Examinando por Materia "Distraction osteogenesis"
Mostrando 1 - 5 de 5
Resultados por página
Opciones de ordenación
Ítem Biomechanical configurations of mandibular transport distraction osteogenesis devices.(MARY ANN LIEBERT, INC, 2010-06-01) Zapata U; Elsalanty ME; Dechow PC; Opperman LA; Universidad EAFIT. Departamento de Ingeniería Mecánica; Bioingeniería GIB (CES – EAFIT)Mandibular bone transport (MBT) distraction osteogenesis devices are used for achieving reconstruction of mandibular defects in a predictable way, with few complications, less complexity than other alternative surgical procedures, and minimal tissue morbidity. However, selection of appropriate MBT device characteristics is critical for ensuring both their mechanical soundness and their optimal distraction function for each patient's condition. This article assesses six characteristics of currently available MBT devices to characterize their design and function and to classify them in a way that assists the selection of the best device option for each clinical case. In addition, the present work provides a framework for both the biomechanical conception of new devices and the modification of existing ones.Ítem Biomechanics of the canine mandible during bone transport distraction osteogenesis(ASME, 2014-11-01) Zapata, Uriel; Dechow, Paul C.; Watanabe, Ikuya; Elsalanty, Mohammed E.; Opperman, Lynne A.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Bioingeniería GIB (CES – EAFIT)This study compared biomechanical patterns between finite element models (FEMs) and a fresh dog mandible tested under molar and incisal physiological loads in order to clarify the effect of the bone transport distraction osteogenesis (BTDO) surgical process. Three FEMs of dog mandibles were built in order to evaluate the effects of BTDO. The first model evaluated the mandibular response under two physiological loads resembling bite processes. In the second model, a 5.0 cm bone defect was bridged with a bone transport reconstruction plate (BTRP). In the third model, new regenerated bony tissue was incorporated within the defect to mimic the surgical process without the presence of the device. Complementarily, a mandible of a male American foxhound dog was mechanically tested in the laboratory both in the presence and absence of a BTRP, and mechanical responses were measured by attaching rosettes to the bone surface of the mandible to validate the FEM predictions. The relationship between real and predicted values indicates that the stress patterns calculated using FEM are a valid predictor of the biomechanics of the BTDO procedures. The present study provides an interesting correlation between the stiffness of the device and the biomechanical response of the mandible affected for bone transport. Copyright © 2014 by ASME.Ítem Biomechanics of the canine mandible during bone transport distraction osteogenesis(ASME, 2014-11-01) Zapata, Uriel; Dechow, Paul C.; Watanabe, Ikuya; Elsalanty, Mohammed E.; Opperman, Lynne A.; Zapata, Uriel; Dechow, Paul C.; Watanabe, Ikuya; Elsalanty, Mohammed E.; Opperman, Lynne A.; Universidad EAFIT. Departamento de Ingeniería de Producción; Materiales de IngenieríaThis study compared biomechanical patterns between finite element models (FEMs) and a fresh dog mandible tested under molar and incisal physiological loads in order to clarify the effect of the bone transport distraction osteogenesis (BTDO) surgical process. Three FEMs of dog mandibles were built in order to evaluate the effects of BTDO. The first model evaluated the mandibular response under two physiological loads resembling bite processes. In the second model, a 5.0 cm bone defect was bridged with a bone transport reconstruction plate (BTRP). In the third model, new regenerated bony tissue was incorporated within the defect to mimic the surgical process without the presence of the device. Complementarily, a mandible of a male American foxhound dog was mechanically tested in the laboratory both in the presence and absence of a BTRP, and mechanical responses were measured by attaching rosettes to the bone surface of the mandible to validate the FEM predictions. The relationship between real and predicted values indicates that the stress patterns calculated using FEM are a valid predictor of the biomechanics of the BTDO procedures. The present study provides an interesting correlation between the stiffness of the device and the biomechanical response of the mandible affected for bone transport. Copyright © 2014 by ASME.Ítem In vitro mechanical evaluation of mandibular bone transport devices(ASME, 2014-06-01) Zapata, Uriel; Watanabe, Ikuya; Opperman, Lynne A.; Dechow, Paul C.; Mulone, Timothy; Elsalanty, Mohammed E.; Zapata, Uriel; Watanabe, Ikuya; Opperman, Lynne A.; Dechow, Paul C.; Mulone, Timothy; Elsalanty, Mohammed E.; Universidad EAFIT. Departamento de Ingeniería de Producción; Materiales de IngenieríaBone transport distraction osteogenesis (BTDO) is a surgical procedure that has been used over the last 30 years for the correction of segmental defects produced mainly by trauma and oncological resections. Application of BTDO has several clinical advantages over traditional surgical techniques. Over the past few years, several BTDO devices have been introduced to reconstruct mandibular bone defects. Based on the location and outline of the defect, each device requires a uniquely shaped reconstruction plate. To date, no biomechanical evaluations of mandibular BTDO devices have been reported in the literature. The present study evaluated the mechanical behavior of three different shaped prototypes of a novel mandibular bone transport reconstruction plate and its transport unit for the reconstruction of segmental bone defects of the mandible by using numerical models complemented with mechanical laboratory tests to characterize strength, fatigue, and stability. The strength test evaluated device failures under extreme loads and was complemented with optimization procedures to improve the biomechanical behavior of the devices. The responses of the prototypes were characterized to improve their design and identify weak and strong regions in order to avoid posterior device failure in clinical applications. Combinations of the numerical and mechanical laboratory results were used to compare and validate the models. In addition, the results remark the importance of reducing the number of animals used in experimental tests by increasing computational and in vitro trials. © VC 2014 by ASME.Ítem In vitro mechanical evaluation of mandibular bone transport devices(ASME, 2014-06-01) Zapata, Uriel; Watanabe, Ikuya; Opperman, Lynne A.; Dechow, Paul C.; Mulone, Timothy; Elsalanty, Mohammed E.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Bioingeniería GIB (CES – EAFIT)Bone transport distraction osteogenesis (BTDO) is a surgical procedure that has been used over the last 30 years for the correction of segmental defects produced mainly by trauma and oncological resections. Application of BTDO has several clinical advantages over traditional surgical techniques. Over the past few years, several BTDO devices have been introduced to reconstruct mandibular bone defects. Based on the location and outline of the defect, each device requires a uniquely shaped reconstruction plate. To date, no biomechanical evaluations of mandibular BTDO devices have been reported in the literature. The present study evaluated the mechanical behavior of three different shaped prototypes of a novel mandibular bone transport reconstruction plate and its transport unit for the reconstruction of segmental bone defects of the mandible by using numerical models complemented with mechanical laboratory tests to characterize strength, fatigue, and stability. The strength test evaluated device failures under extreme loads and was complemented with optimization procedures to improve the biomechanical behavior of the devices. The responses of the prototypes were characterized to improve their design and identify weak and strong regions in order to avoid posterior device failure in clinical applications. Combinations of the numerical and mechanical laboratory results were used to compare and validate the models. In addition, the results remark the importance of reducing the number of animals used in experimental tests by increasing computational and in vitro trials. © VC 2014 by ASME.