Examinando por Autor "Vanegas, C."
Mostrando 1 - 6 de 6
Resultados por página
Opciones de ordenación
Ítem Ellipse-based principal component analysis for self-intersecting curve reconstruction from noisy point sets(SPRINGER, 2011-03-01) Ruiz, O.; Vanegas, C.; Cadavid, C.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Laboratorio CAD/CAM/CAESurface reconstruction from cross cuts usually requires curve reconstruction from planar noisy point samples. The output curves must form a possibly disconnected 1-manifold for the surface reconstruction to proceed. This article describes an implemented algorithm for the reconstruction of planar curves (1-manifolds) out of noisy point samples of a self-intersecting or nearly self-intersecting planar curve C. C:[a,b]R?R 2 is self-intersecting if C(u)=C(v), u v, u,v (a,b) (C(u) is the self-intersection point). We consider only transversal self-intersections, i.e. those for which the tangents of the intersecting branches at the intersection point do not coincide (C (u)=C(v)). In the presence of noise, curves which self-intersect cannot be distinguished from curves which nearly self-intersect. Existing algorithms for curve reconstruction out of either noisy point samples or pixel data, do not produce a (possibly disconnected) Piecewise Linear 1-manifold approaching the whole point sample. The algorithm implemented in this work uses Principal Component Analysis (PCA) with elliptic support regions near the self-intersections. The algorithm was successful in recovering contours out of noisy slice samples of a surface, for the Hand, Pelvis and Skull data sets. As a test for the correctness of the obtained curves in the slice levels, they were input into an algorithm of surface reconstruction, leading to a reconstructed surface which reproduces the topological and geometrical properties of the original object. The algorithm robustly reacts not only to statistical non-correlation at the self-intersections (non-manifold neighborhoods) but also to occasional high noise at the non-self-intersecting (1-manifold) neighborhoods. © 2010 Springer-Verlag.Ítem Ellipse-based Principal Component Analysis for Self-intersecting Curve Reconstruction from Noisy Point Sets(Springer Berlin Heidelberg, 2011) Ruíz, O.; Vanegas, C.; Cadavid, C.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Laboratorio CAD/CAM/CAESurface reconstruction from cross cuts usually requires curve reconstruction from planar noisy point samples -- The output curves must form a possibly disconnected 1manifold for the surface reconstruction to proceed -- This article describes an implemented algorithm for the reconstruction of planar curves (1manifolds) out of noisy point samples of a sel-fintersecting or nearly sel-fintersecting planar curve C -- C:[a,b]⊂R→R is self-intersecting if C(u)=C(v), u≠v, u,v∈(a,b) (C(u) is the self-intersection point) -- We consider only transversal self-intersections, i.e. those for which the tangents of the intersecting branches at the intersection point do not coincide (C′(u)≠C′(v)) -- In the presence of noise, curves which self-intersect cannot be distinguished from curves which nearly sel fintersect -- Existing algorithms for curve reconstruction out of either noisy point samples or pixel data, do not produce a (possibly disconnected) Piecewise Linear 1manifold approaching the whole point sample -- The algorithm implemented in this work uses Principal Component Analysis (PCA) with elliptic support regions near the selfintersections -- The algorithm was successful in recovering contours out of noisy slice samples of a surface, for the Hand, Pelvis and Skull data sets -- As a test for the correctness of the obtained curves in the slice levels, they were input into an algorithm of surface reconstruction, leading to a reconstructed surface which reproduces the topological and geometrical properties of the original object -- The algorithm robustly reacts not only to statistical noncorrelation at the self-intersections(nonmanifold neighborhoods) but also to occasional high noise at the nonselfintersecting (1manifold) neighborhoodsÍtem Ellipse-based principal component analysis for self-intersecting curve reconstruction from noisy point sets(SPRINGER, 2011-03-01) Ruiz, O.; Vanegas, C.; Cadavid, C.; Ruiz, O.; Vanegas, C.; Cadavid, C.; Universidad EAFIT. Departamento de Ciencias; Matemáticas y AplicacionesSurface reconstruction from cross cuts usually requires curve reconstruction from planar noisy point samples. The output curves must form a possibly disconnected 1-manifold for the surface reconstruction to proceed. This article describes an implemented algorithm for the reconstruction of planar curves (1-manifolds) out of noisy point samples of a self-intersecting or nearly self-intersecting planar curve C. C:[a,b]R?R 2 is self-intersecting if C(u)=C(v), u v, u,v (a,b) (C(u) is the self-intersection point). We consider only transversal self-intersections, i.e. those for which the tangents of the intersecting branches at the intersection point do not coincide (C (u)=C(v)). In the presence of noise, curves which self-intersect cannot be distinguished from curves which nearly self-intersect. Existing algorithms for curve reconstruction out of either noisy point samples or pixel data, do not produce a (possibly disconnected) Piecewise Linear 1-manifold approaching the whole point sample. The algorithm implemented in this work uses Principal Component Analysis (PCA) with elliptic support regions near the self-intersections. The algorithm was successful in recovering contours out of noisy slice samples of a surface, for the Hand, Pelvis and Skull data sets. As a test for the correctness of the obtained curves in the slice levels, they were input into an algorithm of surface reconstruction, leading to a reconstructed surface which reproduces the topological and geometrical properties of the original object. The algorithm robustly reacts not only to statistical non-correlation at the self-intersections (non-manifold neighborhoods) but also to occasional high noise at the non-self-intersecting (1-manifold) neighborhoods. © 2010 Springer-Verlag.Ítem Erratum: Ellipse-based principal component analysis for self-intersecting curve reconstruction from noisy point sets (Visual Computer DOI: 10.1007/s00371-010-0527-x)(SPRINGER, 2011-01-01) Ruiz, O.; Vanegas, C.; Cadavid, C.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Laboratorio CAD/CAM/CAE[No abstract available]Ítem Erratum: Ellipse-based principal component analysis for self-intersecting curve reconstruction from noisy point sets (Visual Computer DOI: 10.1007/s00371-010-0527-x)(SPRINGER, 2011-01-01) Ruiz, O.; Vanegas, C.; Cadavid, C.; Ruiz, O.; Vanegas, C.; Cadavid, C.; Universidad EAFIT. Departamento de Ciencias; Matemáticas y Aplicaciones[No abstract available]Ítem Principal component and Voronoi skeleton alternatives for curve reconstruction from noisy point sets(Taylor and Francis Ltd., 2007-01-01) Ruiz, O.; Vanegas, C.; Cadavid, C.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Laboratorio CAD/CAM/CAESurface reconstruction from noisy point samples must take into consideration the stochastic nature of the sample. In other words, geometric algorithms reconstructing the surface or curve should not insist on matching each sampled point precisely. Instead, they must interpret the sample as a "point cloud" and try to build the surface as passing through the best possible (in the statistical sense) geometric locus that represents the sample. This work presents two new methods to find a piecewise linear approximation from a Nyquist-compliant stochastic sampling of a quasi-planar C1 curve C(u):R R3, whose velocity vector never vanishes. One of the methods combines principal component analysis (PCA) (statistical) and Voronoi-Delaunay (deterministic) approaches in an entirely new way. It uses these two methods to calculate the best possible tape-shaped polygon covering the flattened point set, and then approximates the manifold using the medial axis of such a polygon. The other method applies PCA to find a direct piecewise linear approximation of C(u). A complexity comparison of these two methods is presented, along with a qualitative comparison with previously developed ones. The results show that the method solely based on PCA is both simpler and more robust for non-self-intersecting curves. For self-intersecting curves, the Voronoi-Delaunay based medial axis approach is more robust, at the price of higher computational complexity. An application is presented in the integration of meshes created from range images of a sculpture to form a complete unified mesh.