VALIDACIÓN EMPÍRICA DEL MODELO CAPM PARA COLOMBIA 2003-2010

Andrés Ramirez Hassan<sup>1</sup>.

Maribel Serna Rodríguez<sup>2</sup>

Resumen

En este trabajo se pretende mostrar una evidencia empírica para Colombia, desde el año 2003 hasta el 2010, del modelo CAPM de Sharpe -Lintner (1964), validación que se lleva a cabo utilizando el procedimiento de Black, Jensen y Scholes (1972) pero introduciendo ciertos cambios metodológicos de índole econométrico asociados a las

necesidades que impone la muestra utilizada. Específicamente, se encontró que no

hay evidencia empírica para rechazar el modelo CAPM para la economía colombiana

en el período objeto de análisis.

Palabras clave: CAPM Colombia, contraste de serie temporal, contraste de corte

transversal

Clasificación JEL: G0, G1, G12.

Introducción

El modelo CAPM es de suma importancia en el área financiera. Así, se tiene que éste juega un papel relevante dentro de la evaluación financiera de un proyecto de inversión debido a que por medio de él se calcula el costo de las utilidades retenidas, costo que se encuentra implícito en el costo promedio ponderado de capital que corresponde a la tasa de descuento que se toma como punto de partida para dicha actividad. También el CAPM cobra mucha importancia en la valoración de empresas debido a que dentro de los métodos que se tienen establecidos para dicho proceso este modelo hace parte de la tasa de descuento. Dichos métodos de valoración son: el Equity Cash Flow (ECF), el Capital Cash Flow (CCF), el Free Cash Flow (FCF) y el Economic Value Added (EVA).

A lo anterior se suma lo expresado por James y Koller (2000), autores que argumentan que debido a que las economías del mundo se están globalizando y que el capital tiene más movilidad, la valoración está ganado importancia en los mercados

<sup>&</sup>lt;sup>1</sup> Economista y Magister en Economía Universidad Nacional de Colombia, Magister en Ciencia de las Finanzas Universidad Eafit y Candidato a Doctor en Ciencias y Estadística Universidad Nacional de Colombia. Docente Departamento de Economía Universidad Eafit. aramir21@eafit.edu.co

<sup>&</sup>lt;sup>2</sup> Administradora de Negocios, Especialista en Finanzas, Magister en Ciencias de la Administración, Docente Departamento de Finanzas Universidad Eafit. mserna@eafit.edu.co

emergentes por las privatizaciones, los joint ventures, las fusiones y las adquisiciones, las reestructuraciones y recientemente para la tarea básica de los negocios en marcha de crear valor.

En el caso de los mercados financieros, este modelo puede ser utilizado en áreas como la gestión de inversiones, ya que si se percibe que una acción es una buena compra tendrá una prima de rentabilidad justa estipulada por la línea del mercado de valores. Uno de los usos prácticos más importantes de este modelo ha sido en el área de la evaluación de resultados, teniendo como el ejemplo más claro la evaluación del desempeño de los fondos mutualistas en donde la pregunta a responder es: ¿Qué tan bien se desempeña un fondo en lograr un nivel de rendimientos, tomando en cuenta su nivel de riesgo? (Kolb, 1993). La tasa que surge de aplicar el modelo CAPM también se utiliza para descontar los flujos de caja futuros de un activo para así determinar el precio adecuado del título en cuestión, para lo cual se considera que si el precio supera la valuación obtenida mediante el modelo CAPM, el activo estará sobrevaluado y viceversa.

El objetivo de este artículo es realizar un ejercicio de validación empírica del modelo CAPM para la economía colombiana en el período 2003-2010 a través del procedimiento de Balck, Jensen y Scholes (1972) pero introduciendo cambios metodológicos importantes en la metodología econométrica asociados a los problemas en la disponibilidad de la información.

### Estado del arte

A continuación, se hace un breve recuento de las metodologías de contraste del modelo CAPM que marcaron un hito en la historia de los contrastes y que han sobrevivido hasta nuestros días (Gómez, Madariaga y Santibáñez, 1995) y se mencionan una serie de estudios realizados en torno al modelo en cuestión que consideran lo atinente al caso colombiano.

Black, Jensen y Scholes (1972) utilizan la metodología de serie temporal y de corte trasversal para realizar el contraste del modelo CAPM, el cual plantean en excesos de rentabilidad sobre la tasa libre de riesgo. En este análisis obtienen una constante significativamente positiva y un coeficiente del beta bastante inferior a la prima de riesgo de la rentabilidad media del mercado.

Blume y Friend (1973) verifican la relación lineal expuesta por el CAPM, pero no la igualdad de la constante al valor de la tasa libre de riesgo. Para lo anterior, utilizan regresiones de corte transversal y estudian los errores de medida en los betas mediante la agrupación de carteras. Verifican la existencia de una relación significativa lineal y positiva entre el rendimiento medio y el riesgo medido por medio del beta, pero encuentran problemas en la verificación de la igualdad a los valores teóricos de la tasa libre de riesgo y la prima de riesgo.

Fama y MacBeth (1973) utilizan la metodología de corte trasversal sin medias que consta de dos etapas: un período de estimación y uno de contraste. En este ejercicio encuentran en promedio una relación lineal y positiva entre la rentabilidad y el riesgo sistemático.

Fama y French (1992) analizan para el mercado estadounidense la validez del modelo desde 1941 hasta 1990 y la influencia que tienen sobre las variaciones de la rentabilidad de las carteras de acciones variables como tamaño, ratio book-to-market, ratio PER (Price Earnings Ratio) y endeudamiento. El estudio muestra, para todo el intervalo temporal, una débil relación positiva entre el beta y la rentabilidad media, la cual prácticamente desaparece para el período 1963-1990. Para este último período, se verifica la significancia de las variables tamaño y ratio book-to-market como variables explicativas de las variaciones de los rendimientos medios.

Burbano (1997) realizó un estudio acerca de la aplicabilidad en Colombia del modelo CAPM para 26 empresas inscritas en la Bolsa de Valores de Bogotá y la Bolsa de Valores de Medellín, para lo cual construye un CAPM extendido incluyendo otras variables explicativas tales como: dividendos, liquidez bursátil, apalancamiento financiero, relación precio-utilidad e inflación no programada. El resultado fue que en la mayoría de los casos solamente la rentabilidad promedio del mercado era significativa en el modelo.

Estrada (2003) presenta evidencia empírica para 50 países, tanto del modelo CAPM como para el modelo D-CAPM, durante el período 1988-2001. Dentro de estos países se tienen en cuenta tanto mercados desarrollados como mercados emergentes (dentro de los cuales se tiene en consideración Colombia). El modelo D-CAPM propuesto por Estrada sugiere una variante del CAPM global en donde se modifica la estimación del beta del título por la estimación de un P-beta utilizando los conceptos de semidesviación estándar y cosemivariancia. Se concluye que, para una muestra conformada por mercados desarrollados y mercados emergentes, el downside beta explica alrededor del 45% de la variabilidad de los retornos en la regresión de sección

cruzada, y para una muestra de sólo de mercados emergentes este porcentaje es del 55%. Adicional a lo anterior, se tiene que el modelo D-CAPM genera un retorno promedio anual sobre el patrimonio más alto que el modelo CAPM, valor que asciende a 250 puntos básicos.

Mongrut (2006) calcula el costo del capital propio para seis países (Argentina, Brasil, Colombia, Chile, México y Perú) para el período 1995-2005 utilizando siete métodos. Se concluye que de forma consistente con el grado de diversificación del inversionista, y para la mayoría de los países considerados, el rendimiento requerido será mayor en el caso de los inversionistas no diversificados, seguidos estos por los imperfectamente diversificados y los bien diversificados.

Fuenzalida, Mongrut y Martin (2007) se hace el mismo desarrollo que en Mongrut (2006). En este estudio se concluye que ninguno de los modelos es mejor que otro debido a las diferencias que se presentan en las tasas de descuento obtenidas; y que los mercados Latinoamericanos están en proceso de integrarse con el mercado mundial porque las tasas de descuento han estado decreciendo durante los primeros cinco años del siglo 21.

Vélez (2007) presenta evidencia empírica de los modelos CAPM tradicional y CAPM continuo para el mercado colombiano desde el año 2001 hasta el año 2006. Mediante un análisis de series de tiempo, el autor encuentra que no es posible establecer una relación entre la prima por riesgo y los retornos esperados, debido a la ineficiencia del mercado con respecto a la información. Así, no sólo el autor concluye que el mercado accionario colombiano carece de relaciones de largo plazo sino que el modelo CAPM muestra que el mercado no es eficiente.

Sarmiento y Vélez (2008) muestran, a través de un ejercicio de corroboración empírica del modelo CAPM para el caso colombiano, dos características interesantes de este mercado: la Bolsa de Valores de Colombia (BVC) no es un mercado eficiente y el riesgo no es proporcional al retorno ya que la prima de riesgo de mercado no es suficiente para explicar la varianza de los retornos. Se adiciona a lo anterior que los autores demostraron que no existen relaciones de inversión entre el corto y el largo plazo.

## 3. Marco Teórico

El modelo de Valoración de Activos de Capital, CAPM, en su versión más clásica Sharpe –Lintner (1964), postula que la rentabilidad esperada de un activo debe ser una función lineal positiva del beta o de su riesgo sistemático. Este se fundamenta en la teoría de carteras, tomando como base los fundamentos señalados por Markowitz (1952), lo cual indica que una de las hipótesis de partida corresponde al equilibrio del mercado al estar basado en mercados de competencia perfecta. Es lo anterior lo que precisamente se considera una de sus principales críticas al ser poco realista. La ecuación que muestra la relación lineal entre el riesgo y rendimiento es la siguiente:

$$E(R_i) = R_f + \beta_i * (E(R_m) - R_f)$$
 (1)

Donde:

 $E(R_i)$ : Rentabilidad esperada del título i.

 $R_f$ : Rentabilidad del título libre de riesgo.

 $\beta_i$ : Beta del título i. Este factor es una medida del riesgo sistemático que representa la contribución de un activo al riesgo de una cartera bien diversificada. Este mide el grado de relación de la rentabilidad de un título con la rentabilidad del mercado.

 $\beta_i = \frac{Cov\left(R_i,R_m\right)}{Var\left(R_m\right)}$ , cociente entre la covarianza de la rentabilidad del título con el mercado y la varianza de rentabilidad de éste último.

 $E(R_m)$ : Rentabilidad esperada de la cartera de mercado (teóricamente conformada por todos los activos que aportan valor a la economía).

 $(E(R_m)-R_f)$ : Prima del retorno esperado del mercado sobre la tasa libre de riesgo, o premio por unidad de riesgo. Si esta diferencia se multiplica por el beta, es decir,  $\beta_i*(E(R_m)-R_f)$  ella estaría indicando la rentabilidad adicional sobre la tasa libre de riesgo.

El modelo anterior opera bajo los siguientes supuestos, todos ellos enunciados tanto por Bodie, Kane y Marcus (2004) como por Elton y Gruber (1995):

- Los inversores no pueden afectar los precios de los activos con sus negociaciones individuales.
- Todos los inversores piensan mantener sus inversiones durante un horizonte temporal idéntico.
- Los inversores forman carteras de una serie de activos y ellos tienen acceso a oportunidades ilimitadas para obtener y ofrecer créditos a la tasa libre de riesgo.
- Los inversores no pagan impuestos sobre la rentabilidad ni gastos de transacciones cuando negocian los títulos.
- Todos los inversores intentan construir carteras de fronteras eficientes, lo cual indica que son optimizadores racionales de media-varianza.
- Todos los inversores analizan los activos de la misma forma y comparten la visión acerca de la economía mundial, lo que se denomina expectativas homogéneas.
- Los activos son infinitamente divisibles y todos son negociables.
- Se permiten las ventas en corto sin límite.

Según Scaliti (n.d.), a pesar de que el CAPM es el modelo más utilizado en todo el mundo para estimar el costo de capital propio, o la rentabilidad que deben obtener los accionistas de una empresa por invertir su dinero en ella, éste ha sido puesto en tela de juicio muchas veces, y especialmente, la evidencia empírica muestra que no funciona adecuadamente para estimar el costo de capital en los mercados emergentes. A lo anterior se adiciona que éste sigue siendo el modelo de valoración más ampliamente utilizado debido a su sencillez y la lógica en que se basa, aunque la utilidad del modelo no se corresponda normalmente con la exactitud de sus predicciones (Mascareñas, 2001). A pesar de su simplicidad, el CAPM continúa siendo objeto de estudios y críticas debido a la no observación de los supuestos en los cuales se fundamenta (Zavatti y Homero, 2007).

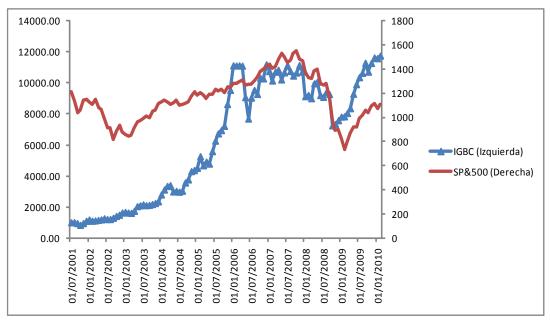
Benserud y Austgulen (2006) exponen las razones por la cuales este modelo se sigue aplicando para calcular el costo de los recursos propios: hay razones beneficio-costo significativas para aplicarlo, es el punto de referencia para compañías competitivas y cooperativas y algunos de los problemas de los cuales adolece pueden ser parcialmente solucionados a través de los ajustes ad-hoc (pero sin fundamentación teórica). Pero a pesar de lo anterior, en Martínez (2001) se presentan las limitaciones del CAPM y que dan lugar a la búsqueda de nuevos enfoques: excesiva simplicidad porque explica la rentabilidad por medio de un único índice de mercado, el beta obtenido depende del horizonte temporal elegido y del método de estimación, parte de hipótesis demasiado restrictivas y su validación empírica no es totalmente satisfactoria.

En Scaliti (n.d.) se dice que los problemas relativos a la estimación del costo del capital en mercados desarrollados y en mercados emergentes son diferentes. En los mercados desarrollados, los practicantes usan ampliamente el CAPM para el cálculo del costo del capital propio, lo cual no está libre de controversias. Así, durante treinta años los académicos han debatido si el beta es la medida más apropiada de riesgo. En cuanto a lo anterior, la evidencia empírica muestra que, aunque hay factores adicionales que pueden ser necesarios para una mejor explicación del rendimiento de las acciones, el beta no debería ser descartado como una medida de riesgo. En conclusión, en los mercados desarrollados, el debate no se centra en si el beta es una medida adecuada del riesgo, sino en cuáles son las variables adicionales, si las hay, que afectan los rendimientos de las acciones. Por su parte en los mercados emergentes, el uso del CAPM tiene varios problemas, dentro de los cuales se cuentan: el pequeño tamaño de las bolsas de valores, la baja importancia de los mercados bursátiles en la economía, la alta concentración de los mercados bursátiles, la escasa, imprecisa y volátil información sobre el mercado y el costo de capital, y la baja magnitud de las series de tiempo. Desde un punto de vista empírico, esos problemas surgen por el hecho de que el beta y los rendimientos de las acciones están ampliamente incorrelacionados.

# 4. Metodología y resultados econométricos

Para efectos de validar empíricamente el modelo CAPM para la economía colombiana, se procedió a recolectar los precios de todas las acciones que cotizan en la Bolsa de Valores de Colombia desde el 3 de Julio del año 2001 hasta el día 8 de Marzo del 2010<sup>3</sup>. Igualmente se recopiló información del Índice General de la Bolsa de Valores de Colombia (IGBC), la Tasa de Interés Interbancaria (TIB) como un proxy de la tasa libre de riesgo en Colombia, el SP&500 y la tasa de los treasury a 10 años. A partir de esta información se procedió a calcular las rentabilidades de cada una de las acciones y de los índices en cuestión, para lo cual se consideró el precio de la acción y el valor del índice al final de cada mes. En un principio se contó con información de 79 acciones pero debido a varias razones, por ejemplo: la no existencia de la acción para determinado período, el no movimiento de la misma o a la salida de ella del mercado, el período de estudio se reduce de 9 años y 9 meses, a 6 años y 5 meses, y el número de acciones a trabajar pasa de 79 a 29.

A partir de la información disponible se procede a verificar empíricamente el modelo CAPM siguiendo el procedimiento de Black, Jensen y Scholes (1972). Pero en el


\_

<sup>&</sup>lt;sup>3</sup> El 3 de Julio del año 2001 se unificaron las Bolsas de Valores colombianas.

presente ejercicio, se presentan dos cambios metodológicos con respecto al artículo seminal en lo que respecta a los ejercicios de series de tiempo: la primera es que estos autores utilizan portafolios de acciones para realizar su contraste, lo cual tomaría en consideración la correlación de sección cruzada de los rendimientos, pero dada la poca disponibilidad de información (29 acciones), el presente estudio utiliza técnicas de estimación fundamentadas en ecuaciones simultáneas, lo cual permite incorporar el fenómeno en consideración. La segunda diferencia es que estos autores utilizan el beta estimado del período pasado (cinco años) como variable instrumental del ejercicio de regresión, lo cual tiene como objetivo eliminar el sesgo en la estimación, pero dado el acotado período de tiempo del cual se tiene información histórica, el presente estudio utiliza como variable instrumental la prima de mercado de EEUU.

Al respecto de la elección del SP&500 como variable instrumental del IGBC se presentan los siguientes argumentos: en primera instancia, el Gráfico 1 enseña la evolución y los similares comportamientos que tienen los índices IGBC y SP&500 a través del tiempo.

Gráfico 1. Comportamiento del IGBC y del SP&500.



Fuente: Elaboración de los autores.

Y en segunda instancia, se estimó el siguiente modelo:

$$(R_{mt} - R_{ft})^{est} = 0.021 + 0.833 (R_{mt}^{f} - R_{ft}^{f})$$
 (2)

En donde,

 $R_{mt}$ : Rentabilidad del mercado colombiano, IGBC, en el momento t

 $R_{t}$ : Tasa libre de riesgo en Colombia, TIB como un proxy, en el momento t

 $(R_{mt} - R_{ft})^{est}$ : Prima por riesgo colombiana estimada

 $R_{mr}^{f}$ : Rentabilidad del mercado Estadounidense, SP&500, en el momento t

 $R_{ft}^f$ : Tasa libre de riesgo en EEUU, treasury a 10 años, en el momento t

Así, se tiene que la prima en dólares tiene un coeficiente de 0.834 y la constante es igual a 0.021, en donde cada uno de ellos, respectivamente, tiene una desviación típica del estimador de 0.199 y 0.008. Tanto el intercepto como la pendiente son significativos a un nivel de significancia del 5%. Es por lo anterior que se puede decir que el comportamiento de la prima en pesos puede estar asociado al comportamiento de la prima en dólares, lo cual se convierte en la justificación para utilizar la prima en dólares como variable instrumental.

Con respecto al modelo anterior, en el Anexo 1 se encuentran las pruebas sobre los respectivos residuales, los cuales cumplen las hipótesis subyacentes. Adicional a esto, la prueba de raíces unitarias que se muestra en el Anexo 2 indica que los residuales del modelo son estacionarios.

Al respecto del ejercicio de series de tiempo, se debe considerar que cada una de las variables a analizar en este modelo toma como punto partida los excesos de rentabilidad y por ello la importancia que tiene realizar un análisis exhaustivo de cada uno de estos. En primera instancia se realizó la prueba de raíces unitarias a cada uno de los excesos estudiados. Como se puede ver en el Anexo 3, las series en consideración son estacionarias.

El modelo se estimó por el método de mínimos cuadrados en tres etapas, puesto que dicho método permite modelar simultáneamente todas las acciones en cuestión, lo cual introduce la correlación entre estas, y a su vez instrumentar la prima del mercado colombiano a través de la prima del mercado estadounidense. La serie de datos utilizada va desde octubre del 2003 hasta febrero del 2009, dejando el período marzo de 2009 hasta febrero del 2010 para realizar los ejercicios de sección cruzada.

Acudiendo a lo dicho por Agudelo y Uribe (2009), se estimó la siguiente especificación en la cual se incluye una variable dummy para capturar el cambio estructural en el mercado accionario colombiano asociado al mercado alcista continuo más importante del mercado que comprende desde julio del 2001 hasta marzo del 2005.

$$(R_{it} - R_{ft}) = \alpha_1 + \beta_{i1}(R_{mt} - R_{ft}) + \beta_{i2}d_t(R_{mt} - R_{ft}) + \mu_{it},$$
(3)

Donde:

 $R_{ii}$ : Rentabilidad de la acción i en el momento t

 $R_{\rm fi}$ : Tasa libre de riesgo en Colombia, TIB como un proxy, en el

momento t

 $\alpha_1$ ,  $\beta_{i1}$ ,  $\beta_{i2}$ : Parámetros a estimar.

 $d_t$ : Variable dummy que toma el valor de 0 entre el período octubre

de 2003 hasta marzo de 2005, y de 1 para el período abril de

2005 hasta febrero de 2010.

 $R_{mt}^{f}$ : Rentabilidad del mercado estadounidense, SP&500, en el

momento t

 $R_{t}^{f}$ : Tasa libre de riesgo en EEUU, treasury a 10 años, en el

momento t

 $\mu_{ii}$ : Término de perturbación estocástica

A través de una prueba de Wald conjunta, no se puede rechazar la hipótesis de la no presencia de cambio estructural en los betas a un nivel de significancia del 5% (ver Anexo 4). A lo anterior se suma el hecho que la estimación indicó que sólo se presenta cambio en el beta para el 7% de las acciones en consideración (ver Anexo 5). Así, se puede concluir que los betas permanecen estables durante el período que comprende desde octubre del 2003 hasta febrero del 2009, y por ende, no se hace necesario diferenciar entre ambos períodos. Luego, la especificación finalmente estimada será:

$$(R_{it} - R_{ft}) = \alpha_1 + \beta_{i1}(R_{mt} - R_{ft}) + \mu_{it}$$
(4)

Los resultados se aprecian en la tabla 1 donde se observa que en general los betas estimados son estadísticamente significativos y en el Anexo 6 se enseña que los residuales obtenidos son estacionarios. Lo anterior valida el modelo de índice único pero no el modelo CAPM. Esto debe a que el primero de ellos corresponde a una regresión ex-post cuyo único propósito es estimar el beta del título, mientras que el segundo corresponde a un modelo ex-ante donde todos sus parámetros (Tasa libre de riesgo, beta y prima por riesgo de mercado) deben ser prospectivos. Para el cálculo del beta, el modelo CAPM utiliza retornos esperados y el modelo de índice utiliza retornos actuales (Bodie, Kane y Marcus, 2003). Así, es posible que el modelo de índice único arroje un beta estable, estacionario, pero que a pesar de ello, el CAPM no se cumpla en promedio ya que sólo la prima por riesgo de mercado no explica las diferencias de corte transversal en los rendimientos de portafolios de inversión.

Tabla 1. Coeficientes modelo CAPM tradicional octubre 2003-febrero 2009.

| Acción           | α1                  | Std. Error       | β1                   | Std. Error |
|------------------|---------------------|------------------|----------------------|------------|
| ЕТВ              | 0.0077              | 0.0161           | 0.4888               | 0.3743     |
| CEMARGOS         | -0.0077<br>0.0005   | 0.0161           | 1.0552 *             | 0.3743     |
| ÉXITO            |                     |                  |                      | 0.1927     |
| BCOLOMBIA        | -0.0028<br>-0.0054  | 0.0134<br>0.0063 | 1.1313 *<br>1.2158 * | 0.3101     |
|                  | -0.0054<br>0.0170 * |                  |                      |            |
| ISA              |                     | 0.0084           | 0.7480 *             | 0.1946     |
| AVAL             | -0.0013             | 0.0093           | 0.7883 *             | 0.2166     |
| CHOCOLATES       | 0.0091              | 0.0094           | 0.7988 *             | 0.2177     |
| BOGOTA           | 0.0037              | 0.0080           | 0.5317 *             | 0.1865     |
| FABRICATO        | -0.0126             | 0.0174           | 1.0426 *             | 0.4040     |
| CORFICOL         | 0.0417              | 0.0215           | 0.5574               | 0.5002     |
| COLINV           | 0.0139              | 0.0087           | 0.7194 *             | 0.2025     |
| VALBAVARIA       | -0.0082             | 0.0167           | 0.8842 *             | 0.3878     |
| MINEROS          | 0.0311 *            | 0.0134           | 0.3916               | 0.3111     |
| INTBOL           | 0.0016              | 0.0179           | 1.0365 *             | 0.4146     |
| PAZRIO           | 0.0289              | 0.0289           | 1.4428 *             | 0.6705     |
| COLTEJER         | -0.0100             | 0.0312           | 1.2328               | 0.7256     |
| SANTANDER        | 0.0078              | 0.0264           | 0.5544               | 0.6125     |
| PROMIGAS         | 0.0260              | 0.0168           | 0.0511               | 0.3892     |
| OCCIDENTE        | 0.0043              | 0.0073           | 0.4085 *             | 0.1700     |
| <b>CB Equity</b> | 0.0429 *            | 0.0213           | 0.1915               | 0.4939     |
| BBVACOL          | 0.0086              | 0.0165           | 0.6122               | 0.3836     |
| CARTON           | -0.0026             | 0.0095           | 0.4242               | 0.2207     |
| FONVAL           | -0.0007 *           | 0.0001           | 0.0000               | 0.0028     |
| FACCION          | -0.0051 *           | 0.0021           | 0.8190 *             | 0.0478     |
| FIDUCTA          | -0.0002             | 0.0002           | -0.0012              | 0.0038     |
| FONRNAC          | -0.0002             | 0.0002           | -0.0110 *            | 0.0054     |
| SERFACC          | 0.0000              | 0.0035           | 0.7752 *             | 0.0815     |
| AINVERT          | -0.0001             | 0.0002           | 0.0029               | 0.0043     |
| BCRENTA          | -0.0003 *           | 0.0001           | 0.0017               | 0.0032     |

Nota: \* estadísticamente significativos al 5%.

Para el contraste de sección cruzada, se procede a realizar una regresión mensual de los excesos de rentabilidad del último año en función de los betas estimados en el ejercicio de series de tiempo. La regresión en cuestión responde al siguiente modelo:

$$R_{it} - R_{ft} = \alpha_t + \gamma_t \, \hat{\beta}_i + \mathbb{Q}_{it}$$
, en donde i = 1,2,...,29 y t=1,2,...,12. (5)

En este caso, para validar el modelo CAPM el intercepto debe ser cero y el exceso de retorno del mercado observado debe estar incluido dentro de los intervalos construidos considerando un factor de corrección debido al sesgo por error de medida.

En este segundo ejercicio, tomar los betas estimados como proxy del beta poblacional implica un sesgo por error de medida en las nuevas estimaciones. A diferencia de la metodología de Black, Jensen y Scholes (1972) en donde para evitar el sesgo en las estimaciones se realizó el ejercicio a partir de la construcción de portafolios, en el presente trabajo, dado el reducido tamaño muestral, se adoptó otra metodología, la cual está basada en el supuesto que el error de medida del beta estimado es aleatorio. Así, en la regresión de la ecuación (5) se tiene  $p \lim \widehat{\gamma_t} = \frac{\sigma_{\beta}^2}{\sigma_{\beta}^2 + \sigma_{\varepsilon}^2} \gamma_t$ , el cual corresponde al factor a partir del cual se corrigen los parámetros estimados en los modelos de sección cruzada. Para este factor se tiene que  $\sigma_{\beta}^2$  es la varianza de los betas poblacionales asociados a las diferentes acciones y  $\sigma_{\varepsilon}^2$  es la varianza del modelo (Cameron y Trivedi, 2005).

Al respecto a este factor de ajuste, se tiene que si el error de medida del beta estimado es aleatorio, es decir  $\hat{\beta}_i = \beta_i + \varepsilon_i$ , donde  $\varepsilon_i \sim i.i.d~(0,\sigma_\varepsilon^2)$ . Entonces dado dos períodos para los cuales se poseen los betas estimados y bajo el supuesto que los errores de estimación son independientes, es decir,  $\hat{\beta}_{i1} = \beta_{i1} + \varepsilon_{i1}$  y  $\hat{\beta}_{i2} = \beta_{i2} + \varepsilon_{i2}$  tal que  $cov~(\varepsilon_{i1},\varepsilon_{i2})=0$ , entonces,  $Var(\hat{\beta}_i)=\sigma_\beta^2+\sigma_\varepsilon^2$ , puesto que  $cov~(\beta_i,\varepsilon_i)=0$  y  $cov~(\beta_{i1},\beta_{i2})=\sigma_\beta^2=Var~(\beta_i)$ , lo cual implica que se tiene el término para corregir el parámetro  $\hat{\gamma}_t$  por el error de medida.

Dado el objetivo de encontrar el factor de ajuste para corregir por el error de medida asociado a la utilización del beta estimado en las regresiones de sección cruzada, el período de estudio se fraccionó en dos: el primero de ellos comprenderá desde octubre del 2003 hasta mayo del 2006, y el segundo se tomará desde junio del 2006

hasta febrero 2009. En los Anexos 7 y 8 se muestra la estimación, sin considerar variables dummy, para los períodos octubre 2003-mayo del 2006 y junio 2006-febrero 2009.

El factor de corrección encontrado fue 0.71, lo cual implica que teóricamente el parámetro estimado subestima el valor poblacional en un 40%. Así, los parámetros estimados en los modelos de sección cruzada para los meses de marzo de 2009 a febrero de 2010 son corregidos por este factor.

En la tabla 2 se enseñan los resultados de los ejercicios de sección cruzada, sin tomar en consideración los efectos asociados al error de medida. Específicamente se realizaron las estimaciones desde el mes de marzo del 2009 hasta el mes de febrero del 2010.

Tabla 2. Coeficientes regresiones cruzadas

| Mes | $\alpha_{z}$ | Ŷŧ     |
|-----|--------------|--------|
|     |              |        |
|     | 0.044        | 0.000  |
| 1   | 0.014        | -0.002 |
|     | 0.019        | 0.025  |
| 2   | 0.023        | 0.018  |
|     | 0.017        | 0.023  |
| 3   | 0.014        | 0.052  |
|     | 0.020        | 0.027  |
| 4   | 0.020        | 0.009  |
|     | 0.019        | 0.025  |
| 5   | 0.052        | -0.058 |
|     | 0.028        | 0.038  |
| 6   | 0.048        | 0.000  |
|     | 0.024        | 0.032  |
| 7   | 0.045        | 0.031  |
|     | 0.036        | 0.049  |
| 8   | 0.014        | -0.031 |
|     | 0.024        | 0.033  |
| 9   | -0.009       | 0.062  |
|     | 0.033        | 0.044  |
| 10  | -0.059       | 0.207  |
|     | 0.070        | 0.094  |
| 11  | -0.006       | 0.000  |
|     | 0.014        | 0.019  |
| 12  | 0.024        | -0.025 |
|     | 0.021        | 0.028  |
|     |              |        |

La desviación estandar aparece sombreada. Fuente: cálculo de los autores. Con respecto a cada uno de los modelos anteriores, en el Anexo 9 se encuentran las pruebas sobre los respectivos residuales de los modelos para cada mes, en general los modelos cumplen las hipótesis subyacentes.

Es de anotar que cada uno de los coeficientes que acompañan al beta estimado serán el punto de partida para la construcción de los intervalos en los cuales se espera se encuentren los excesos de rentabilidad, si el modelo CAPM es válido. Dados los sesgos por error de medida se procedió a aplicar el factor de ajuste enunciado anteriormente y a partir de este se construyeron los intervalos de confianza al 95% de significancia.

Los intervalos para los excesos de rentabilidad, una vez tomada en cuenta la corrección, se observan en la tabla 3. A modo de ejemplo, los datos correspondientes al mes tres se calcularon de la siguiente forma y en donde se tiene que 0.71 corresponde al factor de corrección por el error de medida:

Media= 5.2%/0.71=7.31%

Exceso estimado corregido límite inferior= (5.2%-2\*2.7%)/0.71=-0.39%

Exceso estimado corregido límite superior= (5.2%+2\*2.7%)/0.71=15.02%

Tabla 3. Intervalos para los excesos de rentabilidad mensual después de la corrección por error de medida.

| Concepto / Mes                                                                                                  | 1                | 2               | 3      | 4     | 5                 | 6     | 7               | 8                 | 9      | 10     | 11     | 12                |
|-----------------------------------------------------------------------------------------------------------------|------------------|-----------------|--------|-------|-------------------|-------|-----------------|-------------------|--------|--------|--------|-------------------|
| Exceso mercado observado                                                                                        | 2.19%            | 3.36%           | 10.80% | 6.31% | 4.21%             | 2.33% | 5.84%           | -5.35%            | 4.97%  | 2.90%  | -0.71% | 1.50%             |
| Exceso estimado corregido  Exceso estimado corregido limite inferior  Exceso estimado corregido limite autorior | -0.34%<br>-7.35% | 2.54%<br>-3.97% |        |       | -8.11%<br>-18.67% |       | 4.43%<br>-9.24% | -4.42%<br>-13.59% |        | 29.16% |        | -3.52%<br>-11.39% |
| Exceso estimado corregido limite superior                                                                       | 6.68%            | 9.06%           | 15.02% | 8.37% | 2.45%             | 9.06% | 18.11%          | 4.75%             | 21.07% | 55.58% | 5.39%  | 4.36%             |

Fuente: cálculo de los autores.

Los anteriores resultados implican que no hay evidencia estadística para rechazar el modelo CAMP, pero como se puede observar, los intervalos de confianza también pasan por cero, lo cual implica que tampoco hay evidencia estadística para rechazar que el coeficiente estimado sea igual a cero. Pese a que estas dos hipótesis son

excluyentes, la evidencia encontrada no puede rechazar ninguna de las dos afirmaciones. Esto obedece a que los errores de medida causan un alto grado de incertidumbre en las estimaciones, lo cual se traduce en intervalos de confianza más amplios. Ahora cabe destacar que en inferencia estadística no rechazar una hipótesis no implica aceptarla, es decir, que con los resultados de la tabla 3 no se está aceptando el modelo CAPM, pero no hay evidencia para rechazarlo.

### 5. Conclusiones

Al respecto de la validación empírica del modelo CAPM para Colombia, la exposición desarrollada presenta tres diferencias metodológicas con respecto al artículo seminal de Black, Jensen y Scholes (1972), lo cual obedece básicamente a la poca disponibilidad de información que se tienen en la Bolsa de Valores de Colombia. Así, en este estudio se debieron utilizar técnicas de estimación fundamentadas en ecuaciones simultáneas, la variable instrumental en el ejercicio de regresión es la prima de mercado de EEUU, y en los ejercicios de sección cruzada, el error de medida se corrige a través de un factor de ajuste.

El modelo CAPM en el ejercicio de series de tiempo indica que en general los betas estimados son estadísticamente significativos, lo cual valida el modelo de índice único pero no el modelo CAPM. Esto se debe a que el primero de ellos corresponde a una regresión ex-post cuyo único propósito es estimar el beta del título, mientras que el segundo corresponde a un modelo ex-ante donde todos sus parámetros (Tasa libre de riesgo, beta y prima por riesgo de mercado) deben ser prospectivos.

Para la construcción de los intervalos de confianza al 95% de significancia en el ejercicio de sección cruzada, el factor de corrección encontrado fue 0.71, lo cual implica que teóricamente el parámetro estimado subestima el valor poblacional en un 40%.

El modelo CAPM con ejercicios de sección cruzada muestra que no hay evidencia estadística para rechazarlo. De igual forma se tiene que los intervalos de confianza pasan por cero, lo cual implica que tampoco hay evidencia estadística para rechazar que el coeficiente estimado sea igual a cero. Así, es importante recordar que en inferencia estadística no rechazar una hipótesis no implica aceptarla, lo cual en esta investigación se traduce en que no se está aceptando el modelo CAPM, pero no hay evidencia para rechazarlo.

## 6. Referencias Bibliograficas

Agudelo, D y Uribe, J. (2009). ¿Realidad o sofisma? Poniendo en prueba el análisis técnico en las acciones colombianas. Cuadernos de Administración, Enero-Junio, Colombia, vol. 22, nº 38, págs. 189-217.

Benserud, M. y Austgulen, H. (2006) Valuation in Emerging Markets How to adjust the cost of capital for country risk. Consultado el 2 de enero 2010, http://bora.nhh.no:8080/bitstream/2330/1320/1/Benserud%20og%20Austgulen%20200 6.pdf

Black, F., Jensen, M. y Scholes, M. (1972). Asset Pricing Model: Some Empirical Test. in: M. Jensen. ed.. Studies In the theory of capital markets (Praeger, New York, NY).

Blume, M. y Friend, I. (1973) A new look at the Capital Asset Pricing Model. The Journal of Finance, vol. 28, No 1, pp. 10-33.

Bodie, Z., Kane, A. y Marcus, A. (2003). Investments. EEUU: Mc Graw Hill. 923 p.

Bodie, Z., Kane, A. y Marcus, A. (2004). Principios de inversiones. España: Mc Graw Hill. 578 p.

Burbano, Antonio. (1997). El modelo CAPM en Colombia. Bogotá, 1997, 25 p. Monografía, Bogotá: Universidad de los Andes.

Cameron, A. y Trivedi, P. (2005). Microeconometrics: Methods and Applications. New York: Cambridge University Press. 472 p.

Elton, E. y Gruber, M. (1995). Modern portfolio theory and investment analysis. EEUU: Wiley. 715 p.

Estrada, J. (2003). "Mean-Semivariance Behavior (II): The D-CAPM." Research paper, IESE Business School.

Fama, E.y MacBeth, J. (1973). Rish, return and equilibrium: Empirical tests. Journal of Political Economy, vol. 81, No 3, pp. 607-636.

Fama, E. y French, K. (1992). "The cross-section of expected stock returns". The Journal of Finance, vol. 47, No 2, pp. 427-465.

Fuenzalida, D., Mongrut, S. y Martin, M. (2007) Estimation of discount rates in América Latina: Empirical evidence and challenges.

García, O. (2009). Administración Financiera: fundamentos y aplicaciones. Cali. 197 p.

Gómez, F., Madariaga, J. y Santibáñez, J. (1995) El CAPM: Metodologías de contraste. Boletín de estudios económicos, No 156, Diciembre 1995, pp. 557-582.

Harvey, C. (2005) 12 Ways to Calculate the International Cost of Capital. Consultado el 2 de enero 2010, http://faculty.fuqua.duke.edu/~charvey/Teaching/BA456\_2006/Harvey\_12\_ways\_to.pdf

James, M. y Koller, T. (2000). Valuations in emerging markets. The McKinsey Quarterly, No. 4, pp. 78-85.

Kolb, R. (1993). Inversiones. México: Limusa. 746 p.

Markowitz, H. (1952). "Portafolio Selection". Journal of Finance, Marzo 1952.

Martinez, V. (2001) Las modernas teorías financieras. Examen de su aplicación a la valoración de sociedades anónimas que cotizan en bolsa. Investigaciones Europeas de Dirección y Economía de la Empresa, vol 7, No 1, 2001, pp 37-56.

Mascareñas, J. (2001) El coste de capital. Consultado el 2 de enero 2010, http://sabanet.unisabana.edu.co/postgrados/finanzas\_negocios/Ciclo\_III/estrategia/7% 20El%20coste%20de%20Capital%20(Mascare%C3%B1as).pdf

Mongrut, S. (2006) Tasas de descuento en Latinoamérica: Hechos y desafíos. Consultado el 2 de enero 2010, http://ciup.up.edu.pe/\_data/ciup/documentos/20061027154741\_DD\_06\_09.pdf

Sarmiento, R. y Vélez, J. (2008) Capital asset pricing model -Robert Merton-: Teoría y evidencia empírica para Colombia 2001-2007. Cuadernos Latinoamericanos de Administración, Enero-Junio de 2008, vol. IV, nº 6, págs. 7-34.

Scaliti, M. (n.d.) El CAPM y su Aplicación en Mercados Emergentes, Sus Variantes y Modelos Alternativos. Consultado el 2 de enero 2010, <a href="http://www.desdelabolsaendirecto.com/dlbfiles/ElCAPMysuaplicaci%C3%B3nenmerca">http://www.desdelabolsaendirecto.com/dlbfiles/ElCAPMysuaplicaci%C3%B3nenmerca</a> dosemergentessusvariantesymodelosalternativos.pdf

Vélez, J. (2007) CAPM: Teoría y hallazgos empíricos para Colombia, 2001-2006. Consultado el 2 de enero 2010, <a href="http://www.javeriana.edu.co/fcea/area\_economia/inv/documents/Outlier.pdf#page=195">http://www.javeriana.edu.co/fcea/area\_economia/inv/documents/Outlier.pdf#page=195</a>

Zabatti, E. y Gutierrez, H. (2007) La tasa de descuento y el riesgo país: Un modelo basado en la teoría de cartera. Anales de la Universidad Metropolitana, vol. 7, nº 1, págs. 179-200.

Anexo 1. Pruebas sobre los residuales modelo variable instrumental, Colombia 2003/10-2010/02\*.

| Test de normalidad                                            | Test de heterocedasticidad                     | Test de autocorrelación                              |
|---------------------------------------------------------------|------------------------------------------------|------------------------------------------------------|
| 0.020 (0.989)                                                 | 0.278 (0.599)                                  | 0.206 (0.814)                                        |
| H <sub>0</sub> : Normalidad<br>H <sub>1</sub> : No normalidad | H0: Homocedasticidad<br>H1: Heterocedasticidad | H0: No autocorrelación<br>H1: Existe autocorrelación |

<sup>\*</sup> P-value entre paréntesis

Fuente: Cálculo de los autores.

Anexo 2. Prueba de raices unitarias sobre los residuales modelo variable instrumental, Colombia 2003/10-2010/02.

| Modelo                | ADF<br>valor crítico al 5% de -1.95 |
|-----------------------|-------------------------------------|
| Variable instrumental | -8.05                               |

Anexo 3. Pruebas de raíces unitarias: Excesos de retornos. Colombia 2003/10-2010/02.

| Exceso Acción    | ADF<br>valor crítico al 5% de -1.945 |
|------------------|--------------------------------------|
| ETB              | -8.65                                |
| CEMARGOS         | -6.70                                |
| ÉXITO            | -8.17                                |
| ВСОІОМВІА        | -6.92                                |
| ISA              | -6.19                                |
| AVAL             | -7.08                                |
| CHOCOLATES       | -7.60                                |
| BOGOTA           | -8.02                                |
| FABRICATO        | -5.93                                |
| CORFICOL         | -5.96                                |
| COLINV           | -6.39                                |
| VALBAVARIA       | -8.59                                |
| MINEROS          | -5.90                                |
| INTBOL           | -7.43                                |
| PAZRIO           | -6.59                                |
| COLTEJER         | -6.00                                |
| SANTANDER        | -7.93                                |
| PROMIGAS         | -8.35                                |
| OCCIDENTE        | -7.80                                |
| CB Equity        | -6.58                                |
| BBVACOL          | -9.74                                |
| CARTON           | -10.14                               |
| FONVAL           | -3.03                                |
| FACCION          | -7.01                                |
| FIDUCTA          | -3.74                                |
| FONRNAC          | -2.17                                |
| SERFACC          | -6.44                                |
| AINVERT          | -3.67                                |
| BCRENTA          | -4.07                                |
| PRIMA EN PESOS   | -6.95                                |
| PRIMA EN DOLARES | -6.18                                |
|                  |                                      |

Fuente: Cálculo de los autores.

Anexo 4. Prueba de Wald conjunta para el período octubre 2003 hasta febrero 2009.

| Valor | g-1 | Probabilidad |
|-------|-----|--------------|
| 30.55 | 29  | 0.38         |

Anexo 5. Coeficientes modelo CAPM tradicional octubre 2003-mayo 2006 con variable dummy.

| Acción     | α1     | Std. Error | β1      | Std. Error | β2      | Std. Error |
|------------|--------|------------|---------|------------|---------|------------|
| ЕТВ        | 0.000  | 0.019      | -0.185  | 0.927      | 0.847   | 1.083      |
| CEMARGOS   | 0.003  | 0.009      | 0.871   | 0.470      | 0.232   | 0.549      |
| ÉXITO      | -0.003 | 0.016      | 1.186   | 0.775      | -0.069  | 0.905      |
| BCOLOMBIA  | -0.008 | 0.008      | 1.456 * | 0.379      | -0.303  | 0.443      |
| ISA        | 0.012  | 0.009      | 1.234 * | 0.461      | -0.611  | 0.539      |
| AVAL       | 0.004  | 0.012      | 0.295   | 0.580      | 0.620   | 0.677      |
| CHOCOLATES | 0.003  | 0.011      | 1.309 * | 0.529      | -0.641  | 0.618      |
| BOGOTA     | 0.014  | 0.012      | -0.399  | 0.594      | 1.171   | 0.693      |
| FABRICATO  | -0.015 | 0.021      | 1.231   | 1.031      | -0.238  | 1.204      |
| CORFICOL   | 0.078  | 0.036      | -2.647  | 1.805      | 4.031   | 2.107      |
| COLINV     | 0.011  | 0.010      | 0.989   | 0.518      | -0.340  | 0.605      |
| VALBAVARIA | -0.001 | 0.020      | 0.242   | 0.996      | 0.807   | 1.163      |
| MINEROS    | 0.025  | 0.016      | 0.974   | 0.785      | -0.733  | 0.916      |
| INTBOL     | 0.014  | 0.019      | -0.028  | 0.920      | 1.339   | 1.075      |
| PAZRIO     | 0.042  | 0.037      | 0.261   | 1.824      | 1.487   | 2.130      |
| COLTEJER   | 0.010  | 0.036      | -0.571  | 1.769      | 2.269   | 2.066      |
| SANTANDER  | 0.021  | 0.031      | -0.600  | 1.548      | 1.452   | 1.807      |
| PROMIGAS   | 0.027  | 0.019      | -0.008  | 0.967      | 0.074   | 1.129      |
| OCCIDENTE  | 0.009  | 0.010      | -0.031  | 0.489      | 0.553   | 0.571      |
| CB Equity  | 0.089  | 0.041      | -3.905  | 2.016      | 5.154 * | 2.354      |
| BBVACOL    | 0.002  | 0.020      | 1.179   | 0.990      | -0.712  | 1.155      |
| CARTON     | -0.003 | 0.011      | 0.501   | 0.562      | -0.096  | 0.656      |
| FONVAL     | -0.001 | 0.000      | 0.001   | 0.007      | -0.002  | 0.008      |
| FACCION    | -0.002 | 0.003      | 0.497 * | 0.161      | 0.405 * | 0.188      |
| FIDUCTA    | 0.000  | 0.000      | -0.001  | 0.010      | 0.000   | 0.011      |
| FONRNAC    | 0.000  | 0.000      | 0.003   | 0.014      | -0.017  | 0.016      |
| SERFACC    | 0.003  | 0.004      | 0.553 * | 0.215      | 0.280   | 0.252      |
| AINVERT    | 0.000  | 0.000      | 0.006   | 0.010      | -0.004  | 0.012      |
| BCRENTA    | 0.000  | 0.000      | 0.005   | 0.008      | -0.004  | 0.009      |

Nota: \* estadísticamente significativos al 5%.

Anexo 6. Pruebas de raíces unitarias modelo CAPM tradicional octubre 2003-febrero 2009.

| Acción     | ADF<br>valor crítico al 5% de -1.95 |
|------------|-------------------------------------|
|            |                                     |
| ETB        | -8.98                               |
| CEMARGOS   | -7.88                               |
| ÉXITO      | -9.59                               |
| BCOLOMBIA  | -6.8                                |
| ISA        | -7.38                               |
| AVAL       | -6.18                               |
| CHOCOLATES | -9.22                               |
| BOGOTA     | -8.84                               |
| FABRICATO  | -5.24                               |
| CORFICOL   | -5.82                               |
| COLINV     | -8.22                               |
| VALBAVARIA | -9.56                               |
| MINEROS    | -6.26                               |
| INTBOL     | -8.69                               |
| PAZRIO     | -5.59                               |
| COLTEJER   | -5.57                               |
| SANTANDER  | -7.64                               |
| PROMIGAS   | -7.66                               |
| OCCIDENTE  | -9.69                               |
| CB Equity  | -6.63                               |
| BBVACOL    | -10.18                              |
| CARTON     | -10.3                               |
| FONVAL     | -3.08                               |
| FACCION    | -7.5                                |
| FIDUCTA    | -3.08                               |
| FONRNAC    | -3.51                               |
| SERFACC    | -6.09                               |
| AINVERT    | -3.42                               |
| BCRENTA    | -3.53                               |

Anexo 7. Coeficientes modelo CAPM tradicional octubre 2003-mayo 2006.

| Acción                                                                                                                              | α1                                                                                                                                        | Std. Error                                                                                               | β1                                                                                                                                          | Std. Error                                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| ETB CEMARGOS ÉXITO BCOLOMBIA ISA AVAL CHOCOLATES BOGOTA FABRICATO CORFICOL COLINV VALBAVARIA                                        | 0.022<br>-0.011<br>-0.014<br>-0.014<br>0.008<br>0.014<br>0.026<br>0.025<br>-0.052<br>0.127<br>0.010<br>-0.026                             | 0.046<br>0.021<br>0.030<br>0.015<br>0.020<br>0.027<br>0.024<br>0.021<br>0.042<br>0.073<br>0.020<br>0.045 | -0.360<br>1.324 *<br>1.150 *<br>1.329 *<br>1.083 *<br>0.559<br>0.626<br>0.301<br>1.508 *<br>-0.541<br>0.995 *<br>1.330                      | 0.807<br>0.364<br>0.531<br>0.262<br>0.350<br>0.476<br>0.424<br>0.363<br>0.735<br>1.283<br>0.355                                                       |
| MINEROS INTBOL PAZRIO COLTEJER SANTANDER PROMIGAS OCCIDENTE CB Equity BBVACOL CARTON FONVAL FACCION FIDUCTA FONRNAC SERFACC AINVERT | 0.036<br>-0.028<br>0.092<br>-0.034<br>0.093<br>0.053<br>0.014<br>0.158 *<br>0.017<br>-0.032<br>0.000<br>0.002<br>0.000<br>-0.003<br>0.001 | 0.033<br>0.056<br>0.087<br>0.081<br>0.080<br>0.044<br>0.017                                              | 0.900<br>1.926<br>0.577<br>1.626<br>-0.782<br>-0.125<br>0.541<br>-1.415<br>0.665<br>0.969<br>-0.001<br>0.681 *<br>0.000<br>0.002<br>0.824 * | 0.730<br>0.587<br>0.988<br>1.540<br>1.431<br>1.414<br>0.779<br>0.298<br>1.399<br>0.800<br>0.503<br>0.003<br>0.003<br>0.004<br>0.003<br>0.146<br>0.006 |
| BCRENTA                                                                                                                             | 0.001                                                                                                                                     | 0.000                                                                                                    | 0.003                                                                                                                                       | 0.006                                                                                                                                                 |

Nota: \* estadísticamente significativos al 5%.

Anexo 8. Coeficientes modelo CAPM tradicional junio 2006-febrero 2009.

| Acción          | α1              | Std. Error     | β1                 | Std. Error     |
|-----------------|-----------------|----------------|--------------------|----------------|
| ETB<br>CEMARGOS | 0.005           | 0.015          | 0.978 *<br>0.926 * | 0.427          |
| ÉXITO           | -0.001<br>0.008 | 0.008<br>0.017 | 1.257 *            | 0.221<br>0.469 |
| BCOLOMBIA       | -0.002          | 0.017          | 1.210 *            | 0.469          |
| ISA             | 0.002           | 0.008          | 0.522 *            | 0.230          |
| AVAL            | -0.009          | 0.007          | 0.322              | 0.198          |
| CHOCOLATES      | 0.000           | 0.007          | 0.758 *            | 0.134          |
| BOGOTA          | -0.007          | 0.010          | 0.500              | 0.271          |
| FABRICATO       | 0.005           | 0.019          | 1.068 *            | 0.535          |
| CORFICOL        | 0.008           | 0.013          | 0.584              | 0.349          |
| COLINV          | 0.004           | 0.011          | 0.490              | 0.308          |
| VALBAVARIA      | -0.013          | 0.014          | 0.656              | 0.376          |
| MINEROS         | -0.001          | 0.015          | -0.183             | 0.411          |
| INTBOL          | -0.013          | 0.015          | 0.513              | 0.404          |
| PAZRIO          | 0.006           | 0.019          | 1.514 *            | 0.537          |
| COLTEJER        | -0.005          | 0.028          | 1.137              | 0.786          |
| SANTANDER       | -0.014          | 0.021          | 0.817              | 0.593          |
| PROMIGAS        | 0.006           | 0.016          | -0.122             | 0.438          |
| OCCIDENTE       | -0.013          | 0.007          | 0.153              | 0.201          |
| CB Equity       | 0.004           | 0.013          | 0.356              | 0.359          |
| BBVACOL         | -0.004          | 0.013          | 0.446              | 0.350          |
| CARTON          | 0.001           | 0.010          | 0.252              | 0.275          |
| FONVAL          | -0.001          | 0.000          | -0.007             | 0.005          |
| FACCION         | -0.006          | 0.003          | 0.867              | 0.077          |
| FIDUCTA         | -0.001          | 0.000          | -0.007             | 0.008          |
| FONRNAC         | -0.001          | 0.000          | -0.024 *           | 0.012          |
| SERFACC         | 0.001           | 0.004          | 0.763 *            | 0.103          |
| AINVERT         | -0.001          | 0.000          | -0.006             | 0.006          |
| BCRENTA         | -0.001          | 0.000          | -0.004             | 0.006          |

Nota: \* estadísticamente significativos al 5%.

Anexo 9. Pruebas sobre los residuales regresiones sección cruzada.

| Mes | Normalidad   | Heterocedasticidad | Autocorrelación |
|-----|--------------|--------------------|-----------------|
| 1   | 0.00         | F 30               | 1.00            |
| 1   | 0,69<br>0,71 | 5,28<br>0,03       | 1,88<br>0,17    |
| 2   | 4,35         | 0,03               | 0,70            |
| ۷   | 0,11         | 0,51               | 0,70            |
| 3   | 0,73         | 3,47               | 1,50            |
| 3   | 0,69         | 0,07               | 0,24            |
| 4   | 0,61         | 2,94               | 0,15            |
| •   | 0,74         | 0,10               | 0,86            |
| 5   | 4,82         | 6,92               | 0,10            |
|     | 0,09         | 0,01               | 0,90            |
| 6   | 3,44         | 0,35               | 0,01            |
|     | 0,18         | 0,56               | 0,99            |
| 7   | 1,57         | 1,07               | 0,46            |
|     | 0,46         | 0,31               | 0,64            |
| 8   | 18,94        | 1,37               | 4,14            |
|     | 0,00         | 0,25               | 0,03            |
| 9   | 1,83         | 0,30               | 0,93            |
|     | 0,40         | 0,59               | 0,41            |
| 10  | 245,28       | 4,40               | 1,24            |
|     | 0,00         | 0,05               | 0,31            |
| 11  | 26,66        | 1,90               | 1,11            |
|     | 0,00         | 0,18               | 0,34            |
| 12  | 1,05         | 0,01               | 0,04            |
|     | 0,59         | 0,91               | 0,96            |
|     |              |                    |                 |

P-valor se muestra sombreado.