Examinando por Materia "Computational geometry"
Mostrando 1 - 9 de 9
Resultados por página
Opciones de ordenación
Ítem Aspect ratio- and size-controlled patterned triangulations of parametric surfaces(ACTA PRESS ANAHEIM, 2007-01-01) Ruiz, Oscar E.; Pena, Sebastian; Duque, Juan; Universidad EAFIT. Departamento de Ingeniería Mecánica; Laboratorio CAD/CAM/CAEA method to produce patterned, controlled size triangulation of Boundary Representations is presented. Although the produced patterned triangulations are not immediately suited for fast visualization, they were used in Fixed Grid Finite Element Analysis, and do provide a control on the aspect ratio or shape factor of the triangles produced. The method presented first calculates a triangulation in the parameter space of the faces in which the B-Rep is partitioned and then maps it to 3D space. Special emphasis is set in ensuring that the triangulations of neighboring faces meet in a seamless manner, therefore ensuring that a borderless C2 2-manifold would have as triangulation a C0 borderless 2-manifold. The method works properly under the conditions (i) the parametric form of the face is a 1-1 function, (ii) the parametric pre-image of a parametric face is a connected region, and (iii) the user-requested sampling frequency ( samples per length unit ) is higher than twice the spatial frequency of the features in the B-Rep ( thus respecting the Nyquist principle ). As the conditions (i) and (ii) are possible under face reparameterization or sub-division and the condition (iii) is the minimum that a triangulation should comply with, the method is deemed as generally applicable.Ítem Biomedical computer vision using computer algebra: Analysis of a case of rhinocerebral mucormycosis in a diabetic boy(Springer Science + Business Media, 2010-01-01) Vélez, M.; Ospina, J.; Vélez, M.; Ospina, J.; Universidad EAFIT. Departamento de Ciencias; Lógica y ComputaciónComputer algebra is applied to biomedical computer vision. Specifically certain biomedical images resulting from a case of rhinocerebral mucormysocis in a diabetic boy are analyzed using techniques in computational geometry and in algebraic-geometric topology. We apply convolution and deblurring via diffusion equation from the side of computational geometry and knot theory, graph theory and singular homology form the side of algebraic-geometric topology. Our strategy consists in to represent the biomedical images using algebraic structures in such way that the peculiarities of the images are represented using algebraic complexities. With our strategy we obtain an automatic procedure for the analysis and the diagnostic based on biomedical images. © 2010 Springer-Verlag Berlin Heidelberg.Ítem Compendium of publications on: differential operators on manifolds for CAD CAM CAE and computer graphics(Universidad EAFIT, 2020) Mejía Parra, Daniel; Ruiz Salguero, Oscar Eduardo; Posada Velásquez, Jorge LeónThis Doctoral Thesis develops novel articulations of Differential Operators on Manifolds for applications on Computer Aided Design, Manufacture and Computer Graphics, as follows: (1) Mesh Parameterization and Segmentation. Development and application of Laplace-Beltrami, Hessian, Geodesic and Curvature operators for topology and geometry – driven segmentations and parameterizations of 2-manifold triangular meshes. Applications in Reverse Engineering, Manufacturing and Medicine. (2) Computing of Laser-driven Temperature Maps in thin plates. Spectral domain - based analytic solutions of the transient, non-homogeneous heat equation for simulation of temperature maps in multi-laser heated thin plates, modeled as 2-manifolds plus thickness. (3) Real-time estimation of dimensional compliance of hot out-of-forge workpieces. A Special Orthogonal SO(3) transformation between 2-manifolds is found, which enables a distance operator between 2-manifolds in R^3 (or m-manifolds in R^n). This process instruments the real-time assessment of dimensional compliance of hot workpieces, in the factory floor shop. (4) Slicing or Level-Set computation for 2-manifold triangular meshes in Additive Manufacturing. Development of a classification of non-degenerate (i.e. non-singular Hessian) and degenerate (i.e. singular Hessian) critical points of non-Morse functions on 2-manifold objects, followed by computation of level sets for Additive Manufacturing. Most of the aforementioned contributions have been screened and accepted by the international scientific community (and published). Non-published material corresponds to confidential developments which are commercially exploited by the sponsors and therefore banned from dissemination.Ítem Computational Geometry Contributions Applied to Additive Manufacturing(Universidad EAFIT, 2022) Montoya Zapata, Diego Alejandro; Ruiz Salguero, Oscar Eduardo; Posada Velásquez, Jorge LeónÍtem Geodesic-based manifold learning for parameterization of triangular meshes(Springer-Verlag France, 2016-11-01) Acosta, D.A.; Ruiz, O.E.; Arroyave, S.; Ebratt, R.; Cadavid, C.; Londono, J.J.; Acosta, Diego A.; Acosta, D.A.; Ruiz, O.E.; Arroyave, S.; Ebratt, R.; Cadavid, C.; Londono, J.J.; Acosta, Diego A.; Universidad EAFIT. Departamento de Ingeniería de Procesos; Procesos Ambientales (GIPAB)Reverse Engineering (RE) requires representing with free forms (NURBS, Spline, B,zier) a real surface which has been point-sampled. To serve this purpose, we have implemented an algorithm that minimizes the accumulated distance between the free form and the (noisy) point sample. We use a dual-distance calculation point to / from surfaces, which discourages the forming of outliers and artifacts. This algorithm seeks a minimum in a function that represents the fitting error, by using as tuning variable the control polyhedron for the free form. The topology (rows, columns) and geometry of the control polyhedron are determined by alternative geodesic-based dimensionality reduction methods: (a) graph-approximated geodesics (Isomap), or (b) PL orthogonal geodesic grids. We assume the existence of a triangular mesh of the point sample (a reasonable expectation in current RE). A bijective composition mapping allows to estimate a size of the control polyhedrons favorable to uniform-speed parameterizations. Our results show that orthogonal geodesic grids is a direct and intuitive parameterization method, which requires more exploration for irregular triangle meshes. Isomap gives a usable initial parameterization whenever the graph approximation of geodesics on be faithful. These initial guesses, in turn, produce efficient free form optimization processes with minimal errors. Future work is required in further exploiting the usual triangular mesh underlying the point sample for (a) enhancing the segmentation of the point set into faces, and (b) using a more accurate approximation of the geodesic distances within , which would benefit its dimensionality reduction.Ítem Geodesic-based manifold learning for parameterization of triangular meshes(Springer-Verlag France, 2016-11-01) Acosta, D.A.; Ruiz, O.E.; Arroyave, S.; Ebratt, R.; Cadavid, C.; Londono, J.J.; Acosta, Diego A.; Universidad EAFIT. Departamento de Ingeniería de Procesos; Desarrollo y Diseño de ProcesosReverse Engineering (RE) requires representing with free forms (NURBS, Spline, B,zier) a real surface which has been point-sampled. To serve this purpose, we have implemented an algorithm that minimizes the accumulated distance between the free form and the (noisy) point sample. We use a dual-distance calculation point to / from surfaces, which discourages the forming of outliers and artifacts. This algorithm seeks a minimum in a function that represents the fitting error, by using as tuning variable the control polyhedron for the free form. The topology (rows, columns) and geometry of the control polyhedron are determined by alternative geodesic-based dimensionality reduction methods: (a) graph-approximated geodesics (Isomap), or (b) PL orthogonal geodesic grids. We assume the existence of a triangular mesh of the point sample (a reasonable expectation in current RE). A bijective composition mapping allows to estimate a size of the control polyhedrons favorable to uniform-speed parameterizations. Our results show that orthogonal geodesic grids is a direct and intuitive parameterization method, which requires more exploration for irregular triangle meshes. Isomap gives a usable initial parameterization whenever the graph approximation of geodesics on be faithful. These initial guesses, in turn, produce efficient free form optimization processes with minimal errors. Future work is required in further exploiting the usual triangular mesh underlying the point sample for (a) enhancing the segmentation of the point set into faces, and (b) using a more accurate approximation of the geodesic distances within , which would benefit its dimensionality reduction.Ítem Geodesic-based manifold learning for parameterization of triangular meshes(Springer-Verlag France, 2016-11-01) Acosta, D.A.; Ruiz, O.E.; Arroyave, S.; Ebratt, R.; Cadavid, C.; Londono, J.J.; Acosta, Diego A.; Acosta, D.A.; Ruiz, O.E.; Arroyave, S.; Ebratt, R.; Cadavid, C.; Londono, J.J.; Acosta, Diego A.; Universidad EAFIT. Departamento de Ciencias; Matemáticas y AplicacionesReverse Engineering (RE) requires representing with free forms (NURBS, Spline, B,zier) a real surface which has been point-sampled. To serve this purpose, we have implemented an algorithm that minimizes the accumulated distance between the free form and the (noisy) point sample. We use a dual-distance calculation point to / from surfaces, which discourages the forming of outliers and artifacts. This algorithm seeks a minimum in a function that represents the fitting error, by using as tuning variable the control polyhedron for the free form. The topology (rows, columns) and geometry of the control polyhedron are determined by alternative geodesic-based dimensionality reduction methods: (a) graph-approximated geodesics (Isomap), or (b) PL orthogonal geodesic grids. We assume the existence of a triangular mesh of the point sample (a reasonable expectation in current RE). A bijective composition mapping allows to estimate a size of the control polyhedrons favorable to uniform-speed parameterizations. Our results show that orthogonal geodesic grids is a direct and intuitive parameterization method, which requires more exploration for irregular triangle meshes. Isomap gives a usable initial parameterization whenever the graph approximation of geodesics on be faithful. These initial guesses, in turn, produce efficient free form optimization processes with minimal errors. Future work is required in further exploiting the usual triangular mesh underlying the point sample for (a) enhancing the segmentation of the point set into faces, and (b) using a more accurate approximation of the geodesic distances within , which would benefit its dimensionality reduction.Ítem Geodesic-based manifold learning for parameterization of triangular meshes(Springer-Verlag France, 2016-11-01) Acosta, D.A.; Ruiz, O.E.; Arroyave, S.; Ebratt, R.; Cadavid, C.; Londono, J.J.; Acosta, Diego A.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Laboratorio CAD/CAM/CAEReverse Engineering (RE) requires representing with free forms (NURBS, Spline, B,zier) a real surface which has been point-sampled. To serve this purpose, we have implemented an algorithm that minimizes the accumulated distance between the free form and the (noisy) point sample. We use a dual-distance calculation point to / from surfaces, which discourages the forming of outliers and artifacts. This algorithm seeks a minimum in a function that represents the fitting error, by using as tuning variable the control polyhedron for the free form. The topology (rows, columns) and geometry of the control polyhedron are determined by alternative geodesic-based dimensionality reduction methods: (a) graph-approximated geodesics (Isomap), or (b) PL orthogonal geodesic grids. We assume the existence of a triangular mesh of the point sample (a reasonable expectation in current RE). A bijective composition mapping allows to estimate a size of the control polyhedrons favorable to uniform-speed parameterizations. Our results show that orthogonal geodesic grids is a direct and intuitive parameterization method, which requires more exploration for irregular triangle meshes. Isomap gives a usable initial parameterization whenever the graph approximation of geodesics on be faithful. These initial guesses, in turn, produce efficient free form optimization processes with minimal errors. Future work is required in further exploiting the usual triangular mesh underlying the point sample for (a) enhancing the segmentation of the point set into faces, and (b) using a more accurate approximation of the geodesic distances within , which would benefit its dimensionality reduction.Ítem Geometrical degeneracy removal by virtual disturbances - An application to surface reconstruction from point slice samples(INSTICC-INST SYST TECHNOLOGIES INFORMATION CONTROL & COMMUNICATION, 2008-01-01) Ruiz, Oscar; Vasquez, Eliana; Pena, Sebastian; Granados, Miguel; Universidad EAFIT. Departamento de Ingeniería Mecánica; Laboratorio CAD/CAM/CAEIn surface reconstruction from slice samples (typical in medical imaging, coordinate measurement machines, stereolithography, etc.) the available methods attack the geometrical and topological properties of the surface. Topological methods classify the transitions occurred in the 2-manifold between two consecutive slices i and i+ 1. Geometrical methods synthesize the surface based on local proximity of the contours in consecutive slices. Superimposed 2D Voronoi Diagrams VDi and VDi+1 for slices i and i + 1, respectively, present topological problems if, for example, a site of VD i lies on an site or an edge of VDi+1. The usual treatment of this problem in literature is to apply a geometrical disturbance to either VDi or VDi+1, thus eliminating the degeneracy. In contrast, this article presents the implementation of a method which identifies the degenerate situation, constructs un-instantiated topological constructs, choses a geometrical instantiation based on a virtual disturbance introduced to the actual configuration. The algorithm was successfully applied to remove non-manifold topologies produced by well known algorithms in surface reconstruction.