Experiment design in compliant mechanisms and kinematic identification of parallel mechanisms

dc.contributor.advisorRuíz Salguero, Oscar Eduardo
dc.contributor.authorRestrepo Arango, David
dc.coverage.spatialMedellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degreeseng
dc.creator.degreeIngeniero Mecánicospa
dc.creator.emailDavid Restrepo Arango (drestr21@eafit.edu.co)spa
dc.date.accessioned2015-08-03T16:33:23Z
dc.date.available2015-08-03T16:33:23Z
dc.date.issued2010
dc.description.abstractThis article discusses a procedure for force-displacement modeling compliant mechanisms by using a design of computer experiments methodology -- This approach produces a force-displacement meta-model that is suited for real-time control of compliant mechanisms -- The term meta-model is used to represent a simplified and efficient mathematical model of unknown phenomena -- The meta-modeling of compliant mechanisms is performed from virtual experiments based on factorial- and space-filling design of experiments -- The procedure is used to model the quasi-static behavior of the HexFlex compliant mechanism -- The HexFlex is a parallel compliant mechanism for nano-manipulation that allows six degrees of freedom of its moving stage -- The meta-model of the HexFlex is calculated from experiments with the Finite Element Method (FEM) -- The obtained meta-model for the HexFlex is linear for the range of movement of the mechanism -- The accuracy of the meta-model was calculated conducting a set of computer experiments with random uniform distribution of the input forces -- Three criteria were calculated in each displacement direction (x, y, z, θx, θy, θz) comparing the meta-model prediction with respect to the results of the virtual experiments: 1. maximum of the absolute value of the error, 2. relative error, and 3. root mean square error -- The maximum errors were founded adequate with respect to demanding manufacturing tolerances (absolute errors) and lower than errors reported by other authors (relative errors)spa
dc.identifier.other621.811R436
dc.identifier.urihttp://hdl.handle.net/10784/7234
dc.language.isospaspa
dc.publisherUniversidad EAFITspa
dc.publisher.departmentEscuela de Ingeniería. Departamento de Ingeniería Mecánicaspa
dc.publisher.programIngeniería Mecánicaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesseng
dc.rights.localAcceso abiertospa
dc.subjectMetamodelosspa
dc.subjectCinemática inversaspa
dc.subjectÁngulos de Eulerspa
dc.subjectDeformación elásticaspa
dc.subjectDeformaciones cuasi-estáticasspa
dc.subject.keywordKinematicsspa
dc.subject.keywordMechanical movementsspa
dc.subject.keywordFinite element methodspa
dc.subject.keywordNumerical analysisspa
dc.subject.keywordComputer algorithmsspa
dc.subject.lembCINEMÁTICAspa
dc.subject.lembMOVIMIENTOS MECÁNICOSspa
dc.subject.lembMÉTODO DE ELEMENTOS FINITOSspa
dc.subject.lembDEFORMACIONESspa
dc.subject.lembANÁLISIS NUMÉRICOspa
dc.subject.lembALGORITMOS(COMPUTADORES)spa
dc.titleExperiment design in compliant mechanisms and kinematic identification of parallel mechanismsspa
dc.typebachelorThesiseng
dc.type.hasVersionacceptedVersioneng
dc.type.localTrabajo de gradospa

Archivos

Bloque original
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
David_RestrepoArango_2010.pdf
Tamaño:
3.22 MB
Formato:
Adobe Portable Document Format
Descripción:
Texto Completo
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.5 KB
Formato:
Item-specific license agreed upon to submission
Descripción: