Documento de conferencia
URI permanente para esta colección
Examinar
Examinando Documento de conferencia por Autor "Acosta, Diego"
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem HexFlex Mechanism Modeling by Design of Computer Experiments(Springer London, 2010-04) Acosta, Diego; Restrepo, David; Ruíz, Oscar; Durango, Sebastián; Universidad EAFIT. Departamento de Ingeniería Mecánica; Laboratorio CAD/CAM/CAECompliant mechanisms are an instance of mechanical devices designed to transfer or transmit motion, force, or energy from specified input ports to output ports by elastic deformation of at least one of its members -- The main advantage of compliant mechanisms with respect to traditional rigid-link mechanism is that fewer parts, fewer assembly process and no lubrication are required -- The HexFlex is a parallel compliant mechanism for nano-manipulating that allows six degrees of freedom of its moving stage -- This mechanism was designed for high precisión an repeatability -- This article presents a methodology to model compliant mechanisms behavior under quasi-static conditions using computer experiments, reducing costs of experimentation of product development -- The methodology is used to establish a mathematical model that relates the actuator forces at the input ports with the position and orientation the end-effector stage of the Hexflex -- This mathematical model has direct application in model-based control as an advantage with respect to other models, e.g. Finite Element Method -- The mathematical model of the HexFlex is achieved using metamodels -- The term methamodel is used to represent a simplified and efficient mathematical model of unknown phenomenon or computer codes – The metamodel of the HexFlex is performed from virtual analyses made using the Finite Element Method (FEM) -- Simulations of the metamodel were made founding good accuracy with respect to the virtual experimentsÍtem Sensitivity analysis of optimized curve fitting to uniform-noise point samples(2012-05) Ruíz, Óscar; Cortes, Camilo; Acosta, Diego; Aristizábal, Mauricio; Universidad EAFIT. Departamento de Ingeniería Mecánica; Laboratorio CAD/CAM/CAECurve reconstruction from noisy point samples is needed for surface reconstruction in many applications (e.g. medical imaging, reverse engineering,etc.) -- Because of the sampling noise, curve reconstruction is conducted by minimizing the fitting error (f), for several degrees of continuity (usually C0, C1 and C2) -- Previous works involving smooth curves lack the formal assessment of the effect on optimized curve reconstruction of several inputs such as number of control points (m), degree of the parametric curve (p), composition of the knot vector (U), and degree of the norm (k) to calculate the penalty function (f) -- In response to these voids, this article presents a sensitivity analysis of the effect of mand k on f -- We found that the geometric goodness of the fitting (f) is much more sensitive to m than to k -- Likewise, the topological faithfulness on the curve fit is strongly dependent on m -- When an exaggerate number of control points is used, the resulting curve presents spurious loops, curls and peaks, not present in the input data -- We introduce in this article the spectral (frequency) analysis of the derivative of the curve fit as a means to reject fitted curves with spurious curls and peaks -- Large spikes in the derivative signal resemble Kronecker or Dirac Delta functions, which flatten the frequency content adinfinitum -- Ongoing work includes the assessment of the effect of curve degree p on f for non-Nyquist point samples