Logotipo del repositorio
  • English
  • Español
  • Français
  • Português
  • Iniciar sesión
    ¿Has olvidado tu contraseña?
Logotipo del repositorio
  • Comunidades
  • Listar por
  • English
  • Español
  • Français
  • Português
  • Iniciar sesión
    ¿Has olvidado tu contraseña?
  1. Inicio
  2. Examinar por materia

Examinando por Materia "Bio-inspiration"

Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
  • No hay miniatura disponible
    Ítem
    Construction of a repertoire of analog form-finding techniques as a basis for computational morphological exploration in design and architecture
    (SPRINGER, 2018-01-01) Patiño E.; Maya J.
    The article describes the process of constructing a repertoire of analog form-finding techniques, which can be used in evolutionary computation to (i) compare the techniques among them and select the most suitable for a project, (ii) to explore forms or shapes in an analog and/or manual way, (iii) as a basis for the development of algorithms in specialized software, (iv) or to understand the physical processes and mathematical procedures of the techniques. To our knowledge no one has built a repertoire of this nature, since all the techniques are in sources of diverse disciplines. Methodologically, the construction process was based on a systematic review of the literature, allowing us to identify 33 techniques where the principles of bio-inspiration and self-organization are evident, characteristics both of form-finding strategies. As a result, we present the repertoire structure, composed of five groups of techniques sharing similar physical processes: inflate, group, de-construct, stress, solidify and fold. Subsequently, the repertoire’s conceptual, mathematical, and graphical analysis categories are presented. Finally, conclusions of potential applications and research trends of the subject are presented. © Springer International Publishing AG, part of Springer Nature 2018.
  • No hay miniatura disponible
    Ítem
    Designed for resistance to puncture: The dynamic response of fish scales
    (ELSEVIER SCIENCE BV, 2019-01-01) Ghods S.; Murcia S.; Ossa E.A.; Arola D.; Ghods S.; Murcia S.; Ossa E.A.; Arola D.; Universidad EAFIT. Departamento de Ingeniería de Producción; Materiales de Ingeniería
    Natural dermal armors are serving as a source of inspiration in the pursuit of “next-generation” structural materials. Although the dynamic strain response of these materials is arguably the most relevant to their performance as armors, limited work has been performed in this area. Here, uniaxial tension and transverse puncture tests were performed on specimens obtained from the scales of Asian carp over strain rates spanning seven decades, from 10-4 to 103 s-1. The importance of anatomical variations was explored by comparing the performance of scales from the head, middle and tail regions. In both loading orientations, the scales exhibited a significant increase in the resistance to failure with loading rate. The rate sensitivity was substantially higher for transverse loading than for in-plane tension, with average strain rate sensitivity exponents for measures of the toughness of 0.35 and 0.08, respectively. Spatial variations in the properties were largest in the puncture responses, and scales from the head region exhibited the greatest resistance to puncture overall. The results suggest that the layered microstructure of fish scales is most effective at resisting puncture, rather than in-plane tension, and its effectiveness increases with rate of loading. X-ray microCT showed that delamination of plies in the internal elasmodine and stretching of the fibrils were key mechanisms of energy dissipation in response to puncture loading. Understanding contributions from the microstructure to this behavior could guide the development of flexible engineered laminates for penetration resistance and other related applications. © 2018 Elsevier Ltd

Vigilada Mineducación

Universidad con Acreditación Institucional hasta 2026 - Resolución MEN 2158 de 2018

Software DSpace copyright © 2002-2025 LYRASIS

  • Configuración de cookies
  • Enviar Sugerencias