Examinando por Materia "3D (Programas para computador)"
Mostrando 1 - 3 de 3
Resultados por página
Opciones de ordenación
Ítem Fixed grid finite element analysis for 3D structural problems(World Scientific Publishing Co., 2005) García, Manuel J.; Henao, Miguel A.; Ruíz, Óscar E.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Laboratorio CAD/CAM/CAEFixed Grid (FG) methodology was first introduced by García and Steven as an engine for numerical estimation of two-dimensional elasticity problems -- The advantages of using FG are simplicity and speed at a permissible level of accuracy -- Two dimensional FG has been proved effective in approximating the strain and stress field with low requirements of time and computational resources -- Moreover, FG has been used as the analytical kernel for different structural optimisation methods as Evolutionary Structural Optimisation, Genetic Algorithms (GA), and Evolutionary Strategies -- FG consists of dividing the bounding box of the topology of an object into a set of equally sized cubic elements -- Elements are assessed to be inside (I), outside (O) or neither inside nor outside (NIO) of the object -- Different material properties assigned to the inside and outside medium transform the problem into a multi-material elasticity problem -- As a result of the subdivision NIO elements have non-continuous properties -- They can be approximated in different ways which range from simple setting of NIO elements as O to complex noncontinuous domain integration -- If homogeneously averaged material properties are used to approximate the NIO element, the element stiffness matrix can be computed as a factor of a standard stiffness matrix thus reducing the computational cost of creating the global stiffness matrix. An additional advantage of FG is found when accomplishing re-analysis, since there is no need to recompute the whole stiffness matrix when the geometry changes -- This article presents CAD to FG conversion and the stiffness matrix computation based on non-continuous elements -- In addition inclusion/exclusion of O elements in the global stiffness matrix is studied -- Preliminary results shown that non-continuous NIO elements improve the accuracy of the results with considerable savings in time -- Numerical examples are presented to illustrate the possibilities of the methodÍtem Marching cubes in an unsigned distance field for surface reconstruction from unorganized point sets(2010) Congote, John; Moreno, Aitor; Barandiaran, Iñigo; Barandiaran, Javier; Posada, Jorge; Ruíz, Óscar; Universidad EAFIT. Departamento de Ingeniería Mecánica; Laboratorio CAD/CAM/CAESurface reconstruction from unorganized point set is a common problem in computer graphics -- Generation of the signed distance field from the point set is a common methodology for the surface reconstruction -- The reconstruction of implicit surfaces is made with the algorithm of marching cubes, but the distance field of a point set can not be processed with marching cubes because the unsigned nature of the distance -- We propose an extension to the marching cubes algorithm allowing the reconstruction of 0-level iso-surfaces in an unsigned distance field -- We calculate more information inside each cell of the marching cubes lattice and then we extract the intersection points of the surface within the cell then we identify the marching cubes case for the triangulation -- Our algorithm generates good surfaces but the presence of ambiguities in the case selection generates some topological mistakesÍtem Visualización del mercado de acciones en 3D(Universidad EAFIT, 2009) Pemberthy, Juan Esteban; Muñoz Arango, Juan S.; Lalinde Pulido, Juan Guillermo