Ellipse-based principal component analysis for self-intersecting curve reconstruction from noisy point sets

Fecha

2011-03-01

Título de la revista

ISSN de la revista

Título del volumen

Editor

SPRINGER

Resumen

Surface reconstruction from cross cuts usually requires curve reconstruction from planar noisy point samples. The output curves must form a possibly disconnected 1-manifold for the surface reconstruction to proceed. This article describes an implemented algorithm for the reconstruction of planar curves (1-manifolds) out of noisy point samples of a self-intersecting or nearly self-intersecting planar curve C. C:[a,b]R?R 2 is self-intersecting if C(u)=C(v), u v, u,v (a,b) (C(u) is the self-intersection point). We consider only transversal self-intersections, i.e. those for which the tangents of the intersecting branches at the intersection point do not coincide (C (u)=C(v)). In the presence of noise, curves which self-intersect cannot be distinguished from curves which nearly self-intersect. Existing algorithms for curve reconstruction out of either noisy point samples or pixel data, do not produce a (possibly disconnected) Piecewise Linear 1-manifold approaching the whole point sample. The algorithm implemented in this work uses Principal Component Analysis (PCA) with elliptic support regions near the self-intersections. The algorithm was successful in recovering contours out of noisy slice samples of a surface, for the Hand, Pelvis and Skull data sets. As a test for the correctness of the obtained curves in the slice levels, they were input into an algorithm of surface reconstruction, leading to a reconstructed surface which reproduces the topological and geometrical properties of the original object. The algorithm robustly reacts not only to statistical non-correlation at the self-intersections (non-manifold neighborhoods) but also to occasional high noise at the non-self-intersecting (1-manifold) neighborhoods. © 2010 Springer-Verlag.

Descripción

Palabras clave

Curve reconstruction, Data sets, Elliptic support region, Geometrical property, High noise, Intersection points, Noisy point, Noisy samples, Output curve, Piecewise linear, Planar curves, Reconstructed surfaces, Self-intersecting curve reconstruction, Self-intersecting curves, Self-intersections, Algorithms, Geometry, Piecewise linear techniques, Principal component analysis, Surface reconstruction

Citación

Colecciones