Examinando por Materia "Damping element"
Mostrando 1 - 3 de 3
Resultados por página
Opciones de ordenación
Ítem Determination of the technical state of suspension elements based on the OMA-LSCE method(Collegio Ingegneri Ferroviari Italiani, 2012-01-01) Castañeda, L.; Martinod, R.; Betancur, G.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Estudios en Mantenimiento (GEMI)A study is established regarding the behavior of the vehicle under the influence of the damping elements, proposing a methodology for the validation of the technical state of the dampers through the registration of dynamic variables under commercial operating conditions of the vehicle, by applying the Operational Modal Analysis COMA) technique via Least-Square Complex Exponential (LSCE) method to experimental tests and numeric simulations to a multi-body system (MBS) model. The OMA-LSCE method is applied to the signals acquired during a test performed on a passenger of a three- car unit in typical commercial travel operation. From the signals in time domain of each section of the segment, the respective discrete function PSD is calculated. Once the model is defined, a set of numeric simulation is executed according to the design of the experiment. The results of the numeric simulations show that the natural frequency generates a lineal regressive model with correlation coefficient values.Ítem Determinazione dello stato tecnico degli elementi delle sospensioni sulla base del metodo OMA-LSCE(Collegio Ingegneri Ferroviari Italiani, 2012-01-01) Castañeda, L.; Martinod, R.; Betancur, G.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Estudios en Mantenimiento (GEMI)A study is established regarding the behavior of the vehicle under the influence of the damping elements, proposing a methodology for the validation of the technical state of the dampers through the registration of dynamic variables under commercial operating conditions of the vehicle, by applying the Operational Modal Analysis COMA) technique via Least-Square Complex Exponential (LSCE) method to experimental tests and numeric simulations to a multi-body system (MBS) model. The OMA-LSCE method is applied to the signals acquired during a test performed on a passenger of a three- car unit in typical commercial travel operation. From the signals in time domain of each section of the segment, the respective discrete function PSD is calculated. Once the model is defined, a set of numeric simulation is executed according to the design of the experiment. The results of the numeric simulations show that the natural frequency generates a lineal regressive model with correlation coefficient values.Ítem Identification of the technical state of suspension elements in railway systems(TAYLOR & FRANCIS LTD, 2012-01-01) Mauricio Martinod, Ronald; Rene Betancur, German; Castaneda Heredia, Leonel Francisco; Universidad EAFIT. Departamento de Ingeniería Mecánica; Estudios en Mantenimiento (GEMI)The running safety and passenger comfort levels in a vehicle are tightly related to the technical state of the suspension elements. The technical state of the suspension depends of the service life time as its components become old and wear out. In this paper, a study on the dynamic behaviour of a railway vehicle is established in relation to the damping elements in one of its suspension stages. An experimental measurement model is developed, obtaining a set of useful signals for the identification of the dynamic parameters of the vehicle and developing a test through the application of the operational modal analysis technique, using least-squares complex exponential method as a basis to validate the numerical model of the multi-body system. Then, the study focuses on developing numerical simulations for the identification of the technical state of the dampers by the registration of dynamic variables under commercial service conditions and on estimating the state of the suspension elements. © 2012 Taylor & Francis.