Examinando por Autor "Acosta, D."
Mostrando 1 - 8 de 8
Resultados por página
Opciones de ordenación
Ítem Adaptive architecture to support context-aware Collaborative Networked Virtual Surgical Simulators (CNVSS)(SPRINGER, 2014-01-01) Diaz, C.; Trefftz, H.; Quintero, L.; Acosta, D.; Srivastava, S.; Universidad EAFIT. Departamento de Ingeniería de Sistemas; I+D+I en Tecnologías de la Información y las ComunicacionesStand-alone and networked surgical virtual reality based simulators have been proposed as means to train surgical skills with or without a supervisor nearby the student or trainee. However, surgical skills teaching in medicine schools and hospitals is changing, requiring the development of new tools to focus on: (i) importance of mentors role, (ii) teamwork skills and (iii) remote training support. For these reasons a surgical simulator should not only allow the training involving a student and an instructor that are located remotely, but also the collaborative training session involving a group of several students adopting different medical roles during the training session. Collaborative Networked Virtual Surgical Simulators (CNVSS) allow collaborative training of surgical procedures where remotely located users with different surgical roles can take part in a training session. Several works have addressed the issues related to the development of CNVSS using various strategies. To the best of our knowledge no one has focused on handling heterogeneity in collaborative surgical virtual environments. Handling heterogeneity in this type of collaborative sessions is important because not all remotely located users have homogeneous Internet connections, nor the same interaction devices and displays, nor the same computational resources, among other factors. Additionally, if heterogeneity is not handled properly, it will have an adverse impact on the performance of each user during the collaborative session. In this paper we describe the development of an adaptive architecture with the purpose of implementing a context-aware model for collaborative virtual surgical simulation in order to handle the heterogeneity involved in the collaboration session. © 2014 Springer International Publishing.Ítem Adaptive architecture to support context-aware Collaborative Networked Virtual Surgical Simulators (CNVSS)(SPRINGER, 2014-01-01) Diaz, C.; Trefftz, H.; Quintero, L.; Acosta, D.; Srivastava, S.; Universidad EAFIT. Departamento de Ingeniería de Procesos; Desarrollo y Diseño de ProcesosStand-alone and networked surgical virtual reality based simulators have been proposed as means to train surgical skills with or without a supervisor nearby the student or trainee. However, surgical skills teaching in medicine schools and hospitals is changing, requiring the development of new tools to focus on: (i) importance of mentors role, (ii) teamwork skills and (iii) remote training support. For these reasons a surgical simulator should not only allow the training involving a student and an instructor that are located remotely, but also the collaborative training session involving a group of several students adopting different medical roles during the training session. Collaborative Networked Virtual Surgical Simulators (CNVSS) allow collaborative training of surgical procedures where remotely located users with different surgical roles can take part in a training session. Several works have addressed the issues related to the development of CNVSS using various strategies. To the best of our knowledge no one has focused on handling heterogeneity in collaborative surgical virtual environments. Handling heterogeneity in this type of collaborative sessions is important because not all remotely located users have homogeneous Internet connections, nor the same interaction devices and displays, nor the same computational resources, among other factors. Additionally, if heterogeneity is not handled properly, it will have an adverse impact on the performance of each user during the collaborative session. In this paper we describe the development of an adaptive architecture with the purpose of implementing a context-aware model for collaborative virtual surgical simulation in order to handle the heterogeneity involved in the collaboration session. © 2014 Springer International Publishing.Ítem Adaptive architecture to support context-aware Collaborative Networked Virtual Surgical Simulators (CNVSS)(SPRINGER, 2014-01-01) Diaz, C.; Trefftz, H.; Quintero, L.; Acosta, D.; Srivastava, S.; Diaz, C.; Trefftz, H.; Quintero, L.; Acosta, D.; Srivastava, S.; Universidad EAFIT. Departamento de Ciencias; Modelado MatemáticoStand-alone and networked surgical virtual reality based simulators have been proposed as means to train surgical skills with or without a supervisor nearby the student or trainee. However, surgical skills teaching in medicine schools and hospitals is changing, requiring the development of new tools to focus on: (i) importance of mentors role, (ii) teamwork skills and (iii) remote training support. For these reasons a surgical simulator should not only allow the training involving a student and an instructor that are located remotely, but also the collaborative training session involving a group of several students adopting different medical roles during the training session. Collaborative Networked Virtual Surgical Simulators (CNVSS) allow collaborative training of surgical procedures where remotely located users with different surgical roles can take part in a training session. Several works have addressed the issues related to the development of CNVSS using various strategies. To the best of our knowledge no one has focused on handling heterogeneity in collaborative surgical virtual environments. Handling heterogeneity in this type of collaborative sessions is important because not all remotely located users have homogeneous Internet connections, nor the same interaction devices and displays, nor the same computational resources, among other factors. Additionally, if heterogeneity is not handled properly, it will have an adverse impact on the performance of each user during the collaborative session. In this paper we describe the development of an adaptive architecture with the purpose of implementing a context-aware model for collaborative virtual surgical simulation in order to handle the heterogeneity involved in the collaboration session. © 2014 Springer International Publishing.Ítem Approximation of the Mechanical Response of Large Lattice Domains Using Homogenization and Design of Experiments(Universitatea Politehnica Bucuresti, 2020-06-01) Montoya, D.; Acosta, D.; Cortes, C.; Pareja, J.; Moreno, Aitor; Posada, Jorge; Ruiz, O.; Montoya, D.; Acosta, D.; Cortes, C.; Pareja, J.; Moreno, Aitor; Posada, Jorge; Ruiz, O.; Universidad EAFIT. Departamento de Ingeniería de Procesos; Procesos Ambientales (GIPAB)Ítem Approximation of the Mechanical Response of Large Lattice Domains Using Homogenization and Design of Experiments(Universitatea Politehnica Bucuresti, 2020-06-01) Montoya, D.; Acosta, D.; Cortes, C.; Pareja, J.; Moreno, Aitor; Posada, Jorge; Ruiz, O.; Universidad EAFIT. Departamento de Ingeniería de Procesos; Desarrollo y Diseño de ProcesosÍtem Approximation of the Mechanical Response of Large Lattice Domains Using Homogenization and Design of Experiments(Universitatea Politehnica Bucuresti, 2020-06-01) Montoya, D.; Acosta, D.; Cortes, C.; Pareja, J.; Moreno, Aitor; Posada, Jorge; Ruiz, O.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Laboratorio CAD/CAM/CAEÍtem Using scrap zero valent iron to replace dissolved iron in the Fenton process for textile wastewater treatment: Optimization and assessment of toxicity and biodegradability(Elsevier Ltd., 2019-06-28) Gil, E.; Acosta, D.; Gil, E.; Acosta, D.; Universidad EAFIT. Departamento de Ingeniería de Procesos; Procesos Ambientales (GIPAB)Ítem Using scrap zero valent iron to replace dissolved iron in the Fentonprocess for textile wastewater treatment: Optimization andassessment of toxicity and biodegradability(Elsevier Ltd., 2019-06-28) Gil, E.; Acosta, D.; Universidad EAFIT. Departamento de Ingeniería de Procesos; Desarrollo y Diseño de Procesos