Examinando por Materia "Dentin"
Mostrando 1 - 5 de 5
Resultados por página
Opciones de ordenación
Ítem Deformation behaviour of aged coronal dentin(Blackwell Munksgaard, 2018-06-01) Montoya; C.; Arola; D.; Ossa; E.A.; Universidad EAFIT. Departamento de Ingeniería de Producción; Materiales de IngenieríaObjective: This study aimed to identify the changes in the time-dependent deformation response of coronal dentin with ageing and its relationship with changes in chemical composition. Background: The structural behaviour of dentin with ageing is affected by changes in the density and diameter of its dentinal tubules (ie porosity), as well as changes in chemical composition throughout the tooth. However, little is known about the time-dependent deformation behaviour of aged dentin and the importance of its hierarchical structure and variations in chemical composition. Materials and methods: The spherical indentation response of aged coronal dentin was analysed in the outer, middle and inner regions, and its time-dependent deformation response was modelled in terms of its microstructure and chemical composition using a model recently proposed for young dentin. Results: The viscous deformation behaviour of aged dentin followed a power-law response with a decrease in the stress exponent when compared to young dentin. These results can be explained by cross-linking of the collagen present in the tissue. Conclusion: A decrease in the deformation ability of aged dentin was found. This behaviour could be a result of a dissolution process and reprecipitation of the minerals present in intertubular dentin into the dentinal tubules. © 2018 John Wiley & Sons A/S and The Gerodontology Association. Published by John Wiley & Sons LtdÍtem Effect of aging on the microstructure, hardness and chemical composition of dentin(PERGAMON-ELSEVIER SCIENCE LTD, 2015-12-01) Montoya, C.; Arango-Santander, S.; Peláez-Vargas, A.; Arola, D.; Ossa, E.A.; Montoya, C.; Arango-Santander, S.; Peláez-Vargas, A.; Arola, D.; Ossa, E.A.; Universidad EAFIT. Departamento de Ingeniería de Producción; Materiales de IngenieríaObjective: Understanding the effects of biological aging on human tissues has been a topic of extensive research. With the increase in healthy seniors and quality of life that topic is becoming increasingly important. In this investigation the effects of aging on the microstructure, chemical composition and hardness of human coronal dentin was studied from a comparison of teeth within ``young'' and ``old'' age groups. Methods: The microstructure of dentin within three regions (i.e., inner, middle and outer) was analyzed using electron and optical microscopy. The mineral-to-collagen ratio in these three regions was estimated using Raman spectroscopy and the hardness was evaluated using microindentation. Results: Results showed that there were significant differences in tubule density, tubule diameter and peritubular cuff diameter with depth. Although there was no difference in tubule density and diameter of the tubules between the age groups, there was a significant difference in the occlusion ratio. A significant increase in hardness between young and old patients was found for middle and outer dentin. An increase in mineral-to-collagen ratio from inner to outer dentin was also found for both groups. In old patients, an increase in mineral content was found in outer coronal dentin as a consequence of tubule occlusion. Conclusions: An increase in occlusion ratio, hardness, and mineral content was found in the dentin of adult patients with age. This increase is most evident in the outer coronal dentin. (C) 2015 Elsevier Ltd. All rights reserved.Ítem Importance of tubule density to the fracture toughness of dentin(PERGAMON-ELSEVIER SCIENCE LTD, 2016-07-01) Montoya, C.; Arola, D.; Ossa, E.A.; Montoya, C.; Arola, D.; Ossa, E.A.; Universidad EAFIT. Departamento de Ingeniería de Producción; Materiales de IngenieríaObjective: The fracture toughness of dentin is critical to the prevention of tooth fracture. Within the tooth crown, the mechanical properties of dentin are influenced by spatial variations in the density and diameter of the dentin tubules with distance from the pulp. There are also relevant changes to the microstructure of dentin with age. In this investigation the importance of tubule density to the fracture toughness of dentin was evaluated in ``young'' and ``old'' age groups. Methods: The variations in microstructure (density and diameter of tubules) from young and old donor teeth were studied by means of optical microscopy. Results: A reduction in the density and diameter of tubules was identified to occur with aging. An approach previously proposed to study the mechanical behavior of porous materials was used to model the fracture toughness of coronal dentin in terms of the tubule characteristics. Results were then compared with published results from previous studies. Conclusions: The model predictions were consistent with experimental results for the fracture toughness of dentin from young donor teeth, but overestimated the values that have been reported for ``old'' dentin. (C) 2016 Elsevier Ltd. All rights reserved.Ítem The mechanical behavior of dentin: importance of microstructure, chemical composition and aging(Universidad EAFIT, 2017) Montoya Mesa, Carolina; Ossa Henao, AlexanderDental fracture is one of the three most common forms of failure of restored teeth and the most common cause of tooth loss or extraction in elderly patients -- Previous investigations conducted on aging of hard tissues have identified that there is a considerable reduction in the mechanical properties (i.e. fracture toughness, fatigue and flexural resistance) of dentin with aging and that may predispose tooth fracture -- These declines in properties have been attributed to microstructural and chemical composition changes over time -- However, these aging processes have not been really quantified and related with the changes in mechanical properties -- Accordingly, the aim of this work is to evaluate the aging process of coronal dentin in terms of the evolution of microstructure, changes in chemical composition and mechanical properties from selected age groups (young and old donors) -- The changes in these properties were evaluated in three different regions (outer, middle and inner) in order to identify spatial variations within the crown -- A brief description of the main literature on composition, microstructure and mechanical behavior of dentin is presented in chapter 2 -- An extensive experimental study was carried out in chapter 3 to identify the changes in microstructure of dentin with aging by means of optical and electron microscopy; while changes in chemical composition were analyzed using Raman Spectroscopy to calculate the mineral-to-collagen ratio -- Changes in mechanical properties were measured using Vickers micro-hardness -- Chapter 4 describes the importance of tubule density to the fracture toughness of dentin for young and old donor’s groups -- An approach previously proposed to study the mechanical behavior of porous materials was used to model the fracture toughness of coronal dentin in terms of the tubule characteristics -- Results were then compared with published results from previous studies -- The time-dependent deformation response of dentin was analyzed via spherical indentation experiments at different indentation loads in Chapter 5 -- From the experimental observations was proposed a simple model to describe the time dependent deformation behavior of dentin -- This model was based on previously proposed theories for indentation of time dependent materials, showing that the effective strain rate of dentin depends on its chemical composition (i.e. mineral-to-collagen ratio) and microstructure (i.e. lumen area fraction) -- The descriptions of the model were compared with the experimental results showing good agreement -- The same model was validated with experimental results of aged dentin, finding a low change in the deformation response of dentin with aging, as presented in chapter 6 -- Finally, preliminary results made on the mechanical properties of dentin have shown that the microstructure of aged human dentin can vary depending on the ethnic background of the donor and that this quality is critically important to the mechanical properties of the tissue -- In chapter 7 preliminary results on the comparison between the microstructure, chemical composition and mechanical properties of Colombian, Chinese and American donors is presented -- Finally, conclusions for the study are presented in chapter 8Ítem Time dependent deformation behavior of dentin(PERGAMON-ELSEVIER SCIENCE LTD, 2017-04-01) Montoya C; Arola D; Ossa EA; Montoya C; Arola D; Ossa EA; Universidad EAFIT. Departamento de Ingeniería de Producción; Materiales de IngenieríaObjective The viscoelastic behavior of dentin and its ability to undergo time dependent deformation are considered to be important to oral functions and its capacity to resist fracture. There are spatial variations in the microstructure of dentin within the crown, which could be important to the viscous behavior. However, a spatially resolved description for the viscoelastic behavior of coronal dentin has not been reported. Methods In this investigation spherical indentations were made in three regions of coronal dentin including the outer, middle and inner regions. Power law relations were developed to quantitatively describe the stress-strain responses of the tissue. Results Results showed that the deformation behavior was strongly dependent on the composition (mineral to collagen ratio) and microstructure (tubule density), which contributed to an increase in the rate of viscous deformation with increasing proximity to the pulp. Conclusions A model accounting for spatial variations in composition and microstructure was developed to describe the steady-state time dependent deformation behavior of coronal dentin, and a good agreement was found with the experimental results. © 2017 Elsevier Ltd