Examinando por Autor "Kabongo, L."
Mostrando 1 - 4 de 4
Resultados por página
Opciones de ordenación
Ítem Interactive visualization of volumetric data with WebGL in real-time(2011-01-01) Congote, J.; Segura, A.; Kabongo, L.; Moreno, A.; Posada, J.; Ruiz, O.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Laboratorio CAD/CAM/CAEThis article presents and discusses the implementation of a direct volume rendering system for the Web, which articulates a large portion of the rendering task in the client machine. By placing the rendering emphasis in the local client, our system takes advantage of its power, while at the same time eliminates processing from unreliable bottlenecks (e.g. network). The system developed articulates in efficient manner the capabilities of the recently released WebGL standard, which makes available the accelerated graphic pipeline (formerly unusable). The dependency on specially customized hardware is eliminated, and yet efficient rendering rates are achieved. The Web increasingly competes against desktop applications in many scenarios, but the graphical demands of some of the applications (e.g. interactive scientific visualization by volume rendering), have impeded their successful settlement in Web scenarios. Performance, scalability, accuracy, security are some of the many challenges that must be solved before visual Web applications popularize. In this publication we discuss both performance and scalability of the volume rendering by WebGL ray-casting in two different but challenging application domains: medical imaging and radar meteorology. © 2011 ACM.Ítem Real-time volume rendering and tractography visualization on the web(Vaclav Skala, 2012-01-01) Congote, J.; Novo, E.; Kabongo, L.; Ginsburg, D.; Gerhard, S.; Pienaar, R.; Ruiz, O.E.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Laboratorio CAD/CAM/CAEIn the field of computer graphics, Volume Rendering techniques allow the visualization of 3D datasets, and specifically, Volume Ray-Casting renders images from volumetric datasets, typically used in some scientific areas, such as medical imaging. This article aims to describe the development of a combined visualization of tractography and volume rendering of brain T1 MRI images in an integrated way. An innovative web viewer for interactive visualization of neuro-imaging data has been developed based on WebGL. This recently developed standard enables the clients to use the web viewer on a wide range of devices, with the only requirement of a compliant web-browser. As the majority of the rendering tasks take place in the client machine, the effect of bottlenecks and server overloading are minimized. The web application presented is able to compete with desktop tools, even supporting high graphical demands and facing challenges regarding performance and scalability. The developed software modules are available as open source code and include MRI volume data and tractography generated by the Diffusion Toolkit, and connectivity data from the Connectome Mapping Toolkit. Our contribution for the Volume Web Viewer implements early ray termination step according to the tractography depthmap, combining volume images and estimated white matter fibers. Furthermore, the depthmap system extension can be used for visualization of other types of data, where geometric and volume elements are displayed simultaneously.Ítem Ultrasound Image Dataset for Image Analysis Algorithms Evaluation(Springer Science and Business Media Deutschland GmbH, 2016-01-01) Cortes, C.; Kabongo, L.; Macia, I.; Ruiz, O.E.; Florez, J.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Laboratorio CAD/CAM/CAEThe use of ultrasound (US) imaging as an alternative for real-time computer assisted interventions is increasing. Growing usage of US occurs despite of US lower imaging quality compared to other techniques and its difficulty to be used with image analysis algorithms. On the other hand, it is still difficult to find sufficient data to develop and assess solutions for navigation, registration and reconstruction at medical research level. At present, manually acquired available datasets present significant usability obstacles due to their lack of control of acquisition conditions, which hinders the study and correction of algorithm design parameters. To address these limitations, we present a database of robotically acquired sequences of US images from medical phantoms, ensuring the trajectory, pose and force control of the probe. The acquired dataset is publicly available, and it is specially useful for designing and testing registration and volume reconstruction algorithms.Ítem Web based hybrid volumetric visualisation of urban GIS data: Integration of 4D Temperature and Wind Fields with LoD-2 CityGML models(EDP Sciences, 2012) Congote, J.; Moreno, A.; Kabongo, L.; Pérez, J.-L.; San-José, R.; Ruíz, O.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Laboratorio CAD/CAM/CAECity models visualisation, buildings, structures and volumetric information, is an important task in Computer Graphics and Urban Planning -- The different formats and data sources involved in the visualisation make the development of applications a big challenge -- We present a homogeneous web visualisation framework using X3DOM and MEDX3DOM for the visualisation of these urban objects -- We present an integration of different declarative data sources, enabling the utilization of advanced visualisation algorithms to render the models -- It has been tested with a city model composed of buildings from the Madrid University Campus, some volumetric datasets coming from Air Quality Models and 2D layers wind datasets -- Results show that the visualisation of all the urban models can be performed in real time on the Web -- An HTML5 web interface is presented to the users, enabling real time modifications of visualisation parameters