Examinando por Autor "Correa, S."
Mostrando 1 - 8 de 8
Resultados por página
Opciones de ordenación
Ítem Acoustic displacement tetrahedra developed using the IET rules(PERGAMON-ELSEVIER SCIENCE LTD, 2010-09-01) Correa, S.; Militello, C.; Recuero, M.; Universidad EAFIT. Departamento de Ingeniería de Diseño; Ingeniería de Diseño (GRID)A four node, displacement based, acoustic element is developed. In order to avoid spurious rotational modes, a higher order stiffness is introduced. The higher order stiffness is developed from an incompatible strain field which computes element volume changes under nodal rotational displacements fields. The higher order strain satisfies the IET requirements, non affecting convergence. The higher order stiffness is modulated, element by element, with a factor. Thus, the displacement based formulation is capable of placing the spurious rotational modes over the range of physical compressional modes that can be accurately captured by the mesh. © 2010 Elsevier Ltd. All rights reserved.Ítem Acoustic displacement tetrahedra developed using the IET rules(PERGAMON-ELSEVIER SCIENCE LTD, 2010-09-01) Correa, S.; Militello, C.; Recuero, M.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Bioingeniería GIB (CES – EAFIT)A four node, displacement based, acoustic element is developed. In order to avoid spurious rotational modes, a higher order stiffness is introduced. The higher order stiffness is developed from an incompatible strain field which computes element volume changes under nodal rotational displacements fields. The higher order strain satisfies the IET requirements, non affecting convergence. The higher order stiffness is modulated, element by element, with a factor. Thus, the displacement based formulation is capable of placing the spurious rotational modes over the range of physical compressional modes that can be accurately captured by the mesh. © 2010 Elsevier Ltd. All rights reserved.Ítem Diseño y manufactura de un implante personalizado de cráneo(SPRINGER, 2013-01-01) Isaza, J.F.; Correa, S.; Franco, J.M.; Torres, C.; Bedoya, B.This paper describes the methodology used to design a custom-made cranial implant for a 26 year-old patient, who suffered a lesion in the left frontoparietal region of the skull caused by a fibrous dysplasia. The design of the implant was carried out from the 3D reconstruction of the skull of the patient, obtained by a CT- Scan, using Rapid Form 2006. Once the preliminary design was obtained, 3D models of the injured region of the skull and implant were fabricated in a Rapid Prototyping (RP) machine using the Fused Deposition Modeling Technology (FDM) with the purpose of making a functional and dimensional validation of the implant. Subsequently, the implant was fabricated in titanium alloy (Ti6Al4V). With the methodology, the prosthesis was successfully implanted. The surgical time decreased by 50%, compared with the same type of surgery in which standard commercial implants and titanium meshes are used; due, principally, to the need of implementing trial and error procedures, which intend to achieve a good fit of the implant increasing the risk of the patient. Finally, the aesthetic appearance of the patient was recovered, allowing the patient to safely perform daily activities. © 2013 Springer.Ítem Diseño y manufactura de un implante personalizado de cráneo(SPRINGER, 2013-01-01) Isaza, J.F.; Correa, S.; Franco, J.M.; Torres, C.; Bedoya, B.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Bioingeniería GIB (CES – EAFIT)This paper describes the methodology used to design a custom-made cranial implant for a 26 year-old patient, who suffered a lesion in the left frontoparietal region of the skull caused by a fibrous dysplasia. The design of the implant was carried out from the 3D reconstruction of the skull of the patient, obtained by a CT- Scan, using Rapid Form 2006. Once the preliminary design was obtained, 3D models of the injured region of the skull and implant were fabricated in a Rapid Prototyping (RP) machine using the Fused Deposition Modeling Technology (FDM) with the purpose of making a functional and dimensional validation of the implant. Subsequently, the implant was fabricated in titanium alloy (Ti6Al4V). With the methodology, the prosthesis was successfully implanted. The surgical time decreased by 50%, compared with the same type of surgery in which standard commercial implants and titanium meshes are used; due, principally, to the need of implementing trial and error procedures, which intend to achieve a good fit of the implant increasing the risk of the patient. Finally, the aesthetic appearance of the patient was recovered, allowing the patient to safely perform daily activities. © 2013 Springer.Ítem Methodology for the 3D reconstruction of Craniofacial Structures and its Application in Finite Element Method(SPRINGER, 2008-01-01) Isaza Saldarriagsa, J.F.; Correa, S.; Congote, J.E.Ítem Methodology for the 3D reconstruction of Craniofacial Structures and its Application in Finite Element Method(SPRINGER, 2008-01-01) Isaza Saldarriagsa, J.F.; Correa, S.; Congote, J.E.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Bioingeniería GIB (CES – EAFIT)Ítem Status of the EMIR mechanical system(SPIE-INT SOC OPTICAL ENGINEERING, 2006-06-28) Sánchez, V.; Barrera, S.; Becerril, S.; Correa, S.; Pérez, J.; Redondo, P.; Restrepo, R.; Saavedra, P.; Tenegi, F.; Patrón, J.; Garzón, F.; Universidad EAFIT. Departamento de Ciencias Básicas; Óptica AplicadaEMIR is the NIR multi-object imager and spectrograph for the GTC (Gran Telescopic Canarias). The instrument ADR (Advanced Design Review) was held successfully in March 2006. During the AD phase, a number of mechanical concepts were tested on development prototypes to ensure the feasibility of the PDR proposed designs. This presentation contains an overview of the current mechanical status of the instrument, as well as the prototypes development. It contains the prototype tests results of the collimator first lens barrel, the support trusses, the grisms wheel and the demonstration programme for the cryogenic reconfigurable slit mechanism.Ítem Test results. EMIR optomechanics(SPIE-INT SOC OPTICAL ENGINEERING, 2005-08-30) Barrera, S.; González, C.; Manescau, A.; Abreu, D.; Becerril, S.; Correa, S.; Fragoso, A.; Pérez, J.; Redondo, P.; Restrepo, R.; Saavedra, P.; Sánchez, V.; Tenegi, F.; Garzón, F.; Patrón, J.; Universidad EAFIT. Departamento de Ciencias Básicas; Óptica AplicadaEMIR is a NIR multiobject spectrograph with imaging capabilities to be used at the GTC. The first collimator lens in EMIR, made of Fused Silica, has an outer diameter of 490 mm, and a weight of 265 N, which make it one of the largest Fused Silica lenses ever mounted to work under cryogenic conditions. The results of the various tests being done at the IAC (with two different lens dummies) in order to validate a mounting design concept for this lens, are presented here. The radial support concept tested consists of three contact areas around the lens, one of which is a PTFE block, preloaded by coil springs and the other two are fixed supports made of Aluminum and PTFE, dimensioned in order to keep lens centered both at room temperature and under operation conditions.