Examinando por Materia "Graphical user interfaces"
Mostrando 1 - 3 de 3
Resultados por página
Opciones de ordenación
Ítem Digital opties tool for multi-purpose experimental applications(2010-01-01) Sierra-Sosa, D.-E.; Angel-Toro, L.; Universidad EAFIT. Departamento de Ciencias Básicas; Óptica AplicadaThis work presents the results concerning the application of a Discrete Fresnel Transform algorithm (DFT), which was upgraded for modeling and experimenting with scalar diffraction fields, whose characteristics are analyzed. The MATLAB® software environment was used to implement this algorithm, which allows the user to set the initial conditions, corresponding to the optical information at the input plane, by using a graphic friendly user interface (GUI). Then, by using the DFT algorithm, light propagation from the input to the output plane is achieved. The outputs of the algorithm are the maps corresponding to the 2-D distributions amplitude and phase-modulo 2p, or equivalently, the corresponding real and imaginary parts of the complex analytical field. Also, to assist the analysis, line profiles for these maps are provided. Results allow the user synthesizing Fresnel diffraction in presence of multiple components, like lenses, prisms, diffractive gratings, and holographic elements. Indeed, by implementing a series of successive steps, applications like image forming and spatial filtering can be demonstrated. The basis of the algorithm's architecture and some typical results, which closely resemble those from the experiments, are presented.Ítem Multi-modal interface for a real-time CFD solver(2007-01-01) Kasakevich, M.; Boulanger, P.; Bischof, W.F.; Garcia, M.; Kasakevich, M.; Boulanger, P.; Bischof, W.F.; Garcia, M.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Mecánica AplicadaAdvances in computer processing power and networking over the past few years have brought significant changes to the modeling and simulation of complex phenomena. Problems that formerly could only be tackled in batch mode, with their results visualized afterwards, can now be monitored whilst in progress using graphical means. In certain cases, it is even possible to alter parameters of the computation whilst it is running, depending on what the scientist perceives in the current visual output. This ability to monitor and change parameters of the computational process at any time and from anywhere is called computational steering. Combining this capability with advanced multi-modal tools to explore the data produced by these systems are key to our approach. In this paper, we present an advanced multi-modal interface where sonification and 3D visualization are used in a computational steering environment specialized to solve real-time Computational Fluid Dynamics (CFD) problems. More specifically, this paper describes how sonification of CFD data can be used to augment 3D visualization. © 2006 IEEE.Ítem Understanding the physical optics phenomena by using a digital application for light propagation(IOP PUBLISHING LTD, 2011-01-01) Sierra-Sosa, D.-E.; Ángel-Toro, L.; Universidad EAFIT. Departamento de Ciencias Básicas; Óptica AplicadaUnderstanding the light propagation on the basis of the Huygens-Fresnel principle stands for a fundamental factor for deeper comprehension of different physical optics related phenomena like diffraction, self-imaging, image formation, Fourier analysis and spatial filtering. This constitutes the physical approach of the Fourier optics whose principles and applications have been developed since the 1950's. Both for analytical and digital applications purposes, light propagation can be formulated in terms of the Fresnel Integral Transform. In this work, a digital optics application based on the implementation of the Discrete Fresnel Transform (DFT), and addressed to serve as a tool for applications in didactics of optics is presented. This tool allows, at a basic and intermediate learning level, exercising with the identification of basic phenomena, and observing changes associated with modifications of physical parameters. This is achieved by using a friendly graphic user interface (GUI). It also assists the user in the development of his capacity for abstracting and predicting the characteristics of more complicated phenomena. At an upper level of learning, the application could be used to favor a deeper comprehension of involved physics and models, and experimenting with new models and configurations. To achieve this, two characteristics of the didactic tool were taken into account when designing it. First, all physical operations, ranging from simple diffraction experiments to digital holography and interferometry, were developed on the basis of the more fundamental concept of light propagation. Second, the algorithm was conceived to be easily upgradable due its modular architecture based in MATLAB® software environment. Typical results are presented and briefly discussed in connection with didactics of optics.