Artículos
URI permanente para esta colección
Examinar
Examinando Artículos por Materia "Análisis Multi - Resolución"
Mostrando 1 - 1 de 1
Resultados por página
Opciones de ordenación
Ítem Multiresolution analysis (discrete wavelet transform) through Daubechies family for emotion recognition in speech(IOP Publishing, 2016) Campo, D.; Quintero, O.L.; Bastidas, M; Campo, D.; Quintero, O.L.; Bastidas, M; Dipartimento di Ingegneria Navale, Elettrica, Elettronica e delle Telecomunicazioni (DITEN). Information and Signal Processing for Cognitive Telecommunications ISIP40, Genova, Italy; Mathematical Modeling Research Group at Mathematical Sciences Department in School of Sciences at Universidad EAFIT, Medellín, Colombia; Universidad EAFIT. Escuela de Ciencias; dcampoc@eafit.edu.co; oquinte1@eafit.edu.co; mbastida@eafit.edu.co; Modelado MatemáticoWe propose a study of the mathematical properties of voice as an audio signal -- This work includes signals in which the channel conditions are not ideal for emotion recognition -- Multiresolution analysis- discrete wavelet transform – was performed through the use of Daubechies Wavelet Family (Db1-Haar, Db6, Db8, Db10) allowing the decomposition of the initial audio signal into sets of coefficients on which a set of features was extracted and analyzed statistically in order to differentiate emotional states -- ANNs proved to be a system that allows an appropriate classification of such states -- This study shows that the extracted features using wavelet decomposition are enough to analyze and extract emotional content in audio signals presenting a high accuracy rate in classification of emotional states without the need to use other kinds of classical frequency-time features -- Accordingly, this paper seeks to characterize mathematically the six basic emotions in humans: boredom, disgust, happiness, anxiety, anger and sadness, also included the neutrality, for a total of seven states to identify