Logotipo del repositorio
  • English
  • Español
  • Français
  • Português
  • Iniciar sesión
    ¿Has olvidado tu contraseña?
Logotipo del repositorio
  • Comunidades
  • Listar por
  • English
  • Español
  • Français
  • Português
  • Iniciar sesión
    ¿Has olvidado tu contraseña?
  1. Inicio
  2. Examinar por materia

Examinando por Materia "Oxygen"

Mostrando 1 - 9 de 9
Resultados por página
Opciones de ordenación
  • No hay miniatura disponible
    Ítem
    The Box-Benkhen experimental design for the optimization of the electrocatalytic treatment of wastewaters with high concentrations of phenol and organic matter.
    (IWA PUBLISHING, 2009-01-01) GilPavas, Edison; Betancourt, Alejandra; Angulo, Monica; Dobrosz-Gomez, Izabela; Angel Gomez-Garcia, Miguel; GilPavas, Edison; Betancourt, Alejandra; Angulo, Monica; Dobrosz-Gomez, Izabela; Angel Gomez-Garcia, Miguel; Universidad EAFIT. Departamento de Ingeniería de Procesos; Procesos Ambientales (GIPAB)
    In this work, the Box-Benkhen experimental Design (BBD) was applied for the optimization of the parameters of the electrocatalytic degradation of wastewaters resulting from a phenolic resins industry placed in the suburbs of Medellin (Colombia). The direct and the oxidant assisted electro-oxidation experiments were carried out in a laboratory scale batch cell reactor, with monopolar configuration, and electrodes made of graphite (anode) and titanium (cathode). A multifactorial experimental design was proposed, including the following experimental variables: initial phenol concentration, conductivity, and pH. The direct electro-oxidation process allowed to reach ca. 88% of phenol degradation, 38% of mineralization (TOC), 52% of Chemical Oxygen Demand (COD) degradation, and an increase in water biodegradability of 13%. The synergetic effect of the electro-oxidation process and the respective oxidant agent (Fenton reactant, potassium permanganate, or sodium persulfate) let to a significant increase in the rate of the degradation process. At the optimized variables values, it was possible to reach ca. 99% of phenol degradation, 80% of TOC and 88% of COD degradation. A kinetic study was accomplished, which included the identification of the intermediate compounds generated during the oxidation process.
  • No hay miniatura disponible
    Ítem
    ¿Cómo se forma el fuego?
    (2017) Londoño Restrepo, Néstor Mauricio; Arango Hurtado, Carolina; Muriel Gil, Luisa Fernanda; Londoño Rivera, Ana María
  • No hay miniatura disponible
    Ítem
    Mineralization of cyanide originating from gold leaching effluent using electro-oxidation: multi-objective optimization and kinetic study
    (SPRINGER, 2020-01-01) Dobrosz-Gómez I.; Gómez García M.Á.; Gaviria G.H.; GilPavas E.; Universidad EAFIT. Departamento de Ingeniería de Procesos; Desarrollo y Diseño de Procesos
    Abstract: This study examines the electro-oxidation (EO) of cyanide originating from an industrial plant´s gold leaching effluent. Experiments were carried out in a laboratory-scale batch cell reactor. Monopolar configuration of electrodes consisting of graphite (anode) and aluminum (cathode) was employed, operating in galvanostatic mode. Response Surface Methodology (RSM), based on a Box–Behnken experimental Design (BBD), was used to optimize the EO operational conditions. Three independent process variables were considered: initial cyanide concentration ([CN-]0 = 1000–2000 mg L-1), current density (J =7–107 mA cm-2), and stirring velocity (? = 250–750 rpm). The cyanide conversion (XCN-), Chemical Oxygen Demand (COD) removal percentage (%RCOD), and specific Energy Consumption per unit mass of removed cyanide (EC) were analyzed as response variables. Multi-objective optimization let to establish the most effective EO conditions ([CN-]0 = 1000 mg L-1, J = 100 mA cm-2 and ? = 750 rpm). The experimental data (XCN-, %RCOD, and EC) were fitted to second-order polynomial models with adjusted correlation coefficients (Radj2) of ca. 98, 99 and 87%, respectively. The kinetic analysis, performed at optimal EO operational conditions, allowed determination of time required to meet Colombian permissible discharge limits. The predictive capacity of kinetic expressions was verified against experimental data obtained for gold leaching effluent. Total cyanide removal and 96% of COD reduction were obtained, requiring EC of 71.33 kWh kg-1 and 180 min. The BOD5 (biological oxygen demand)/COD ratio increased from 4.52 × 10-4 to 0.5573, confirming effluent biodegradability after EO treatment. Graphic Abstract: [Figure not available: see fulltext.]The variation of cyanide (CN-), cyanate (CNO-) and ammonium (NH4 +) ions concentrations vs. time at alkaline conditions. EO operational conditions: [CN-]0 = 1000 mg/L, J = 100 mA/cm2 , ? = 750 rpm, [NaCl] = 0.15 M and pH 11.1. © 2020, Springer Nature B.V.
  • No hay miniatura disponible
    Ítem
    Mineralization of cyanide originating from gold leaching effluent using electro-oxidation: multi-objective optimization and kinetic study
    (SPRINGER, 2020-01-01) Dobrosz-Gómez I.; Gómez García M.Á.; Gaviria G.H.; GilPavas E.; Dobrosz-Gómez I.; Gómez García M.Á.; Gaviria G.H.; GilPavas E.; Universidad EAFIT. Departamento de Ingeniería de Procesos; Procesos Ambientales (GIPAB)
    Abstract: This study examines the electro-oxidation (EO) of cyanide originating from an industrial plant´s gold leaching effluent. Experiments were carried out in a laboratory-scale batch cell reactor. Monopolar configuration of electrodes consisting of graphite (anode) and aluminum (cathode) was employed, operating in galvanostatic mode. Response Surface Methodology (RSM), based on a Box–Behnken experimental Design (BBD), was used to optimize the EO operational conditions. Three independent process variables were considered: initial cyanide concentration ([CN-]0 = 1000–2000 mg L-1), current density (J =7–107 mA cm-2), and stirring velocity (? = 250–750 rpm). The cyanide conversion (XCN-), Chemical Oxygen Demand (COD) removal percentage (%RCOD), and specific Energy Consumption per unit mass of removed cyanide (EC) were analyzed as response variables. Multi-objective optimization let to establish the most effective EO conditions ([CN-]0 = 1000 mg L-1, J = 100 mA cm-2 and ? = 750 rpm). The experimental data (XCN-, %RCOD, and EC) were fitted to second-order polynomial models with adjusted correlation coefficients (Radj2) of ca. 98, 99 and 87%, respectively. The kinetic analysis, performed at optimal EO operational conditions, allowed determination of time required to meet Colombian permissible discharge limits. The predictive capacity of kinetic expressions was verified against experimental data obtained for gold leaching effluent. Total cyanide removal and 96% of COD reduction were obtained, requiring EC of 71.33 kWh kg-1 and 180 min. The BOD5 (biological oxygen demand)/COD ratio increased from 4.52 × 10-4 to 0.5573, confirming effluent biodegradability after EO treatment. Graphic Abstract: [Figure not available: see fulltext.]The variation of cyanide (CN-), cyanate (CNO-) and ammonium (NH4 +) ions concentrations vs. time at alkaline conditions. EO operational conditions: [CN-]0 = 1000 mg/L, J = 100 mA/cm2 , ? = 750 rpm, [NaCl] = 0.15 M and pH 11.1. © 2020, Springer Nature B.V.
  • No hay miniatura disponible
    Ítem
    The removal of the trivalent chromium from the leather tannery wastewater: the optimisation of the electro-coagulation process parameters.
    (IWA PUBLISHING, 2011-02-01) GilPavas, E.; Dobrosz-Gomez, I.; Gomez-Garcia, M. A.; GilPavas, E.; Dobrosz-Gomez, I.; Gomez-Garcia, M. A.; Universidad EAFIT. Departamento de Ingeniería de Procesos; Procesos Ambientales (GIPAB)
    The capacity of the electro-coagulation (EC) process for the treatment of the wastewater containing Cr3+, resulting from a leather tannery industry placed in Medellin (Colombia), was evaluated. In order to assess the effect of some parameters, such as: the electrode type (Al and/or Fe), the distance between electrodes, the current density, the stirring velocity, and the initial Cr3+ concentration on its efficiency of removal (%RCr+3), a multifactorial experimental design was used. The %RCr3+ was defined as the response variable for the statistical analysis. In order to optimise the operational values for the chosen parameters, the response surface method (RSM) was applied. Additionally, the Biological Oxygen Demand (BOD5), the Chemical Oxygen Demand (COD), and the Total Organic Carbon (TOC) were monitored during the EC process. The electrodes made of aluminium appeared to be the most effective in the chromium removal from the wastewater under study. At pH equal to 4.52 and at 28 degrees C, the optimal conditions of Cr3+ removal using the EC process were found, as follows: the initial Cr3+ concentration=3,596 mg/L, the electrode gap=0.5 cm, the stirring velocity=382.3 rpm, and the current density=57.87 mA/cm2. At those conditions, it was possible to reach 99.76% of Cr3+ removal, and 64% and 61% of mineralisation (TOC) and COD removal, respectively. A kinetic analysis was performed in order to verify the response capacity of the EC process at optimised parameter values.
  • No hay miniatura disponible
    Ítem
    Scale-up from shake flasks to pilot-scale production of the plant growth-promoting bacterium Azospirillum brasilense for preparing a liquid inoculant formulation
    (SPRINGER, 2013-11-01) Trujillo-Roldan, Mauricio A.; Valdez-Cruz, Norma A.; Gonzalez-Monterrubio, Cesar F.; Acevedo-Sanchez, Eduardo V.; Martinez-Salinas, Carlos; Garcia-Cabrera, Ramses I.; Gamboa-Suasnavart, Ramses A.; Marin-Palacio, Luz D.; Villegas, Jesus; Blancas-Cabrera, Abel; Universidad EAFIT. Departamento de Ciencias; Ciencias Biológicas y Bioprocesos (CIBIOP)
    Azospirillum brasilense has industrial significance as a growth promoter in plants of commercial interest. However, there is no report in the literature disclosing a liquid product produced in pilot-scale bioreactors and is able to be stored at room temperature for more than 2 years. The aim of this work was to scale up a process from a shake flask to a 10-L lab-scale and 1,000-L pilot-scale bioreactor for the production of plant growth-promoting bacterium A. brasilense for a liquid inoculant formulation. Furthermore, this work aimed to determine the shelf life of the liquid formulation stored at room temperature and to increase maize crops yield in greenhouses. Under a constant oxygen mass transfer coefficient (K L a), a fermentation process was successfully scaled up from shake flasks to 10- and 1,000-L bioreactors. A concentration ranging from 3.5 to 7.5 × 108 CFU/mL was obtained in shake flasks and bioreactors, and after 2 years stored at room temperature, the liquid formulation showed one order of magnitude decrease. Applications of the cultured bacteria in maize yields resulted in increases of up to 95 % in corncobs and 70 % in aboveground biomass. © 2013 Springer-Verlag Berlin Heidelberg.
  • No hay miniatura disponible
    Ítem
    Scale-up from shake flasks to pilot-scale production of the plant growth-promoting bacterium Azospirillum brasilense for preparing a liquid inoculant formulation
    (SPRINGER, 2013-11-01) Trujillo-Roldan, Mauricio A.; Valdez-Cruz, Norma A.; Gonzalez-Monterrubio, Cesar F.; Acevedo-Sanchez, Eduardo V.; Martinez-Salinas, Carlos; Garcia-Cabrera, Ramses I.; Gamboa-Suasnavart, Ramses A.; Marin-Palacio, Luz D.; Villegas, Jesus; Blancas-Cabrera, Abel; Trujillo-Roldan, Mauricio A.; Valdez-Cruz, Norma A.; Gonzalez-Monterrubio, Cesar F.; Acevedo-Sanchez, Eduardo V.; Martinez-Salinas, Carlos; Garcia-Cabrera, Ramses I.; Gamboa-Suasnavart, Ramses A.; Marin-Palacio, Luz D.; Villegas, Jesus; Blancas-Cabrera, Abel; Universidad EAFIT. Departamento de Ingeniería de Procesos; Procesos Ambientales (GIPAB)
    Azospirillum brasilense has industrial significance as a growth promoter in plants of commercial interest. However, there is no report in the literature disclosing a liquid product produced in pilot-scale bioreactors and is able to be stored at room temperature for more than 2 years. The aim of this work was to scale up a process from a shake flask to a 10-L lab-scale and 1,000-L pilot-scale bioreactor for the production of plant growth-promoting bacterium A. brasilense for a liquid inoculant formulation. Furthermore, this work aimed to determine the shelf life of the liquid formulation stored at room temperature and to increase maize crops yield in greenhouses. Under a constant oxygen mass transfer coefficient (K L a), a fermentation process was successfully scaled up from shake flasks to 10- and 1,000-L bioreactors. A concentration ranging from 3.5 to 7.5 × 108 CFU/mL was obtained in shake flasks and bioreactors, and after 2 years stored at room temperature, the liquid formulation showed one order of magnitude decrease. Applications of the cultured bacteria in maize yields resulted in increases of up to 95 % in corncobs and 70 % in aboveground biomass. © 2013 Springer-Verlag Berlin Heidelberg.
  • No hay miniatura disponible
    Ítem
    Structural studies of the water hexamer
    (AMER CHEMICAL SOC, 2010-07-29) Hincapie, Gina; Acelas, Nancy; Castano, Marcela; David, Jorge; Restrepo, Albeiro; Universidad EAFIT. Departamento de Ciencias Básicas; Electromagnetismo Aplicado (Gema)
    In this paper we report the geometries and properties of 24 structural isomers located on the MP2/6-311++g**potential energy surface of the water hexamer. At least 15 structural patterns are located within 3 kcal/mol of the most stable conformation, leading to a very complex potential energy surface, several isomers having significant contributions. A quadratic correlation between the distance from the proton to the center of the hydrogen bond with the distance between oxygen atoms for all clusters is reported. MP2/6-311++g**and CCSD(T)/aug-cc-pvdz//MP2/6-311++g**predict different stabilization orderings but are in good agreement for binding energies. Compact structures are energetically favored by electronic energies with zero point energy corrections, while noncompact cyclic structures are preferred when temperature and entropy are accounted for. © 2010 American Chemical Society.
  • No hay miniatura disponible
    Ítem
    Synthesis of Alumina Thin Films Using Reactive Magnetron Sputtering Method
    (IOP PUBLISHING LTD, 2017-06-13) Angarita G.; Palacio C.; Trujillo M.; Arroyave M.; Angarita G.; Palacio C.; Trujillo M.; Arroyave M.; Universidad EAFIT. Departamento de Ciencias; Electromagnetismo Aplicado (Gema)
    Alumina (Al2O3) thin films were deposited on Si (100) by Magnetron Sputtering in reactive conditions between an aluminium target and oxygen 99.99% pure. The plasma was formed employing Argon with an R.F power of 100 W, the dwelling time was 3 hours. 4 samples were produced with temperatures between 350 and 400 °C in the substrate by using an oxygen flow of 2 and 8 sccm, the remaining parameters of the process were fixed. The coatings and substrates were characterized using Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), X-ray diffraction (XRD) and Energy Dispersive Spectroscopy (EDS) in order to compare their properties before and after deposition. The films thicknesses were between 47 and 70 nm. The results show that at high oxygen flow the alumina structure prevails in the coatings while at lower oxygen flow only aluminum is deposited in the coatings. It was shown that the temperature increases grain size and roughness while decreasing the thicknesses of the coatings. © Published under licence by IOP Publishing Ltd.

Vigilada Mineducación

Universidad con Acreditación Institucional hasta 2026 - Resolución MEN 2158 de 2018

Software DSpace copyright © 2002-2025 LYRASIS

  • Configuración de cookies
  • Enviar Sugerencias