlag France, 2018-02-01) Chica, J.A.V.; Torres, A.G.D.; Acosta Maya, Diego Andres; Chica, J.A.V.; Torres, A.G.D.; Acosta Maya, Diego Andres; Universidad EAFIT. Departamento de Ingeniería de Procesos; Procesos Ambientales (GIPAB)Numerical optimization solve problems efficiently where such efficiency is focused on the speed with which the optimal x* is achieved, is open line of research and strong work in the scientific community in order to achieve control systems in dynamic processes with response times of the order of milliseconds. A clear example of this, is the implementation of optimal controller’s combustion engines. For subsequent approach to the design and implementation of nonlinear model predictive control controllers, it has made a comparison of yields algorithms quadratic programming by active set with linearization restrictions, and sequential quadratic programming with single shooting technique to solve quadratic optimization problem formulation referred to a dynamic internal combustion engine of spark ignition, in embedded systems with real-time processing. © 2016, Springer-Verlag France.Ítem Simulation NMPC in 2-HIL to design ECU(Springer-Verlag France, 2017-11-01) Chica, J.A.V.; Torres, A.G.D.; Chica, J.A.V.; Torres, A.G.D.; Universidad EAFIT. Departamento de Ingeniería de Producción; Ingeniería, Energía, Exergía y Sostenibilidad (IEXS)The development, testing and tuning of control systems for complex plants found hardware in the loop (HIL) technical, a perfect ally to reduce risks, costs and times redesign. HIL allows for example, in the automotive field contain an embedded system complexity nonlinear dynamics modeling the internal combustion engine, including the processes of discrete events and continuous. With the goal to represent as closely as possible the behavior of the engine, dynamics is simulated by the embedded system in real time, sensors including. On the other hand, the electronic control unit (ECU), by construction also constitutes an embedded system that the plant operates properly. Is of wide interest to optimize engine operation, and a valid opportunity, is to design ECU's that are running optimal control algorithms, such as nonlineal model predictive control (NMPC). This document is a report of the practical reliability of the implementation of a HIL simulation scheme for the design of NMPC controllers for internal combustion engine. In a RT hardware element implements the component models the nonlinear plant, in another such element is implemented and tested two NMPC optimal control algorithms: model predictive control with linearization on-line and NMPC based on sequential quadratic programming, included in the simulation loop the real actuator elements. Combined with an interface to the designer that allows actively interact with the system, evaluating an expanded field operating conditions and even bordering operating limits.