Examinando por Materia "Parametric surfaces"
Mostrando 1 - 5 de 5
Resultados por página
Opciones de ordenación
Ítem Aspect ratio- and size-controlled patterned triangulations of parametric surfaces(ACTA PRESS ANAHEIM, 2007-01-01) Ruiz, Oscar E.; Pena, Sebastian; Duque, Juan; Universidad EAFIT. Departamento de Ingeniería Mecánica; Laboratorio CAD/CAM/CAEA method to produce patterned, controlled size triangulation of Boundary Representations is presented. Although the produced patterned triangulations are not immediately suited for fast visualization, they were used in Fixed Grid Finite Element Analysis, and do provide a control on the aspect ratio or shape factor of the triangles produced. The method presented first calculates a triangulation in the parameter space of the faces in which the B-Rep is partitioned and then maps it to 3D space. Special emphasis is set in ensuring that the triangulations of neighboring faces meet in a seamless manner, therefore ensuring that a borderless C2 2-manifold would have as triangulation a C0 borderless 2-manifold. The method works properly under the conditions (i) the parametric form of the face is a 1-1 function, (ii) the parametric pre-image of a parametric face is a connected region, and (iii) the user-requested sampling frequency ( samples per length unit ) is higher than twice the spatial frequency of the features in the B-Rep ( thus respecting the Nyquist principle ). As the conditions (i) and (ii) are possible under face reparameterization or sub-division and the condition (iii) is the minimum that a triangulation should comply with, the method is deemed as generally applicable.Ítem Geodesic-based manifold learning for parameterization of triangular meshes(Springer-Verlag France, 2016-11-01) Acosta, D.A.; Ruiz, O.E.; Arroyave, S.; Ebratt, R.; Cadavid, C.; Londono, J.J.; Acosta, Diego A.; Acosta, D.A.; Ruiz, O.E.; Arroyave, S.; Ebratt, R.; Cadavid, C.; Londono, J.J.; Acosta, Diego A.; Universidad EAFIT. Departamento de Ingeniería de Procesos; Procesos Ambientales (GIPAB)Reverse Engineering (RE) requires representing with free forms (NURBS, Spline, B,zier) a real surface which has been point-sampled. To serve this purpose, we have implemented an algorithm that minimizes the accumulated distance between the free form and the (noisy) point sample. We use a dual-distance calculation point to / from surfaces, which discourages the forming of outliers and artifacts. This algorithm seeks a minimum in a function that represents the fitting error, by using as tuning variable the control polyhedron for the free form. The topology (rows, columns) and geometry of the control polyhedron are determined by alternative geodesic-based dimensionality reduction methods: (a) graph-approximated geodesics (Isomap), or (b) PL orthogonal geodesic grids. We assume the existence of a triangular mesh of the point sample (a reasonable expectation in current RE). A bijective composition mapping allows to estimate a size of the control polyhedrons favorable to uniform-speed parameterizations. Our results show that orthogonal geodesic grids is a direct and intuitive parameterization method, which requires more exploration for irregular triangle meshes. Isomap gives a usable initial parameterization whenever the graph approximation of geodesics on be faithful. These initial guesses, in turn, produce efficient free form optimization processes with minimal errors. Future work is required in further exploiting the usual triangular mesh underlying the point sample for (a) enhancing the segmentation of the point set into faces, and (b) using a more accurate approximation of the geodesic distances within , which would benefit its dimensionality reduction.Ítem Geodesic-based manifold learning for parameterization of triangular meshes(Springer-Verlag France, 2016-11-01) Acosta, D.A.; Ruiz, O.E.; Arroyave, S.; Ebratt, R.; Cadavid, C.; Londono, J.J.; Acosta, Diego A.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Laboratorio CAD/CAM/CAEReverse Engineering (RE) requires representing with free forms (NURBS, Spline, B,zier) a real surface which has been point-sampled. To serve this purpose, we have implemented an algorithm that minimizes the accumulated distance between the free form and the (noisy) point sample. We use a dual-distance calculation point to / from surfaces, which discourages the forming of outliers and artifacts. This algorithm seeks a minimum in a function that represents the fitting error, by using as tuning variable the control polyhedron for the free form. The topology (rows, columns) and geometry of the control polyhedron are determined by alternative geodesic-based dimensionality reduction methods: (a) graph-approximated geodesics (Isomap), or (b) PL orthogonal geodesic grids. We assume the existence of a triangular mesh of the point sample (a reasonable expectation in current RE). A bijective composition mapping allows to estimate a size of the control polyhedrons favorable to uniform-speed parameterizations. Our results show that orthogonal geodesic grids is a direct and intuitive parameterization method, which requires more exploration for irregular triangle meshes. Isomap gives a usable initial parameterization whenever the graph approximation of geodesics on be faithful. These initial guesses, in turn, produce efficient free form optimization processes with minimal errors. Future work is required in further exploiting the usual triangular mesh underlying the point sample for (a) enhancing the segmentation of the point set into faces, and (b) using a more accurate approximation of the geodesic distances within , which would benefit its dimensionality reduction.Ítem Geodesic-based manifold learning for parameterization of triangular meshes(Springer-Verlag France, 2016-11-01) Acosta, D.A.; Ruiz, O.E.; Arroyave, S.; Ebratt, R.; Cadavid, C.; Londono, J.J.; Acosta, Diego A.; Universidad EAFIT. Departamento de Ingeniería de Procesos; Desarrollo y Diseño de ProcesosReverse Engineering (RE) requires representing with free forms (NURBS, Spline, B,zier) a real surface which has been point-sampled. To serve this purpose, we have implemented an algorithm that minimizes the accumulated distance between the free form and the (noisy) point sample. We use a dual-distance calculation point to / from surfaces, which discourages the forming of outliers and artifacts. This algorithm seeks a minimum in a function that represents the fitting error, by using as tuning variable the control polyhedron for the free form. The topology (rows, columns) and geometry of the control polyhedron are determined by alternative geodesic-based dimensionality reduction methods: (a) graph-approximated geodesics (Isomap), or (b) PL orthogonal geodesic grids. We assume the existence of a triangular mesh of the point sample (a reasonable expectation in current RE). A bijective composition mapping allows to estimate a size of the control polyhedrons favorable to uniform-speed parameterizations. Our results show that orthogonal geodesic grids is a direct and intuitive parameterization method, which requires more exploration for irregular triangle meshes. Isomap gives a usable initial parameterization whenever the graph approximation of geodesics on be faithful. These initial guesses, in turn, produce efficient free form optimization processes with minimal errors. Future work is required in further exploiting the usual triangular mesh underlying the point sample for (a) enhancing the segmentation of the point set into faces, and (b) using a more accurate approximation of the geodesic distances within , which would benefit its dimensionality reduction.Ítem Geodesic-based manifold learning for parameterization of triangular meshes(Springer-Verlag France, 2016-11-01) Acosta, D.A.; Ruiz, O.E.; Arroyave, S.; Ebratt, R.; Cadavid, C.; Londono, J.J.; Acosta, Diego A.; Acosta, D.A.; Ruiz, O.E.; Arroyave, S.; Ebratt, R.; Cadavid, C.; Londono, J.J.; Acosta, Diego A.; Universidad EAFIT. Departamento de Ciencias; Matemáticas y AplicacionesReverse Engineering (RE) requires representing with free forms (NURBS, Spline, B,zier) a real surface which has been point-sampled. To serve this purpose, we have implemented an algorithm that minimizes the accumulated distance between the free form and the (noisy) point sample. We use a dual-distance calculation point to / from surfaces, which discourages the forming of outliers and artifacts. This algorithm seeks a minimum in a function that represents the fitting error, by using as tuning variable the control polyhedron for the free form. The topology (rows, columns) and geometry of the control polyhedron are determined by alternative geodesic-based dimensionality reduction methods: (a) graph-approximated geodesics (Isomap), or (b) PL orthogonal geodesic grids. We assume the existence of a triangular mesh of the point sample (a reasonable expectation in current RE). A bijective composition mapping allows to estimate a size of the control polyhedrons favorable to uniform-speed parameterizations. Our results show that orthogonal geodesic grids is a direct and intuitive parameterization method, which requires more exploration for irregular triangle meshes. Isomap gives a usable initial parameterization whenever the graph approximation of geodesics on be faithful. These initial guesses, in turn, produce efficient free form optimization processes with minimal errors. Future work is required in further exploiting the usual triangular mesh underlying the point sample for (a) enhancing the segmentation of the point set into faces, and (b) using a more accurate approximation of the geodesic distances within , which would benefit its dimensionality reduction.