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Abstract 

 

The industrial-scale conversion of electricity obtained from renewable sources is 

crucial to achieve an economy based on renewable energy. In that scenario, the 

electrochemical reduction of CO2, offers the possibility of producing some of the most 

demanded fuels and chemicals in a sustainable way. However, its efficient 

implementation on industrial scale is limited by factors as the high energy requirements 

for the product formation, the low selectivity and efficiency of electrolyzers, and the 

long-term deactivation of the catalysts. Understanding the many aspects that influence 

the reaction behavior is a challenging task because, apart from solvent and electrolyte 

effects, there are multiple intermediates, pathways, and products possible under similar 

operating conditions. In the recent decades this research field has been highly active in 

theory and experiments, and many studies have focused on finding the main factors 

that enhance the reaction performance. In this thesis, the electrochemical CO2 reduction 

is studied using state-of-the-art density functional theory (DFT) simulations, 

incorporating solvation effects as a crucial factor for improving thermodynamic 

predictions. To this end, a systematic micro-solvation method was developed to 

determine the number of hydrogen-bonded water molecules in the first solvation shell 

and the energetic stabilization granted by those hydrogen bonds. The reduction of CO2 

to CO, CH4 and CH3OH on Cu, was considered to test this method, finding very good 

agreement with experiments without the need to include calculations of reaction 

kinetics. The estimation of solvation contributions for the CO2 reduction to CO has 

been extended to other transition metals such as Ag, Au, and Zn, finding significant 

variations between solvation corrections for the same adsorbates on different metals 

and finding very good agreement with experimental results. The increase in accuracy 

of the predictions make possible the development of a semiempirical method to explain 

the deactivation evidenced experimentally on Cu electrodes during CO2RR to CH4. 
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In Chapter 1, an overview of some fundamental concepts behind electronic-structure 

calculations, introducing the approximations that make calculated values from 

theoretical studies comparable to electrocatalysis experiments is presented. The second 

chapter, contains a review of the literature of CO2RR on Cu focused in the crucial 

aspects for improving the computational modelling of this reaction, based on refs.1-3 

The third chapter contains a detailed description of the micro-solvation method 

proposed on ref.2. It includes the analysis of how water molecules interact with each 

other and how hydrogen bonding with the adsorbed species at the electrochemical 

interface occurs, alongside the assumptions to make calculations affordable and easy. 

In Chapter 4, the results of the implementation of the micro-solvation method for 

CO2RR on transition metal electrodes included in2 are presented. And Chapter 5 

contains the analysis of deactivation of Cu electrodes combining theoretical and 

experimental results. The last chapter contains general conclusions of this work.  
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Chapter 1. Theoretical background 

 

This chapter briefly describes the theoretical foundations of this thesis. In order to make 

these topics more accessible and understandable for an engineering audience, some of 

the models related to quantum chemistry are shown in a simplified way following a 

more intuitive and pedagogical approach. Interested readers can refer to the sources 

cited herein for a more rigorous treatment. 

1.1. Fundamentals of electronic structure calculations 

1.1.1. The many-body problem and the Schrödinger equation 

Quantum mechanics describes with remarkable accuracy many aspects of our universe. 

In quantum mechanics the particles are not localized at specific points in space, they 

may behave as classical particles or as classical waves. Thus, systems of particles can 

be completely described by wave functions that characterize all their measurable 

properties. Such wave functions are mathematical representations of the quantum states 

of a particle set, the properties of which correspond to quantum mechanical operators.5, 

6 

The description of a system with N electrons can be done using the stationary form of 

the Schrödinger equation, 

Ĥ𝜓 = E𝜓, (1.1) 

where Ĥ is the Hamiltonian operator, E is a constant equal to the energy level, and 𝜓 is 

the wave function (𝜓 = 𝜓(x1,…xN), with x = {r,𝜔}) of each one of the spatial (r) and 

spin (𝜔) coordinates of the N electrons in the system.  
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An important assumption to simplify the calculation of wave functions in molecular 

systems is the Born-Oppenheimer approximation. This approximation considers that 

the nuclei are considerably heavier and slower than the electrons, so their motion can 

be treated separately. Thus, the interactions of the Ĥ operator can be decoupled as the 

sum of the kinetic energy for electrons (T̂e), the electron-electron interactions (V̂ee), 

and the electron-nucleus interactions (V̂en).7 

Ĥ = T̂e + V̂ee + V̂en =
ℏ

2

2m
∑ ∇i

2

N

i=1

+ ∑ ∑ Vee(ri, rj)

j<𝑖

N

i=1

+ ∑ V(ri)

N

i=1

 (1.2) 

Where, m is the electron mass, ℏ is the reduced Planck constant, and ∇ is the Laplacian 

operator. Within the wave function theory, and following the variational principle, to 

find the ground-state energy (E0) of electrons we need to pick a trial 𝜓 that minimizes 

the expectation value of Ĥ over all the antisymmetric N wave functions: 

E0 = min
𝜓

⟨𝜓|Ĥ|𝜓⟩ (1.3) 

As all the information of the system is contained in such wave function, the resultant 

problem involves a function of 3N coordinates * . For this reason, the Schrödinger 

equation can be solved analytically only in a few cases (e.g. for a free particle, a 

harmonic oscillator, or a hydrogen atom). In most of the many-body cases, it evolves 

to a complicated problem where computational methods are required. In the following 

sections, two of the most common approaches to the many-body problem are described. 

1.1.2. The Hartree-Fock method (HF)  

The Hartree-Fock method is the simplest approach to approximate a solution for the 

stationary Schrödinger equation.6 It results after applying the Born-Oppenheimer 

approximation. To understand it, we can first consider the analytical solution of a 

 
* The wave function depends on three spatial and one spin coordinates for every electron. The latter is 

neglected in this description. i.e. for a single molecule of CO2, we have a system with 22 e- (6 + 8 +8) 

and a 66-dimensional wave function. 
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hydrogen atom (which only has one electron). If we add a second electron to the 

system (H
-
), and if we assume that those electrons do not interact with each other, then 

we would obtain a separable Hamiltonian where V̂ee = 0. In HF even larger systems 

are also assumed to have the same uncorrelated electron movements. For N electrons 

the wave function would be as described in (1.4), which is also known as a Hartree 

product (HP). 

𝜓𝐻𝑃(r1,…, rN) = 𝜙1(r1), … , 𝜙N(rN)  (1.4) 

To introduce the fermionic character of the electrons, this method uses an 

antisymmetric sum product of single-particle wave functions, the simplest 

representation of which is a Slater determinant. Such expression changes signs if two 

electrons are exchanged and disappears if the coordinates or wave functions of two 

electrons are the same, satisfying in this way the Pauli exclusion principle. Spatial 

orbitals, 𝜙(r) , are replaced with space-spin orbitals 𝜒(x)  being 𝜔  a generic spin 

coordinate, and x = {r,𝜔} . Therefore, the Schrödinger equation for each electron 

becomes: 

[ 
ℏ

2

2m
∇2 + V(r) + VHF(r)] 𝜒j(x) = Ej𝜒j(x) (1.5) 

The new term, VHF , is called the Hartree-Fock potential and describes the average 

interaction of one of the electrons with the rest. VHF is defined as follows: 

VHF = ∑ Jj − Kj

j

 (1.6) 

where Jj and Kj are the Coulomb and exchange operators. In practical calculations, to 

solve (1.5) we need to define a finite amount of functions, or basis set, to approximate 

the exact spin orbitals (1.7). Thus, the basis set determines the accuracy and 

computational time requirements of the calculations.  
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𝜒j(x) = ∑ 𝛼j,i𝜙i(x)

K

i=1

 (1.7) 

In (1.7), it is necessary to find the expansion coefficients 𝛼j,i, for i = 1, … , K and for 

j = 1, … , N, to define all the spin orbitals used in the HF method. However, as the HF 

is a self-consistent method, an iterative procedure is required to find such solution. 

Normally, the calculations start making an initial estimate of the spin orbitals (1.7) 

guessing the expansion coefficients 𝛼j,i, so that an electron density can be defined and 

the single-electron equations for spin orbitals can be solved. If the spin orbitals found 

coincide with those guessed at the beginning, then they are solutions, otherwise a new 

estimate must be made. 

With the use of the HF method to solve the Schrödinger equation, the electron exchange 

is captured: when the coordinates of two or more electrons are exchanged, the wave 

functions from HF calculations keep the same properties. However, this method does 

not correctly describe the influence that an electron has over the others (an effect known 

as correlation), since their wave functions are noninteracting. For that reason, not even 

when an infinitely large basis set is used, can the energy obtained with HF be identical 

to that of the true electron wave function.  

1.1.3. Density Functional Theory (DFT)  

Density Functional Theory (DFT) is arguably the most widely used electronic-structure 

calculation method7, 8. Its modern approach arose from the works of Hohenberg, Kohn 

and Sham9, 10. In 1964, Hohenberg and Kohn developed a theorem9* which proved the 

existence of an exact solution for the ground state of the many-body system based only 

on the electron density, ρ(r).  Following the variational principle, the ground state 

electron density minimizes the energy, E[ρ(r)]. In other words, the ground state energy 

 
*  The Hohenberg-Kohn theorem comprehends two subsidiary theorems which state that: 1) external 

potentials are determined by the electron density, and 2) for any electron density, the variational principle 

of the energy is always valid. 
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(E0) is obtained by minimizing the energy over all possible wave functions with density 

ρ(r), and then minimizing over all densities11. If the ground state is degenerate (i.e. 

more than one state has a given energy), then any ground state electron density 

minimizes the energy. 

E0 = min
ρ(r)

E[ρ(r)] , (1.8) 

Following the theorem, the energy is a functional of the electronic density, E[ρ(r)], 

which satisfies the relation: 

E[ρ(r)] = ∫ vext(r)ρ(r)dr + F[ρ(r)] (1.9) 

where vext  is an external potential (∫ vext(r)ρ(r)dr = Vext[ρ(r)]) and F[ρ(r)]  is the 

universal functional of the density that contains the kinetic energy of the electrons 

(Te[ρ(r)]), and the non-classical electron-electron interaction energy (Q
ee

[ρ(r)]), so: 

F[ρ(r)] = min
𝜓→n(r)

⟨𝜓|T̂e + Q̂
ee

|𝜓⟩  (1.10) 

where the electron density satisfies the following constraints: 

N = ∫ ρ(r) d3
r , with ρ(r) ≥ 0. (1.11) 

For a many-electron system with electronic interactions, the electronic energy 

functional Equation (1.9) can be also defined as:  

E[ρ(r)] = Te[ρ(r)] + Ven[ρ(r)] + Jee[ρ(r)] + Q
ee

[ρ(r)] , (1.12) 

Where Jee[ρ(r)] is the classical electron-electron repulsion energy, and Ven[ρ(r)] is the 

nuclear-electron attraction energy. The terms Ven[ρ(r)] and Jee[ρ(r)] can be easily 

calculated using Equations (1.13) and (1.14) respectively, while Te[ρ(r)]  and 

Q
ee

[ρ(r)], (i.e. F[ρ(r)]), require approximate solutions. 
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Ven[ρ(r)] = − ∑ ∫
ZA

|r − RA|
ρ(r)dr,

M

A=1

 (1.13) 

Jee[ρ(r)] =
1

2
∬

ρ(r1)ρ(r2)

r12

dr1dr2 (1.14) 

In summary, the Hohenberg-Kohn theorem is the basis of a quantum theory based on 

the electron density. It states that since we do not know the functional of the electron 

density, we can choose a trial electron density and find the correct one by minimizing 

the energy from the functional. Therefore, the many-body problem is simplified from 

3N variables (the sum of the spatial variables of each electron) to only 3 variables (the 

spatial variables of the electron density). However, the theorem does not give 

instructions on how to find the universal functional F[ρ(r)] and, thus, it is not enough 

to estimate real electronic states.  

In 1965, Kohn and Sham created a method (also called KS or KS-DFT)10 for electronic-

structure calculations, developing an exact formulation of the Hohenberg–Kohn 

theorem. In the KS method, the real system is replaced by a non-interacting electron 

set with the same electron density, where the independent-electron kinetic energy could 

be approximated by a single Slater determinant (of orbitals {𝜓i}):  

Ts[{𝜓i}] =
1

2
∑ ∫ 𝜓i

∗(r)∇2𝜓i(r)dr

n

i=1

 (1.15) 

Since Ts[{𝜓i}] ≠ Te[ρ(r)] , the difference between these two terms together with 

Q
ee[ρ(r)] can be grouped into what is known as the exchange-correlation functional 

(Exc[ρ(r)]), which is the only term in the KS method without an analytic definition. 

Exc[ρ(r)] = Te[ρ(r)] − Ts[{𝜓i}] + Q
ee[ρ(r)] (1.16) 

The exchange-correlation potential term, Vxc, can also be written as:  

Vxc(r) =
δExc(r)

δρ(r)
 (1.17) 
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As mentioned above, in HF the exchange interaction between electrons is treated 

exactly but their dynamic correlation is neglected since the wave functions are 

uncorrelated. The main improvement of DFT (KS-DFT) over HF is the approximated 

treatment of exchange effects and dynamic correlation effects.  

Note that in the KS method, as in HF, we also have a self-consistent loop that must be 

solved iteratively: a trial electron density must be chosen to solve the KS equations, so 

as to find their single-particle wave functions. Subsequently, the electron density can 

be calculated from those wave functions. If they are the same*, the ground state electron 

density is found, otherwise, the trial electron density must be modified in an iterative 

process until the electron density is found. 

1.1.4. Exchange-correlation functionals for DFT 

The exchange-correlation energy, Exc[ρ(r)], can be defined as the difference between 

classical and quantum mechanical electron-electron repulsion. To some extent, this 

term corrects the electron density of N non-interacting electrons to the same electron 

density of the true interacting system. Since its exact form remains unknown, 

approximate functionals are necessary to describe it.8, 12 Importantly, the consistency 

and reliability of the data obtained from DFT mainly depends on the approximation 

chosen.  

Kohn and Sham10 proposed the first and simplest approximation to the exchange 

correlation energy functional: the local-density approximation (LDA). This 

approximation assumes that Exc
LDA at a specific density of the inhomogeneous electron 

gas is the same as that of the homogeneous gas of the same density, and that such 

density is identical everywhere.  

Exc
LDA = ∫ εxc

hom (ρ(r))ρ(r)d
3
r . (1.18) 

 
* For approximate numerical solutions, a tolerance is required to establish how close the results are in 

order to be considered as “the same”. The lower the tolerance, the more iterations it takes to converge. 
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The term inside the integral is the exchange-correlation energy per particle of a 

homogeneous electron gas. Its generalization to include uniform spin densities (LSDA) 

is given by: 

Exc
LSDA = ∫ εxc

hom (ρ
↑
, ρ

↓
)ρ(r)d

3
r . (1.19) 

However, there are two main limitations in LDA: i) in a real molecular system the 

electron density is not uniform, so that there are peaks in the density at the nucleus. ii) 

the exchange correlation correction does not cancel the self-interaction term.5 As a 

result, LDA usually overestimates the correlation term and underestimates the 

exchange energy13. Although it gives sufficiently accurate results for solid-state 

systems, it tends to overestimate the binding energy of molecules. In any case, the 

development of LDA was the first step that motivated the making of more sophisticated 

approximations to the exchange-correlation energy, such as the generalized gradient 

approximation (GGA) and the hybrid functionals.  

The GGA, is a semi-local method where the exchange correlation term depends on the 

local gradient of the electron density14 (1.20). Since there are many ways to include the 

gradient of the electron density in εxc
GGA, there are many distinct GGA functionals, being 

the most common the Perdew-Wang 91 (PW91)15, the Perdew–Burke–Ernzerhof 

(PBE)16, 17, and its revised version (RPBE)18.  

The GGA functionals significantly enhance the description of many-electron systems, 

and reduce the overbinding in molecules found with LDA19. Their versatility in the 

description of molecules and solid surfaces both separately and in adsorbed systems, 

combined with an affordable computational cost, make GGA functionals appropriate 

for interface calculations. For this reason, we employ them in this work.  

Exc
GGA = ∫ εxc

GGA (ρ
↑
, ρ

↓
,∇ρ

↑
, ∇ρ

↓
)ρ(r)d

3
r . (1.20) 
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In the search for more accurate functionals, other non-local approximations such as the 

meta-GGA20, 21 (M-GGA) appeared. To calculate Exc , M-GGA functionals include 

Laplacians of the electron density and the kinetic energy density, 𝜏(r):  

𝜏(r) =
1

2
∑|∇𝜓i(r)|2

occ

i

 (1.21) 

Hybrids are another class of exchange-correlation functionals, in which a fraction of 

the exact exchange energy is included along with the correlation energy from GGAs. 

The most common hybrid functionals are PBE0 (with PBE and HF exchange energy)22, 

B3LYP (Becke exchange and Lee–Yang–Parr correlation)23, 24, and HSE (Heyd–

Scuseria–Ernzerhof)25. Hybrid functionals improve the GGA predictions of molecular 

properties such as the bond-length, vibration frequencies, and atomization energies.  

In range-separated hybrid functionals the electron–electron interaction is divided into 

two terms: short- and long-range. These hybrid functionals have demonstrated to be 

highly accurate for systems where long-range interactions, such as van der Waals 

(vdW) forces, are influential; i.e. aqueous systems.26-28. Furthermore, in the random-

phase approximation (RPA),29 which uses unoccupied Kohn-Sham orbitals, the 

electron exchange is not approximated. RPA is a fully nonlocal approach that 

automatically includes long-range van der Waals interactions30.  

However, it is important to note that for local or semi-local approaches, the KS 

equations can be swiftly solved using codes with plane-wave basis sets 

implementations, while the introduction of the non-local exact exchange in hybrid 

functionals causes a significant increase in numerical complexity, so that localized 

basis sets are more advisable6.  

In the seek for the optimal functional for electronic-structure calculations, one we could 

call “universal”, many approaches have been proposed over the years. In a peculiar 

attempt to classify those functionals, Perdew31 used the concept of Jacob’s ladder*. The 

HF method is the earth on which the ladder stands, the rungs are the ingredients 

 
* Jacob’s ladder is a ladder leading to heaven described in Genesis 28:10–19. 
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included in the different DFT functionals, ordered hierarchically by their complexity 

and accuracy. Heaven is the chemical accuracy*. Schematics of this ladder are shown 

in Figure 1.1.  

However, it is important to note that the inclusion of more sophisticated ingredients 

does not necessarily guarantee an overall, systematic improvement in the accuracy of 

DFT32.  

 

Figure 1.1. Jacob’s ladder of the elements in the development of exchange-correlation functionals16.  

1.2. Fundamentals of electrocatalysis 

1.2.1. Basic thermodynamics 

The second law of thermodynamics establishes that the entropy (S) of an isolated 

system cannot decrease with time. This thermodynamic property dictates the direction 

 
* The accuracy required for chemical predictions to be considered realistic (0.041 eV). 
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of spontaneous processes. To some extent, it also accounts for the direction of time in 

the universe. According to the second law, if we consider a reacting system, the 

reaction will occur only if the sum of the entropy changes of the system and its 

surroundings is not negative.  

Nevertheless, evaluating all the time the entropy of the universe is impractical. Instead, 

we can use the Gibbs energy (G) which is a property of state that depends on the entropy 

(S) and the enthalpy (H) of the system (not of the surroundings). Formally, G indicates 

the maximum energy that can be extracted from the system and used to do work at 

constant pressure (P) and temperature (T). But, like S, Gibbs energy can be used also 

as an indicator of the direction of spontaneous changes, with the advantage that it only 

depends on properties of the system and not on the surroundings. For a chemical 

reaction, a negative Gibbs energy change (ΔG < 0) between products and reactants at 

constant P and T indicates that the reaction is spontaneous, or exergonic.  

1.2.2. Electrocatalytic reactions 

Electrochemical reactions require the transfer of electrons to or from a species at an 

interface between an electronic conductor (electrode) and an ionic conductor 

(electrolyte). In these reactions, solids (often metals) are used as electrodes and at the 

same time as catalysts. Catalysts are species that modify the reaction pathway and 

normally such new pathways have lower activation energies. The catalyst are not 

consumed during the reaction* and they can be used repeatedly to drive some non-

spontaneous (or endergonic) processes or to accelerate the slow ones.18 

A large portion of the electrochemical reactions that are currently studied involve the 

simultaneous transfer of protons and electrons. Each transfer constitutes a reaction step, 

leading to a series of reaction intermediates until the final products are obtained.  

 
* This statement is only valid in ideal cases. Deactivation of the catalysts by poisoning or degradation is 

one of the main challenges for implementation of electrocatalytic processes in the industrial scale.  
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The Sabatier principle states that the best catalyst is one that binds the key intermediates 

neither too strongly nor too weakly33. And such “moderate” interaction opens 

energetically favorable reaction pathways that simultaneously avoid catalytic inertness 

and poisoning.  

1.2.3. Electrochemical devices  

Electrochemical devices transform chemical bonds into electricity and vice versa. In 

fuel cells, an electric current is produced by an exergonic chemical reaction. In 

electrolyzers, the electrical energy is turned into chemical energy through an 

endergonic reaction caused by an externally supplied current.34 A general schematic of 

an electrolyzer is provided in Figure 1.2. 

 

Figure 1.2. Schematics of an electrochemical cell. A and BH are the reactants of a redox reaction which 

produces AH and B. The anode is the electrode where the oxidation takes place, and the reduction 

reaction happens at the cathode. The two electrodes can be separated at an arbitrary distance, and the 

reactions can be reversed varying the external potential applied.  

Following the notation in Figure 1.2, where A and BH are reactants of a redox reaction 

that produces AH and B, the overall electrochemical reaction is: 

A + BH ⇄ AH + B, (1.17) 
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where reactions that take place in the cathode (reducing electrode) and in the anode 

(oxidizing electrode) are given respectively as: 

A + (H+ + 𝑒−) ⇄ AH, (1.18) 

BH ⇄ B + (H+ + 𝑒−). (1.19) 

As mentioned above, these electrochemical reactions normally involve multiple 

elementary steps separated by coupled or decoupled proton-electron transfers between 

reaction intermediates. In aqueous solutions, proton-electron coupled reactions can 

only occur at the electrode surface. As an example, consider the adsorption of A on a 

surface site *, and its first and second reduction steps via coupled proton-electron 

transfers are:  

* + A → *A (1.20) 

*A + (H+ + 𝑒−) →  *AH (1.21) 

*AH + (H+ + 𝑒−) →  *AH2 (1.22) 

However, in electrochemical processes reactions can also take place at the interface, or 

in the electrolyte. In the electrolyte, the pH of the environment determines the acid-

base or ionization reactions. Reactions involving decoupled proton-electron transfers 

can be written, for example, as: 

A
− + H+ ⇄ AH (1.23) 

A
+ + 𝑒− ⇄ A (1.24) 

At the interface, reactions may deviate from the ideal proton-electron coupled transfers, 

as they are influenced by both the potential and pH, and they also depend on the size 

of the adsorbed intermediate species.  
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1.2.4. Standard and reversible hydrogen electrodes 

To compare the performance of a catalyst through experiments, a proper reference is 

necessary. A reference electrode is an electrode with a stable and well-known 

equilibrium potential. One of the most common reference electrodes is the standard 

hydrogen electrode (SHE). At 25°C, it has an absolute potential of 4.44 ± 0.02 V35. 

However, to establish a basis for the thermodynamic scale of oxidation-reduction 

potentials, it is arbitrarily set to 0 V at any temperature in the so-called SHE scale. 

Experimentally, platinum electrodes are often used because the redox reaction of 

hydrogen shows fast kinetics and quickly reaches the equilibrium on these electrodes. 

(H+ + 𝑒−) ⇄
1

2
 H2(𝑔)  (1.25) 

However, the activity of protons changes with pH. Therefore, to be able to compare 

catalysts at different pH, a different thermodynamic scale is required. The reversible 

hydrogen electrode (RHE) is a hydrogen electrode the potential of which changes with 

the pH. The potentials (U) of these two reference electrodes are correlated by: 

URHE = USHE − 0.059 V ∙ pH  (1.26) 

1.2.5. Computational hydrogen electrode (CHE) 

Atomic-scale calculations of the electrochemical interface, employing DFT and using 

the computational hydrogen electrode (CHE)36 allow screening over numerous 

materials and active sites from a thermodynamic perspective. The CHE provides a 

simple way to evaluate the energy of protons and electrons using that of H2(g), avoiding 

the explicit treatment of solvated proton-electron pairs by considering their equilibrium 

with molecular hydrogen in solution (equation 1.25) at 1 atm and 0 V, for all values of 

pH and temperature. 
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The CHE model assumes that the bulk of the electrolyte and the electrodes are in 

equilibrium themselves and with the surface. It also considers the adsorption energy is 

relatively independent on the electrostatic field.  

The chemical potential (μ) of a proton-electron pair in equilibrium can be simply 

described as in Equation (1.27). For systems in equilibrium, this potential is also 

equivalent to the partial molar Gibbs energy. 

μ
 H+
 ref + μ

 𝑒-
 ref =

1

2
μ

 H2(g)
 (1.27) 

where the superscript ref stands for μ at the reference electrode. At any pH, μ
𝑒−  is 

related to μ
 𝑒-
 ref through the potential difference between the working and the reference 

electrode (URHE), and the electron charge (e). 

μ
 𝑒-
 ref = μ

𝑒− + eURHE (1.28) 

Since in the CHE the protons in the electrolyte are in equilibrium with the protons in 

the reference electrode (μ
 H+
 ref = μ

 H+):  

μ
 H+ + μ

𝑒− =
1

2
μ

 H2(g)
− 𝑒URHE (1.29) 

The energies calculated within this approach are merely based on thermodynamics and 

presuppose that (i) protonation kinetic barriers are surmountable at room temperature, 

(ii) kinetics and thermodynamics are proportional (i.e. that they follow Brønsted-

Evans-Polanyi relations37, 38), and (iii) that the final states of uphill electrochemical 

steps are commensurate with the corresponding transition states39.  

This method allows for a consistent evaluation of the free energies of all species 

involved in an electrochemical reaction network. 

1.2.6. Free energy calculations and free energy diagrams 

DFT simulations of electrochemical systems are normally performed in vacuum, 

mainly due to the high computational cost that the simulation of the electrolyte implies. 
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Using DFT, the binding energy ( ∆EDFT ) and the corresponding reaction of an 

adsorbate A on a surface site * in vacuum, is obtained as follows: 

∆EDFT = E*A − E* − EA(g) , (1.30) 

A(g) + * → *A (1.31) 

The Gibbs energy of adsorption for such adsorbate can be defined as: 

∆G = ∆EDFT + ∆EZPE − T∆S + ∫ CpdT

T

0

 , (1.32) 

where ∆EZPE  is the change in zero-point energy, T∆S  stands for the entropy 

contributions extrapolated to standard conditions of temperature (298.15 K), and 

∫ CpdT
T

0
 is the enthalpy change between 0 and T. The latter term is typically neglected, 

since it has been shown that its contribution from 0 to 298.15 K does not significantly 

modify the adsorption energies40. 

∆EDFT is obtained from Equation (1.30) using a conjugate gradient or a quasi-Newton 

algorithm to minimize the energies of initial and final states of the system respect to 

the nuclei coordinates (see Figure 1.3). ∆EZPE of adsorbed species is calculated from 

the vibrational frequencies around the ground state within the harmonic oscillator 

approximation. For adsorbates only the vibrational contributions to the entropy are 

normally considered, ∆S = ∆Svib  at 298.15 K. For gases and liquids zero-point 

energies are determined using the harmonic oscillator approximation, and ∆S 

corresponds to the total entropies taken from thermodynamic tables at 298.15 K and 

1 atm (TS0)41. The Gibbs energies of the bulk crystals are ∆G ≈ ∆EDFT, assuming that 

entropic contributions and zero-point energies are negligible in this kind of systems42. 

(In section 1.3, further details about DFT calculations are provided).  
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Figure 1.3. Schematics of the systems involved in calculations of ∆EDFT term in Equation (1.32).  

 

For an electrochemical reaction with 𝑛 proton-electron coupled transfers (where the 

chemical potential of the proton depends on the pH, and the chemical potential of the 

electron depends on the applied potential), the Gibbs energy change can be calculated 

by adding equations 1.29 and 1.32. 

ΔG(𝑛, URHE) = ∆EDFT + ∆EZPE − T∆S − 𝑛 ∙ (
1

2
μ

 H2(g)
− 𝑒URHE) (1.33) 

Taking the CO2 reduction reaction to CO(g) as an example, the reaction proceeds 

through *COOH and *CO intermediates. The corresponding elementary reactions can 

be written respect to the initial reactant as follows: 

* +  CO2 + 1(H+ + 𝑒−) → *COOH (1.34) 

* +  CO2 + 2(H+ + 𝑒−) → *CO + H2O (1.35) 

CO2 reduction to CO is followed by the desorption of *CO (*CO → * + CO(g)), which 

is not an electrochemical step. Thus, considering this mechanism and evaluating the 

Gibbs energy (equation 1.33) for each step with respect to the reactant (indicated by 
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equations 1.34 and 1.35), we can build a free-energy diagram where the energy profile 

of each possible reaction pathway is analyzed and compared. An example of a 

conventional energy profile is provided in Figure 1.4. 

 

Figure 1.4. Energy profile for the CO2 electroreduction reaction to *CO on Cu(100) 

 

The Gibbs energy difference between subsequent elementary steps can be calculated 

by rewriting equations (1.34) and (1.35) as follows: 

*COOH + (H+ + 𝑒−) → *CO + H2O  (1.36) 

Some experimental studies also suggest an alternative pathway for CO2 reduction to 

CO where CO2 is first activated by an electron transfer before adsorption, and then a 

hydrated cation close to the surface stabilizes the adsorbed species43-47. However, 

modeling such a decoupled proton-electron transfer is challenging from a DFT 

standpoint. 

1.2.7. Potential determining step 

The onset potential (Uonset, DFT) along a given reduction reaction pathway is the additive 

inverse of the largest positive free energy ∆Gmax among all electrochemical steps36. 
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Uonset, DFT =  −∆Gmax e⁄  (1.35) 

1.2.8. Symmetry factor 

The symmetry factor, 𝛽𝑖 , is a concept used for single-electron transfer steps in an 

electrochemical reaction. It is a number between 0 and 1 defined as the fraction of the 

electrostatic potential energy affecting the reaction rate.48, 49 For example, for *A 

hydrogenation, 𝛽𝑖 is the fractional electron charge transferred up to the transition state 

(TSi), being i the hydrogenation product: 

*A + 𝛽ie
- → *TSi (1.37) 

The potential-dependent Gibbs energy required to reach the transition state (ΔGA→TSi

#
), 

is given by a constant value calculated at 0 V vs RHE (ΔGTSi
− ΔGA) and a correction 

(𝛽eU) that accounts for the contribution to the Gibbs energy of the applied potential 

(U), (1.37). Experimentally, it is common to assume 𝛽 = 0.5. 

ΔGA→TSi

# = ΔGTSi
− ΔGA + β

i
eU (1.37) 

1.3. DFT calculations of CO2RR using VASP 

1.3.1. Computational details 

In this thesis the DFT calculations were performed using the Vienna Ab initio 

Simulation Package (VASP)50. The relaxations of the atoms were done until the 

maximum force on any atom was below 0.05 eV/Å, within the generalized-gradient-

approximation (GGA) using the Perdew-Burke-Ernzerhof (PBE) as exchange-

correlation functional, with a plane-wave cutoff of 450 eV. The ionic cores of the atoms 

were described by Projector Augmented Wave (PAW) potentials50, and the Methfessel-
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Paxton method was used to smear the Fermi level51 with an electronic temperature of 

0.2 eV.  

A comprehensive screening of different adsorption sites, rotations and conformers, for 

all intermediate adsorbed species on each metal (Cu, Ag, Au, and Zn) and facet ((100), 

(110) and (111) crystal surfaces) was done. From each of these sites and configurations 

an energy value was obtained, but only the minimum was associated to the ground-

state Gibbs energy of Equation (1.32). An example of the different configurations 

calculated for CH2 is shown in Figure 1.5.  

Optimized lattice parameters in Table 1.1 were used to build the metal slabs, formed 

by four atomic layers with their two bottom layers fixed in all cases. The (110) facet 

was modeled with a missing row in the upper layer, corresponding to its commonly 

observed reconstruction52. As shown in Figure 1.5, periodic cells of 2×2 for (111) and 

(100), and 3×2 for (110) were used, keeping at least 14 Å between slabs. Dipole 

corrections were applied in the vacuum direction.  

 

Table 1.1. Lattice parameters optimized using PBE for the metals included in this study, and their 

corresponding experimental values53. *Although Zn is an hcp metal, we calculated Zn(0001) and fcc 

Zn(211), as a proxy to a Zn stepped surface. 

Metal 
Lattice parameter (a) [Å] 

PBE Experimental 

Cu 3.64 3.61 

Au 4.17 4.08 

Ag 4.16 4.09 

Zn 3.77 * 
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Figure 1.5. Top views of inequivalent adsorption sites and configurations on the three different facets 

included in this study. An adsorbed CH2 is used as an example. White dashed lines indicate the unit cell 

of each facet. After calculating all the possibilities, the site with the lowest DFT energy is the one taken 

as the ground state for in vacuum adsorption.  
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1.3.2. Liquid-phase, solvation and gas-phase corrections 

In order to simulate bulk liquids using DFT, large cells with numerous explicit atoms 

are commonly required. This is computationally expensive and impractical. However, 

liquid species are inherently present in electrochemical reactions and it is necessary to 

account for their contributions correctly. For example, in the electrochemical reduction 

of CO2 (CO2RR), we have liquid products (such as HCOOH, CH3CH2OH, and 

CH3OH) and an aqueous media where the reactions take place. For liquid water a 

common practice is to calculate the DFT energy of H2O(g) and subsequently add an 

entropic correction to determine the free energy of H2O(l)
36, 41, 54. Such liquid-phase 

correction is calculated through a semiempirical approach combining experimental 

data and DFT results. (See more details in references36, 41, 54). Note that the TS0 

correction of 0.67 eV in Table 1.2 for H2O(l) is neither that of liquid (0.22 eV) nor gas-

phase water (0.58 eV). The same correction is done for other liquid products, as 

CH3OH(l). 

Moreover, as the reaction takes place in an aqueous media, interfacial water may 

modify the adsorption energies of the reaction intermediates. When in vacuum DFT 

simulations are performed, it is necessary to consider the additional stabilization that 

water may provide to the adsorbates by virtue of hydrogen bonding. Commonly, 

solvation corrections are added to energies obtained from calculations in vacuum. Such 

corrections are often called “ad hoc solvation corrections” and have been widely 

applied in mechanistic DFT studies36, 39, 54-60. Ad hoc solvation schemes are described 

by (1.37). Their accuracy mostly depends on how rigorously they were estimated for 

the particular systems. 

ΩA = ΔGA
solution − ΔGA

vacuum
 (1.37) 

As the calculation of solvation corrections is one of the main topics of this dissertation, 

a complete discussion about other available solvation methods can be found in section 

2.5. A detailed description of the solvation method developed in this work is provided 

in chapter 3. 
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It is well known that GGA functionals are advisable for modeling bulk metals and 

slabs, and hybrid functionals are advisable for molecules and solids with localized 

electrons61, 62. However, in electrochemical systems, metals and molecules interact 

with each other and must be simulated within the same DFT framework. For this 

reason, depending on the exchange-correlation functional used it is often necessary to 

apply suitable corrections. 

Using GGAs, and considering the CO2RR intermediates, gas-phase corrections to the 

total energy of CO2, CO and CH3OH were applied in this work and are shown in Table 

1.2. 

 

Table 1.2. Zero-point energies, entropy contributions and gas-phase corrections (GPC) to the total 

energy for the fluid-phase species involved in the CO2RR to C1 products. Corrections applied in this 

work were reported in39, 54, 63. All values are in eV. 

Molecule EZPE TS0 GPC 

CO2(g) 0.31 0.66 0.19 

H2(g) 0.27 0.40 - 

H2O(l) 0.57 0.67 - 

CH4(g) 1.19 0.58 - 

CO(g) 0.14 0.61 −0.24 

CH2O(g) 0.71 0.68 - 

CH3OH(l) 1.36 0.79 0.04 

 

A semiempirical procedure for detecting gas-phase errors based on the formation 

energies of reactants and products calculated with DFT was proposed in P44. The 

results provided later in chapters 4 and 5 were used to test such method. With the use 

of the improved gas-phase corrections, it was shown that the accuracy and 

descriptiveness of DFT models for CO2RR increase considerably.   
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Chapter 2. Electrochemical reduction of CO2  

 

The electrochemical CO2 reduction reaction (CO2RR) to hydrocarbons is a promising 

catalytic process. Copper (Cu) is well known for its singular ability to catalyze this 

reaction64 toward a variety of hydrocarbons, fuels, alcohols and chemical feedstocks of 

up to five C atoms, such as methane, ethylene, ethanol and 1-propanol65-67. This process 

stands as an alternative to decrease atmospheric CO2 levels and achieve the much-

desired carbon-neutral cycle for chemical and fuel synthesis, provided that the process 

is efficient enough and its input energy comes from renewable sources. The large-scale 

implementation of CO2RR would have the advantage of producing fuels with low 

carbon footprint, while keeping the existing fossil-fuel infrastructure68, 69. 

Since Hori and co-workers70 first showed that CO2RR to hydrocarbons and alcohols 

was feasible on Cu surfaces, electrodes based on Cu and similar materials have been 

extensively studied68, 71-73. Initially, experimental studies focused on elucidating the 

CO2 reaction mechanism on Cu electrodes by detecting reaction products.66, 74-76 Using 

spectroscopy, some authors identified *CO77, its hydrogenated dimer44 and 

acetaldehyde78 as products. More recently, Jaramillo et al67 reported 16 different 

CO2RR products among C1, C2 and C3 species. 

Beside the many possible products, it is known that the reaction is also affected by 

factors such as the catalysts’ structure79, 80 and reconstruction81, pH76, 77, 82, cation/anion 

effects46, 47, 82, 83, high current density84, applied voltage67, 82, temperature85, 86, and 

pressure86. The large overpotentials required and the low selectivity of electrolyzers 

hinder the large-scale implementation of CO2RR. Such complexity calls for an in-depth 

understanding of the reaction that eventually leads to process optimization.  

Since experimental techniques cannot presently characterize surface active sites and 

detect all reaction intermediates involved in CO2RR, additional insight is obtained from 



35 

 

theoretical studies87, 88. The rational improvement of electrocatalysts requires detailed 

atomic-scale insight into the reaction mechanisms through which they transform 

reactants into products. Nevertheless, from an experimental standpoint, detecting 

reaction intermediates of electrocatalytic reactions is often technically challenging and, 

therefore, relatively uncommon77, 89, 90.  

In the next sections, we present recent advances in the computational modeling of 

CO2RR, reviewing how structural sensitivity, redox treatments, pH and ions, and 

solvation are accounted for in the calculations and how they influence the catalytic 

activity and selectivity of this process. More in-depth reviews can be found in 

references68, 69, 71, 87.  

2.1. Reaction mechanism of the CO2RR on Cu 

An overview of the CO2RR network to C1 and C2 species appears in Figure 2.1.  

Nørskov and co-workers39 proposed the first DFT-based detailed mechanism to C1 

species. From adsorption energies on Cu(211) (see Figure 2.2), they concluded that the 

lowest-energy path was: CO2 → *COOH → *CO → *CHO → *CH2O → *CH3O → 

CH4+*O → *OH → H2O. Durand et al91 used that pathway to calculate the free 

energies of all intermediate species on Cu facets, finding that adsorbates on the (211) 

exhibit the highest stability, followed by (100) and (111), in line with simple 

coordination rules92-95. From there on, such pathway was applied to different Cu 

facets96 and alloys97, 98, other transition metals and alloys55, 99, and other types of 

materials100.  
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Figure 2.1. (I) A comprehensive reaction network for CO2RR to C1 species. (II) Lowest-overpotential 

pathway for CO reduction to several C2 species, redrawn from54. C, O and H atoms in CO2 and adsorbed 

species are shown in black, red and gray, respectively. Arrows and species in green denote the desorbed 

products of CO2RR. Blue arrows connect adsorbates in the reaction network separated by a single 

proton–electron transfer. Only electrochemical steps of the reaction are included. 

 

 

Figure 2.2. Free energy diagram for the lowest energy pathway on Cu(211) surfaces at 0 V vs RHE, 

redrawn with data from39.  
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The breaking of C–O bonds and the formation O–H, C–H and C–C bonds determine 

the kinetics of CO2RR on Cu electrodes. Nie et al101, 102 evaluated the activation barriers 

of all transition states for CO2RR to methane, concluding that on Cu(111) the most 

favorable pathway goes via *COH, instead of *CHO, in agreement with other 

studies103. They also pointed out that the pathway continues through *C, *CH2, *CH3 

and CH4. Later, Luo et al104 showed that unlike for Cu(111), Cu(100) kinetically favors 

*CHO over *COH, attesting to a structure-sensitive mechanism dictated by 

elementary-step kinetics.  

CO2RR to C2 species such as ethylene and ethanol has also been explored 

thermodynamically. The electroreduction of CO (CORR), which is contained within 

CO2RR, is the most studied process. Calle-Vallejo and Koper105 studied the CORR on 

Cu(100) considering *CO dimerization as the first step toward ethylene, acetaldehyde 

and ethanol80. The *CO dimer exhibits strong stabilization on square sites, justifying 

Cu(100)’s marked preference for ethylene production, while steps incline the 

selectivity to ethanol80. Cheng et al106 proposed that Cu structures with stepped square 

sites provide enhanced catalytic activity and selectivity toward C2 species. Garza et 

al107 proposed reaction mechanisms for all reported C2 products of CORR (ethylene, 

ethanol, acetaldehyde, ethylene glycol, glycolaldehyde, glyoxal, and acetate) on 

Cu(100) and Cu(111).  

Montoya et al108 determined the activation energies for the formation of C–C bonds on 

Cu in vacuum, finding that kinetic barriers depend on the hydrogenation of adsorbates. 

They concluded that *CO dimerization is kinetically unfavorable in vacuum, compared 

to *CO protonation and *CHO-*CHO coupling. However, they subsequently showed 

that water-solvated cations stabilize *CO dimers, making *CO-*CO coupling 

surmountable under CORR conditions, particularly on Cu(100)109. 
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2.2. Scaling relations and volcano plots 

Scaling relations are linear correlations between sets of adsorption energies110, that can 

be expressed as: ∆E2
i = m1,2∆E

1

i + b1,2
i

. The slope m1,2 can be roughly estimated as the 

ratio of the valences of adsorbates 1 and 2110, 111, regardless of the adsorption site. For 

instance, the scaling between *CH vs *C has a slope ¾. The offset b1,2
i

 linearly depends 

on the coordination number of facet i57, 92, so that (100) facets typically have lower 

offsets than (111) facets for a given adsorbate pair. These relationships are used to build 

volcano-type activity plots, which conveniently condense free-energy diagrams for 

numerous materials. This is shown for CO2RR to methane in Figure 2.3, in which the 

two potential-limiting steps are displayed as a function of the adsorption energy of CO 

(ΔGCO). Thus, searching for optimal CO2RR catalysts in a complex optimization space 

is reduced to finding materials with ΔGCO close to the volcano apex, which can be 

performed via materials screening. Note, however, that CO2RR scaling-relation-based 

screening routines assuming a single mechanism for all materials and facets, which 

might not always be an appropriate simplification57, 112. This can be remediated using 

structure-sensitive scaling relations57, 92, as explained in section 2.3. 

 

Figure 2.3. Scaling-relations-based volcano plot for CO2RR on 7 transition metal surfaces, redrawn with 

data from55; limiting potentials (UL) correspond to the two first elementary proton-electron transferences.  
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2.3. Structural, pH and cation/anion effects  

Structural sensitivity, pH and ion effects are all coupled during CO2RR, and modify its 

mechanism. The products and corresponding onset potentials and faradaic efficiencies, 

depend on the metal used68, 113, 114 and their surface structure79, 115. However, scaling-

relation-based screening studies usually consider a single reaction mechanism55, 99, 116. 

Alternatively, Calle-Vallejo and Koper57 showed that metal- and structure-sensitive 

bifurcating pathways can be incorporated into screening routines using scaling 

relations. This was illustrated on *CO hydrogenation to *COH and *CHO on 5 

different sites and 9 transition metals. Figure 2.4 shows that the preference between 

*COH (dashed lines) or *CHO (solid line) systematically depends on the coordination 

of the active sites. 

 

Figure 2.4. Structure-sensitive determination of pathway bifurcations during *CO hydrogenation to 

*CHO (solid line) or *COH (dashed lines, each for a different coordination number) redrawn with data 

from57. 

 

Furthermore, pH plays an essential role in the CO2RR mechanism. From a 

computational perspective, successive proton-coupled electron transfers are usually 

assumed in every step of the mechanism, so as to enable the use of the CHE39. Note 

that this model cannot capture pH effects, as the adsorption energies of all intermediates 

shift proportionally. This is problematic when analyzing CORR, which displays 
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distinct pH- and structure-dependent features: while CORR to CH4 is favored on 

pristine and stepped Cu(111) and is pH-dependent in the SHE scale, C2H4 prefers 

pristine Cu(100) terraces and is pH-independent in the SHE scale113, 117. According to 

Hori et al75, such dissimilar pH responses indicate that the rate-limiting step of CORR 

to CH4 involves an H+ transfer, whereas that of CORR to C2H4 does not. This makes 

CO2RR and CORR toward CH4 suitable for CHE models, whereas C2H4 production 

should be analyzed cautiously.  

Calle-Vallejo and Koper105 studied CORR on Cu(100) to C2 species, considering as the 

first step the reductive coupling of 2*CO to *COCOH. Such step proceeds via a 

decoupled electron-then-proton transfer that forms first a negatively charged CO dimer. 

Such coupling leads to a pH-independent C2 pathway that complies with experiments. 

The dimer exhibits a remarkable preference for Cu(100)93 because of its square 

symmetry. However, the initial model showed high kinetic barriers for C–C coupling. 

Thus, apart from pH effects, one should consider additional features of experimental 

CORR such as cation effects.  

Murata et al118 showed that alkaline cations enhance the production of multi-carbon 

species. The smaller hydration sphere of larger cations supposedly favors their 

adsorption on cathodic surfaces, yielding more positive potential values, thereby 

increasing the selectivity toward C2H4. Bell and co-workers46 explained cation effects 

based on the pKa values of their hydrolysis. Larger CO2 concentrations near the 

cathode and lower local pH with increasing cation size are expected, which 

satisfactorily explains cation effects during CO2RR but not those observed during 

CORR. 

Computationally, cation effects are accounted for implicitly or explicitly. Nørskov and 

co-workers opted for an implicit description of cations, applying an electric field 

instead. The field interacts with the adsorbates47, 119 modifying the adsorption energies 

depending on the species’ dipole moment. In contrast, Janik and co-workers include 

the ions explicitly. They suggested that specific halide adsorption on Cu may occur at 

negative electrode potentials104, and consequently, the specific adsorption of Cl⁻, Br⁻, 
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and I⁻ affects CO2RR. This agrees with Varela et al’s83 experimental observations that 

Br⁻ increases 3.5 times the selectivity toward CO compared to Cl⁻. Besides, I⁻ favors 

CO reduction to methane over CO desorption. Recently, Perez-Gallent et al82 presented 

a joint computational-experimental study of cation effects on CORR. Explicitly 

including the cations, they observed that CO hydrogenation is considerably more 

difficult for monomers compared to dimers, because cations substantially stabilize C2 

adsorbates and not C1 species. This attests to a more favorable CO dimerization than 

previously thought105, and plausibly explains why C2H4 production exhibits earlier 

onset potentials than CH4
82. 

2.4. Oxide-derived Cu electrodes 

Inclining the CO2RR/CORR selectivity toward ethanol is economically and 

technologically advantageous because of its relatively high market price, ease of 

storage and high energy density120. Kanan and co-workers121 found that Cu catalysts 

prepared by successive redox processes (known as oxide-derived Cu, OD-Cu), yielded 

higher activity and selectivity for C2 products, especially ethanol, compared to 

polycrystalline and single-crystal Cu. They also found that OD-Cu’s active sites 

possess remarkably strong CO adsorption energies which are probably located at grain 

boundaries122. Others suggest that OD-Cu’s enhanced electrocatalytic activity is due to 

an oxide phase or to subsurface oxygen atoms retained from the redox treatments81, 123. 

Although some theoretical studies show that subsurface oxygen indeed enhances Cu’s 

selectivity toward C2 products by increasing the coverage of *CO124, 125, it is argued 

that subsurface oxygen is highly unstable. Alternatively, Head-Gordon and co-

workers126 claim that calculations including dispersive interactions, solvation and 

applied voltage predict favorable CO2 chemisorption on Cu, precluding the need for 

subsurface oxygen and suggesting that OD-Cu’s active sites are located at defects. 

Recent computational studies have concluded that the ethanol-producing active sites at 

OD-Cu electrodes are composed of square, undercoordinated Cu islands127, in 

agreement with the tremendous roughness of OD-Cu observed in experiments128. 
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2.5. Solvation effects 

Electrocatalytic activities are determined, to a large extent, by the interplay of (i) 

adsorbates, (ii) substrates and (iii) solvents at the electrochemical interface. However, 

capturing the interactions of these three components is usually arduous. Thorough 

descriptions of reaction pathways can be made computationally by evaluating at each 

stage of the reaction adsorbate-substrate interactions, together with adsorbate-solvent 

and solvent-substrate interactions. While adsorbate-substrate interactions have been 

vastly explored for the past 20 years in electrocatalysis36, adsorbate-solvent and 

solvent-substrate interactions started to receive attention only in the past few years59, 

129-133. 

Since a great number of electrocatalytic reactions use water as a solvent, such as 

oxygen evolution and reduction, hydrogen evolution and oxidation, and CO2 and CO 

reduction (CO2RR and CORR), it is vital to incorporate water-adsorbate interactions 

into computational electrocatalysis models1, 69, 88, 134. There are two main ways in which 

water molecules influence heterogeneous catalysis reactions: by hydrogen bonding 

with adsorbed species or by acting as co-catalysts135. Such influence is particularly 

strong for adsorbates able to create hydrogen bonds and can significantly modify the 

adsorbate-substrate interactions136.  

The study of water-substrate interactions is an active field of research on its own. For 

instance, on close-packed transition metal surfaces several water configurations have 

been observed experimentally, such as rings forming stable water layers, small 

dissociated water clusters, and double-stranded lines along defects137-139. However, 

water-adsorbate interactions have received considerably less attention.  

There are three general approaches to treating the interactions between adsorbates and 

water within DFT calculations (see Figure 2.5). The first is by explicitly considering 

the water molecules in the simulation129, 140-142. Although in terms of accuracy this is 

probably the most appropriate way to estimate water solvation effects, it is 

computationally demanding and, therefore, impractical for exploring complex reaction 

networks on extended surfaces and nanoparticles of different materials. In general, 
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within the explicit approach arduous molecular dynamics (MD) simulations are 

needed. For instance, the wetting of a relatively small nanoparticle with a diameter 

below 2 nm, requires ~700 explicit water molecules143. In the same way, modeling a 

4×4 Cu(100) surface slab requires near 50 explicit water molecules144. In other studies 

using a multiscale sampling (MSS) approach which combines classical MD with DFT, 

54 water molecules were needed to simulate the liquid solvent for a 3×3 Pt(111) slab145. 

In a more recent attempt to explore a wide range of different materials and adsorbates, 

15 and 25 explicit water molecules (3 layers) were required on 3×4 fcc (111) and 3×1 

fcc (211) facets, respectively (on Au, Cu, and Pt), to ensure an accurate description of 

the interactions between water and adsorbates (i.e. *OH, *CO, *COH, *CHO, among 

others) using ab initio molecular dynamics (AIMD) simulations.142 Moreover, two of 

the main issues of sampling the phase space of water molecules using MD are the 

prohibitive cost of the ab initio simulations, and the ill-defined interaction parameters 

for the surface adsorbates in the more affordable classical simulations135, 146, 147. 

A second approach consists of the implicit modeling of water. These models normally 

estimate solvent effects by placing the solute in a cavity within the solvent, which is 

treated as a dielectric continuous medium. The way in which the cavity and the 

boundary conditions are defined, gives rise to different models134, 148-157. For instance, 

the conductor-like screening model (COSMO)158, and its self-consistent 

generalizations to real solvents, COSMO-RS159 and direct COSMO-RS160, or models 

that also include the ionic effects of charged interfaces and adsorbates, such as the 

Poisson-Boltzmann or the specific smooth dielectric models161, 162. There are also other 

developments such as joint DFT models, which incorporate a classical DFT description 

of the liquid163, linear polarizable continuum models (linear PCM)151, and PCM with 

nonlinear dielectric response (nonlinear PCM)164, as well as implementations to plane-

wave packages such as VASPsol149. Mixed approaches have also been devised, 

combining a few explicit water molecules in the first solvation layer(s) with a 

continuous medium beyond165, 166. A comprehensive analysis of the different implicit 

solvation methods can be found in specialized reviews134, 154. It is to be noted that 

although implicit solvation models are useful and generally inexpensive, their 
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description of hydrogen bonding and their estimation of reaction energies are still 

challenging146, 147, 167, 168, so they may lead to erroneous predictions when water-

adsorbates interactions are strong, or when water participates in the reaction. 

The third approach consists of adding specific or “ad hoc” solvation corrections to 

adsorption energies calculated in vacuum. In this context, ad hoc refers to solvent 

effects on adsorption energies assessed once for a specific material and adsorbate. In 

various DFT-based studies some corrections to the adsorption energies have been 

reported for *R-OH (where R is a hydrocarbon chain, e.g. *COH), *OH, *OOH, *CO, 

*CHO, *NOH, *NHO, *NHx, among others36, 39, 54-60. The corrections were estimated 

either on Cu(111) or Pt(111) from the differences between the adsorption energies with 

and without explicit water molecules in the calculations, and their magnitudes are 

between −0.1 and −0.6 eV. A usual approximation is to assume that those corrections 

are identical for other transition metals55, 58. However, recent works on Pt-based near-

surface alloys59, 169, late transition metals130 and metalloporphyrins57, showed that 

solvation corrections may change significantly from one material to the next and cause 

significant changes in adsorption energies, reaction pathways, and calculated 

overpotentials obtained from simulations in vacuum. 

 

Figure 2.5. Schematics of the different solvation methods available to account for the solvent in 

simulations of electrochemical interfaces. *COH is used to exemplify the adsorbate. a) Implicit solvation 

models, b) explicit incorporation of water molecules, and c) ad hoc or specific corrections calculated 

explicitly and applied to in vacuum calculations.  

Summary 

During this chapter some of the many effects and interactions present in the CO2RR 

are presented. It is important to note that solvation, is perhaps one of the most excluded 
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(or miscalculated) effects, but it is highly important for the reaction. CO2RR takes 

places in aqueous media and the water presence produce adsorbate-water interactions 

through hydrogen bonds that alters the reaction performance. It is known that those 

interactions cannot be fully accounted by implicit methods, and although the explicit 

inclusion of the solvent is probably the most accurate method, it is computationally 

demanding and impractical. Therefore, adding solvation corrections to DFT 

calculations performed in vacuum seem to be the right way, but it still requires 

enhancing.  

In this context, the following question arises: it would be possible to estimate solvation 

effects for specific systems in an affordable and accurate way? Although in this field, 

accuracy and affordability have commonly been anticorrelated, finding a midpoint 

between them was one of our goals in this work.  

In our attempt to improving DFT-based approaches to study CO2RR, we developed a 

systematic and affordable method to calculate solvation effects on electrochemical 

systems which is explained in the following chapter.  
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Chapter 3. Developing a systematic micro-

solvation method using DFT 

3.1. Adsorbate-water interactions 

We define the adsorption of species A in vacuum in Equation (3.1), and in solution in 

Equation (3.2).  

* + A → *A (3.1) 

A + [n*H2O + *] → [*A + n*H2O] (3.2) 

Where * denotes a free surface site, *A and n*H2O denote adsorbed A and n adsorbed 

water molecules, respectively, and the brackets indicate states in solution. In this 

context, the adsorption energies in vacuum (∆GA
vacuum

) and in solution (∆GA
solution

), both 

with respect to A in vacuum, can be written as: 

∆GA
vacuum = G*A − GA − G* (3.3) 

∆GA
solution = G[*A+n*H2O] − GA − G[n*H2O+*] (3.4) 

The solvation energy (Ω) is generally defined as the energy obtained when a solute is 

transferred from an isolated state (in vacuum) to a state in which it is surrounded by 

the solvent.170 For an adsorbate *A that will be solvated by water, it is: 

*A + [n*H2O+*] → * + [*A+n*H2O] (3.5) 

where [*A+n*H2O] denotes the adsorbate *A solvated by n adsorbed water molecules, 

and [n*H2O+*] denotes a surface wet with n water molecules, and a free adsorption 
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site. The reaction energy of Equation (3.5), which is equivalent to the solvation energy 

of *A, is given by: 

ΩA = G[*A+n*H2O] + G* − G*A − G[n*H2O+*] (3.6) 

Alternatively, ΩA can be expressed in terms of the adsorption energies in vacuum and 

in solution as shown in Equation (3.7): 

ΩA = ΔGA
solution − ΔGA

vacuum
 (3.7) 

Equation (3.7) is the basis of ad hoc solvation schemes (see sections 1.3.2 and 2.5), in 

which ΩA is calculated once for a given system and then transferred to many others55, 

59, 171. In that way, adsorption energies in solution are rapidly estimated as in Equation 

(3.8), with the superscript # indicating an extrapolation to systems different than that 

where ΩA is calculated. 

ΔGA
solution, #

≈ ΔGA
vacuum, #

+ ΩA (3.8) 

Given that all species in Equation (3.5) are adsorbed and appear on both sides of the 

reaction, the changes in ∆EZPE and T∆S, from Equation (1.32), are negligible, at least 

for small adsorbates. Therefore, we assume that ΩA can be estimated only using DFT 

energies. Results confirming this statement are provided later in section 4.4. 

ΩA = ΔEA
solution − ΔEA

vacuum (3.9) 

However, we note that solvation entropy terms may in some cases be significant, in 

particular for large adsorbates and those making strong hydrogen bonds145. 

3.2. Water self-solvation 

It is well known that water molecules interact with metal surfaces by clustering139, and 

adsorbed water clusters usually adopt ice-like hexagonal configurations. In those, each 

water molecule on the surface forms three hydrogen bonds with surrounding water 
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molecules, resulting in building units of four water molecules. Following conventional 

solvation models172, and in order to make the simulations with the lowest number of 

water molecules173, we assume that four adsorbed water molecules that do not interact 

with each other are brought together so that three of them solvate the other one. As is 

shown in Figure 3.1, these 4-molecule building units can be found in water bilayers 

formed by different polygons174. 

 

Figure 3.1. Examples of the possible configurations of the 4-molecule building units of water layers 

adsorbed at a surface. The water layers can be composed of a) hexagons, b) pentagons and octagons, c) 

pentagons, hexagons and heptagons, among others. Water molecules are represented as nodes and 

hydrogen bonds as blue lines. Vertices of polygons normally correspond to top positions of surface metal 

atoms. 

 

There are three different possible configurations for the first solvation shell of an 

adsorbed water molecule on Cu(111), as in shown in Figure 3.2. 

 

Figure 3.2. Top views of the atomic-scale schematics of specific configurations of the 4-molecule water 

clusters forming the first solvation shell of an adsorbed water molecule on Cu(111). The central molecule 

can have one H atom pointing down (H-down), up (H-up) or both H atoms in a plane parallel to the 

surface (parallel). 
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The water self-solvation process can be represented as: 

4*H2O → [*H2O+3*H2O] (3.10) 

Where the brackets on the right indicate that the water molecules are together and 

interacting. Then, the total self-solvation correction of adsorbed water in a micro-

solvation (MS) environment is given by: 

ΩH2O = E[*H2O+3*H2O] − 4E*H2O (3.11) 

We can also define the adsorption of each water in vacuum as H2O + * → *H2O and 

in the MS environment as 4H2O + 4* → [*H2O+3*H2O], obtaining: 

ΔEH2O
MS = E[*H2O+3*H2O] − 4EH2O − 4E* (3.12) 

ΔEH2O
vacuum = E*H2O − EH2O − E* (3.13) 

From Equations (3.11) to (3.13), the total self-solvation can be rewritten as:  

ΩH2O = ΔEH2O
MS − 4ΔEH2O

vacuum (3.14) 

Equation (3.14) does look like Equation (3.9), since water behaves simultaneously as 

the solvent and the solute during its self-solvation process. Finally, the self-solvation 

correction in eV per hydrogen bond (eV/HB) is a third of ΩH2O (Note that the central 

water molecule forms three hydrogen bonds), which leads to: 

ΩH2O
HB = ΩH2O 3⁄ =

1

3
ΔEH2O

MS −
4

3
ΔEH2O

vacuum (3.15) 
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3.3. A decision criterion for adsorbate-water hydrogen 

bonding 

As the process is based on the consecutive addition of water molecules to the system 

starting with n = 1, an energy comparison needs to be done in an iterative fashion. Since 

there are no solvent effects when A is adsorbed in vacuum, ΩA
0 = 0 eV. 

ΩA
n − ΩA

n-1 ≤ ΩH2O
n − ΩH2O

n-1
 (3.16) 

As is shown in Figure 3.2, there are three different configurations of the water building 

unit depending on the orientation of hydrogen atoms of the central water molecule. 

However, we have found that they are energetically similar in transition metals as can 

be seen in Table 3.1.  

 

Table 3.1. Calculated ΩH2O
HB  in eV/HB for the different configurations of the first solvation shell of an 

adsorbed water molecule on different transition metals, following the notation used in Figure 3.3. 

Configuration 
ΩH2O

HB  

Cu(111) Au(111) Ag(111) Zn(0001) 

Parallel −0.28 −0.28 −0.24 −0.28 

H-down −0.21 −0.22 −0.18 −0.23 

H-up −0.25 −0.25 −0.21 −0.27 

Average −0.24 ± 0.04 −0.25 ± 0.03 −0.21 ± 0.03 −0.26 ± 0.02 

 

Note that with each change in the value of n, the state [n*H2O+*] (from Equation 3.5) 

also changes. The following approximation can be applied: 

ΩH2O
n ≈ n ∙ ΩH2O (3.17) 

Then, having ΩH2O
HB

 assessed from Equations (3.15) and (3.17) we can define our 

decision criterion as: 

ΩA
n − ΩA

n-1 < ΩH2O
HB

 (3.18) 
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Accordingly, the number of water molecules (n) in the first solvation shell of adsorbate 

*A can be determined by consecutively adding water molecules to the system and 

evaluating in each case whether the entire system is stabilized or not, not only taking 

as reference the adsorbate but also the water molecules. Every time the additional 

stabilization provided by the addition of a water molecule is larger than the previous 

calculated state and larger than the self-stabilization of water, one more hydrogen bond 

is formed between the adsorbate and water, and n is increased by one (see Figure 3.3).  

 

Figure 3.3. Schematics of every calculation step to determine the number of water molecules required 

in the first solvation shell of the adsorbate.  

 

If the stabilization provided by the additional water-adsorbate hydrogen bond is not 

larger than the water self-stabilization, the number of water molecules interacting with 

the adsorbate is fixed at n −1, being n = 1 the lowest. Finally, the solvation energy ΩA 

is equivalent to the interaction energy between n water molecules and the adsorbate. A 

flow diagram of the calculation process exposed in this chapter is provided in Figure 

3.4.  
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Figure 3.4. Flow diagram of the calculation steps to determine solvation contributions to the adsorption 

energies of electrochemical systems using the systematic micro-solvation method developed in this work.  

3.4. Additional details for DFT calculations of the micro-

solvation energy using VASP 

Due to the explicit inclusion of water molecules, larger cells than those described in 

section 1.3.1 were necessary to avoid interactions between neighboring cell repetitions. 

Periodic 4×4×3 cells of (111) facets were used to determine the solvation energies of 



53 

 

the adsorbates and the self-solvation of water molecules. Initial geometries of adsorbed 

species were taken from the lowest energy configurations obtained from in vacuum 

screening (see Figure 1.5), and adsorbed water molecules were in the surroundings, 

following the ice-like configuration. Rotations of water molecules and conformers of 

the adsorbates were also tested, and, in some cases, changes in the adsorption site with 

respect to in vacuum positions were considered (see section 4.2).  

Summary 

Adsorbate solvation via hydrogen bonding is one of the main factors that intervene in 

the reaction performance at the electrochemical interface. In this chapter, we explored 

the solvation as a likely surface event that only takes place if the interaction between n 

water molecules and the adsorbate decreases the total energy of the system. In other 

words, solvent-adsorbate hydrogen bonds only occur when they lead to a more stable 

state compared to that in which water molecules are solvating themselves.  

Our method finds upon testing a collection of nH2O-adsorbate configurations, the one 

that provides the largest stabilization to the system. If it is determined that an adsorbate-

water hydrogen bond is made, such configuration is assumed to dominate over the rest 

in view of its greater stability. Thus, the solvation corrections calculated here may be 

considered as an upper bound to those found if the solvent were sampled via e.g. 

molecular dynamics (the lower bound provided by implicit methods).  

In the next chapter we present the results of the implementation of the systematic 

micro-solvation method, applying it to the CO2RR mechanism. First, we focused on 

Cu surfaces, and then we test the same procedure on different transition metals.  
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Chapter 4. Calculations of the CO2RR 

4.1. In vacuum CO2RR on Cu 

 

Figure 4.1. Reaction network of CO2RR to CO, CH2O, CH3OH and CH4 on Cu. C, O and H atoms are 

shown in black, red and gray, respectively. The catalyst is shown in orange. Thin blue arrows denote 

desorbed products of CO2RR. Bold arrows connect adsorbates separated by a single proton and electron 

transfer. 

 

CO2RR on Cu electrodes can produce over 16 different hydrocarbon products 

containing up to five carbon atoms.67 In this work, we only considered the one-carbon 
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(C1) products, i.e. CO, CH2O, CH3OH and CH4, and the reaction pathways for their 

formation, as is shown in Figure 4.1. 

In-vacuum calculations can provide a useful first approach to the electrochemical 

reduction of CO2. Although the effect of the water solvent in the system can cause 

significant differences in the reaction mechanism, in-vacuum results can provide 

valuable insight and serve as the basis for the calculations in solution. The adsorption 

energies in vacuum of the C1 intermediates were determined after testing different 

configurations on all inequivalent sites of each Cu facet (see Figure 1.5). 

A summary of the in-vacuum calculations is presented in Table 4.1, presenting the 

EZPE, the vibrational entropies TSvib (at 298.15 K), and the formation energies from 

CO2 (∆Gf) for the intermediates of the C1 reaction pathway of the CO2RR. Note that 

under this assumption, the lowest-energy pathway on all the surfaces is: 

CO2 → *COOH → *CO → *CHO → *CH2O → *CH3O → *O → *OH → H2O.39 

 

Table 4.1. Calculated formation energies (ΔGf) without solvation corrections, for all the intermediates 

of the CO2RR to CO, CH3OH, and CH4 on Cu(111), Cu(100) and Cu(110). The symbol * denotes 

adsorbed species. Zero-point energies (EZPE), vibrational contributions to the entropy (TSvib) reported do 

not depend on the solvation correction used. 

Adsorbate EZPE TSvib ΔGf /Cu(111) ΔGf /Cu(100) ΔGf /Cu(110) 

*COOH 0.62 0.22 0.17 0.01 −0.20 

*CO 0.16 0.14 −0.35 −0.24 −0.39 

*CHO 0.46 0.14 0.34 0.13 0.06 

*CH2O 0.74 0.15 −0.13 −0.41 −0.48 

*CH3O 1.08 0.22 −1.21 −1.33 −1.51 

*CH2OH 1.06 0.21 −0.33 −0.47 −0.71 

*O 0.06 0.06 −1.75 −2.03 −2.02 

*OH 0.35 0.10 −1.58 −1.73 −2.84 

*COH 0.46 0.15 0.59 0.42 0.52 

*CHOH 0.76 0.18 0.25 0.25 −0.03 

*C 0.09 0.03 1.60 0.37 0.92 

*CH 0.33 0.05 0.05 −0.45 0.02 

*CH2 0.55 0.09 −0.56 −0.63 −0.79 

*CH3 0.90 0.15 −1.56 −1.58 −1.90 
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4.2. Micro-solvated CO2RR on Cu  

The micro-solvation approach presented in chapter 3 and the in-vacuum results were 

used to determine the reaction pathways for the CO2RR. The calculated value of 

ΩH2O
HB = −0.24 ±  0.04 on Cu (see Table 3.1) was used to evaluate the number of 

hydrogen-bonded water molecules (n) and their contribution to the adsorption energies 

(ΩA) for the different adsorbates involved in the CO2RR to C1 products. The solvation 

corrections along with the number of hydrogen-bonded water molecules for each 

adsorbate are presented in Table 4.2. For comparison, ad hoc solvation corrections from 

previous studies39, 55 and those calculated using an implicit method149 are also reported.  

 

Table 4.2. Calculated solvation corrections (ΩA, in eV) with their corresponding number of hydrogen 

bonds formed with surrounding water molecules (n) for species adsorbed on Cu(111), and hydrogen 

bond (HB) type (a if accepted or d if donated by the adsorbate). ΩOH
a is referred to fcc hollows (in 

vacuum), and ΩOH
b to atop. 

Adsorbate n HB type This work Implicit149 Ad hoc 154 Ad hoc 236, 39 

*COOH 1 a −0.28 −0.24 −0.48 −0.25 

*CO 0 - 0.00 −0.03 −0.10 −0.10 

*CHO 0 - 0.00 −0.05 −0.10 −0.10 

*CH2O 1 a −0.21 −0.14 −0.10 −0.10 

*CH3O 1 a −0.26 −0.10 0.00 0.00 

*CH2OH 1 d −0.30 −0.19 −0.38 −0.25 

*O 0 - 0.00 −0.11 0.00 0.00 

*OH 3 d & a −0.58a (−1.27)b −0.19 −0.50 −0.50 

*COH 1 d −0.45 −0.25 −0.38 −0.25 

*CHOH 1 d −0.27 −0.14 −0.38 −0.25 

*C 0 - 0.00 −0.08 0.00 0.00 

*CH 0 - 0.00 −0.04 0.00 0.00 

*CH2 0 - 0.00 −0.04 0.00 0.00 

*CH3 0 - 0.00 −0.06 0.00 0.00 

 

To illustrate how the solvation values were obtained, let us consider *COH as an 

example. When the first *H2O is added to *COH (n = 1), the resulting stabilization is 

−0.45 eV. According to Table 3.1, the average solvation energy per hydrogen bond 
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(ΩH2O
HB

) for Cu is −0.24 ± 0.04 eV/HB. Since −0.45 ≤ −0.20 (the lower bound), then n 

= 1 for *COH. If we continue to n = 2, a total stabilization of −0.51 eV, but −0.51 – 

(−0.45) ≥ −0.20. Thus, it is unlikely that *COH will be stabilized by a second water 

molecule, and we conclude that n = 1. 

When in vacuum calculations of *OH on Cu(111) are performed, the most stable site 

of adsorption is found at fcc hollows. However, in a solvated environment, *OH is 

more stable on atop sites. Note that in Table 4.2, the solvation correction for *OH of 

−1.27 eV is substantially more negative than for the ad hoc methods, since it is based 

on atop *OH in vacuum. If it were referred to *OH in vacuum adsorbed at fcc hollows, 

the correction would be −0.58 eV, which agrees with the ad hoc methods36, 39, 54.  

We rationalize the trends for OH-containing adsorbates in Table 4.2 based on the 

polarity of the O-H bonds. In the ET
N scale, which is a dimensionless scale of solvent 

polarity 175, 176 that extends from 0 to 1, H2O has a polarity of 1 and is the most polar 

solvent. When a hydrogen atom is replaced in the structure by CHx groups to give e.g. 

CH3OH, CH3CH2OH and CH3CH2CH2OH, the polarity goes down to 0.762, 0.654, and 

0.617. The same holds for carboxylic acids, such as HCOOH, CH3COOH, and 

CH3CH2COOH, the polarities of which are 0.728, 0.648, and 0.611. Thus, polarity 

decreases as CHx groups are added to -OH. The same occurs to the OH-containing 

adsorbates in this study when interacting with 1*H2O (i.e. n = 1), so that the strength 

of their hydrogen bonds with water progressively decreases. Indeed, OH = −0.58 eV, 

while COH = −0.45 eV, and *CHOH, *CH2OH and *COOH have i ≈ −0.28 eV. 

Previous results hinted toward a correlation between the strength of adsorbate-solvent 

hydrogen bonds, the solvent’s polarity and the adsorbate’s polarizability145. 

Table 4.3 summarizes the EZPE, vibrational entropies TSvib (at 298.15 K), and the 

formation energies from CO2, (∆Gf) calculated using the micro-solvation corrections.  
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Table 4.3. Calculated formation energies (∆Gf) with solvation corrections for intermediates of the 

CO2RR to CO, CH3OH, and CH4. All values are in eV. Note that Zero-point energies (EZPE) and 

vibrational contributions to the entropy (TSvib) do not depend of the correction and correspond to those 

of Table 3.2. 

Adsorbate EZPE TSvib ΔGf / @Cu(111) ΔGf / @Cu(100) ΔGf / @Cu(110) 

*COOH 0.62 0.22 0.71 0.54 0.33 

*CO 0.16 0.14 0.06 0.16 0.01 

*CHO 0.46 0.14 1.11 0.90 0.84 

*CH2O 0.74 0.15 0.76 0.48 0.41 

*CH3O 1.08 0.22 −0.03 −0.15 −0.33 

*CH2OH 1.06 0.21 0.81 0.67 0.42 

*O 0.06 0.06 −0.48 −0.76 −0.75 

*OH 0.35 0.10 −1.27 −1.42 −2.53 

*COH 0.46 0.15 0.89 0.74 0.84 

*CHOH 0.76 0.18 1.09 1.08 0.80 

*C 0.09 0.03 2.08 0.85 1.41 

*CH 0.33 0.05 0.82 0.32 0.80 

*CH2 0.55 0.09 0.45 0.38 0.22 

*CH3 0.90 0.15 −0.18 −0.20 −0.52 

 

In Figure 4.2 a) and b) we present the most favorable energy diagrams from CO2 to 

*CH4 on Cu(111), Cu(100), and Cu(110), obtained using this method.  

 

Figure 4.2. a) Most favorable free-energy diagrams for the CO2RR to CH4 on Cu(111) (orange), Cu(100) 

(red), and Cu(110) (blue) at 0 V vs RHE.  
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Figure 4.2. b) Schematics of the lowest-energy pathways to CH4 found applying the micro-solvation 

method described in this work. There is a bifurcation upon *COH hydrogenation to form either *C (on 

Cu(100)) or *CHOH (on Cu(111) and Cu(110)), and the separate pathways reunite on *CH2.  

 

Early computational studies based only on Gibbs energies39, 55 and also those that 

incorporate the kinetic barriers177, 178 of CO2RR, predicted the *CO hydrogenation to 

*CHO as the potential-determining step (PDS). By applying the solvation corrections 

found for Cu(111) to the other Cu facets, we observe that *CO is hydrogenated to 

*COH instead of *CHO in all cases.  

Two key experimental features to consider are the modest formation of methanol 

during CO2RR and the reduction of CH2O(g) almost exclusively to CH3OH179. 

Therefore, the reaction pathway to CH4 should not proceed through *CH2O, in contrast 

with early computational predictions39, 55. In agreement with these experimental 

observations, no pathway to CH4 in Figure 4.2 goes via *CH2O. 

As can be seen, by using ad hoc solvation corrections36, 39 it was predicted that *CHO 

would predominate over *COH on Cu. However, this trend was reversed when the 

strong hydrogen bonds between *COH and water molecules and the weak stabilization 
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of *CHO were considered. We note that similar arguments have been put forward for 

the stability of *COH vs *CHO on Pt103, 133, 180, 181. 

Although *CHO has a more negative adsorption energy than *COH in vacuum, the 

strong hydrogen bonding with H2O makes *COH more stable in solution (energies in 

vacuum in Table 4.1 and in solution in Table 4.3). Our thermodynamic results agree 

with those of more elaborate computational studies including kinetics of the 

electrochemical steps, which also predict the formation of *COH101, 103, 181-183. This 

important observation will be assessed later in chapter 5, comparing the reaction 

mechanisms with experimental data and showing how CO2 reduction to CH4 on Cu 

occurs via two different potential-dependent pathways. 

Nevertheless, at this point it is also important to verify if the micro-solvation method 

developed also improves the quantitative predictions of the onset potentials of CO2RR 

and associated reactions on transition metals other than Cu.  

4.3. Micro-solvated CO2RR on other transition metals 

We have used the calculated value of ΩH2O
HB

 on Cu, Au, Ag and Zn (see Table 3.1) to 

evaluate the number of hydrogen-bonded water molecules (n) and their contribution to 

the adsorption energies (ΩA) for the following reactions: CO2RR to CH4 on Cu single-

crystal electrodes117, 184, 185, CO2RR to CO on polycrystalline (poly) and/or single-

crystal electrodes of Cu, Ag, Au, and Zn114, 186-188, CO2RR to CH3OH on polycrystalline 

Cu114, CO reduction to CH4 on Cu(100)44, and CH2O reduction to CH3OH on 

polycrystalline Cu179. 

To represent polycrystalline electrodes, we calculated several facets and took the 

earliest onset potentials in each case. For the calculations on Ag and Au, the following 

surfaces were used: Ag(111), Ag(110), Ag(211), Au(111), Au(110), Au(211). For Zn 

we calculated Zn(0001) and fcc Zn(211), which was used as a proxy to a Zn stepped 

surface.  
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Onset potentials were calculated as described in section 1.2.7 for the CO2RR to produce 

CH4, CH3OH and CO, CORR to CH4, and CH2O reduction to CH3OH on Cu. Figure 

4.3. we present a comparison of the calculated onset potentials and previously reported 

experimental values for these reactions. The specific values for Cu are in previous 

section (Tables 4.2 and 4.3), experimental onset potentials and specific values for the 

other metals are at the end of this section (Tables 4.4 to 4.6). 

 

Figure 4.3. Parity plot for the calculated (y-axis) and experimental (x-axis) onset potentials Uonset (V vs 

RHE) on different transition metals for CO2RR to produce CH4, CH3OH and CO; CORR to CH4; and 

CH2O reduction to CH3OH. Experimental data taken from44, 76, 114, 117, 184, 186-188. Error bands of ± 0.15 V 

surround the parity line. 

 

In all cases in Figure 4.3, the data obtained using the proposed method show good 

agreement with experimental values, being the mean absolute error (MAE) only 0.07 V 

and the maximum absolute error (MAX) 0.13 V in a window of potentials of ~0.7 V. 

To compare the proposed method to different solvation methods available in the 

literature (implicit solvation149, Ad hoc 154, and Ad hoc 236, 39), in Figure 4.4  we 

present the results of calculations using these solvation approaches. MAEs and MAXs 

obtained are shown in Figure 4.5. We observe a MAE of 0.25 V when neglecting 

solvation, and MAEs around 0.11-0.16 V when other solvation methods were applied.  
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Figure 4.4. Parity plots for calculated (y-axis) and experimental44, 76, 114, 117, 184 (x-axis) onset potentials 

(Uonset) of CO2RR to produce CH4, CH3OH and CO; CORR to CH4; and CH2O reduction to CH3OH. A) 

No solvation included (in vacuum). B) Solvation included using an implicit method149, C)Ad hoc 154 

corrections. D) Ad hoc 236, 39 corrections. Error bands of ± 0.15 V surround the parity line. 

 

 

Figure 4.5. Mean absolute error (MAE) and maximum absolute error (MAX) of the calculated onset 

potentials compared to experimental measurements44, 76, 114, 117, 184. We include the case where no 

solvation corrections were applied, and also the cases where solvation was included implicitly149, or 

adding the Ad hoc 154, Ad hoc 236, 39, or our solvation corrections2.  
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The discrepancies between the solvation approaches may lead to mispredictions of the 

intermediates and onset potentials of electrocatalytic reactions. Therefore, not only 

neglecting solvation induces large errors in the predictions, the quality of the 

predictions eventually depends on the applied solvation corrections.  

 

Table 4.4. Experimental onset potentials (Uonset in V vs RHE) for CO2RR and associated reactions on 

various electrodes. 

Electrode and reaction Uonset Electrolyte (pH) Data source 

Cu(111), CO2RR to CH4 −0.90 0.1 M KHCO3 (pH = 6.8) 184 

Cu(100) CO2RR to CH4 −0.70 0.2 M phosphate buffers (pH = 7.0) 117 

Cu(110) CO2RR to CH4 −0.90 0.1 M KHCO3 (pH = 6.8) 184 

Cupoly CO2RR to CO −0.40 0.1 M KHCO3 (pH = 6.8) 114 

Agpoly CO2RR to CO −0.60 0.1 M KHCO3 (pH = 6.8) 186 

Znpoly CO2RR to CO −0.60 0.1 M KHCO3 (pH = 6.8) 114 

Aupoly CO2RR to CO −0.26 0.1 M KHCO3 (pH = 6.8) 114 

Au(111) CO2 to CO −0.66 0.1 M KHCO3 (pH = 6.8) 187 

Ag(111) CO2 to CO −0.94 0.1 M KHCO3 (pH = 6.8) 188 

Cu(100) CORR to CH4 −0.65 0.1 M KOH (pH = 13) 44 

Cupoly CO2RR to CH3OH −0.93 0.1 M KHCO3 (pH = 6.8) 114 

Cupoly CH2O to CH3OH −0.30 0.2 M phosphate buffers (pH = 7.0) 179 

 

 

Table 4.5. For *COOH, we report: Zero-point energies (EZPE), vibrational contributions to the entropy 

(TSvib), solvation corrections calculated with the presented method (Ωthis work), with an implicit method 

(Ωimplicit), and those of the ad hoc methods 1 and 2 (Ωad hoc 1 / 2), and formation energies (ΔGf, this work, ΔGf 

,implicit, ΔGf, ad hoc 1 / 2) on various facets of Ag, Au, and Zn. (Values in eV) 

Surface EZPE TSvib 
Ω 

this work 

Ω 

implicit 

Ω 

ad hoc 1 / 2 

ΔGf 

this work 

ΔGf 

implicit 

ΔGf 

ad hoc 1 / 2 

Ag(111) 0.59 0.26 −0.44 −0.22 −0.48 / −0.25 0.90 1.13 0.87 / 1.10 

Ag(110) 0.59 0.28 −0.44 −0.22 −0.48 / −0.25 0.65 0.87 0.61 / 0.84 

Au(111) 0.60 0.34 −0.42 −0.26 −0.48 / −0.25 0.71 0.87 0.65 / 0.88 

Au(211) 0.60 0.34 −0.42 −0.26 −0.48 / −0.25 0.34 0.50 0.28 / 0.51 

Zn(0001) 0.62 0.22 −0.50 −0.25 −0.48 / −0.25 0.84 1.08 0.85 / 1.08 

Zn(211) 0.63 0.21 −0.50 −0.25 −0.48 / −0.25 0.08 0.32 0.09 / 0.32 

Average 0.61 0.28 −0.45 −0.24 −0.48 / −0.25 - - - 
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Table 4.6. For *CO, we report: Zero-point energies (EZPE), vibrational contributions to the entropy 

(TSvib), solvation corrections calculated with the presented method (Ωthis work), with an implicit method 

(Ωimplicit), and those of the ad hoc methods 1 and 2 (Ωad hoc 1 / 2), and formation energies (ΔGf, this work, ΔGf 

,implicit, ΔGf, ad hoc 1 / 2) on various facets of Ag, Au, and Zn. All values are in eV. 

Surface EZPE TSvib 
Ω 

this work 

Ω 

implicit 

Ω 

ad hoc 1 / 2 

ΔGf 

this work 

ΔGf 

implicit 

ΔGf 

ad hoc 1 / 2 

Ag(111) 0.16 0.26 0.00 0.00 −0.10 / −0.10 0.66 0.66 0.56 / 0.56 

Ag(110) 0.16 0.25 0.00 0.00 −0.10 / −0.10 0.52 0.51 0.42 / 0.42 

Au(111) 0.17 0.15 0.00 −0.05 −0.10 / −0.10 0.70 0.65 0.60 / 0.60 

Au(211) 0.18 0.22 0.00 −0.05 −0.10 / −0.10 0.26 0.21 0.16 / 0.16 

Zn(0001) 0.17 0.22 0.00 −0.04 −0.10 / −0.10 0.80 0.76 0.70 / 0.70 

Zn(211) 0.17 0.17 0.00 −0.04 −0.10 / −0.10 0.61 0.58 0.51 / 0.51 

Average 0.17 0.21 0.00 −0.03 −0.10 / −0.10 - - - 

 

Note that each adsorbate on each metal has different solvation corrections, for instance, 

COOH on Cu is −0.28 eV (Table 4.2), whereas it is −0.42 eV for Au, −0.44 eV for Ag, 

and −0.50 eV for Zn, (Tables 4.5). Recent works have shown that extrapolating the 

solvation corrections of a given adsorbate from one material to the next is not always 

advisable46, 142, 173, 189. And our results also attest to that. 

4.4. Evaluating dispersion effects 

Recent works on micro-solvation have shown that only the first solvation shell of the 

adsorbate is needed to get a fair estimation of its solvation correction on Pt173. We 

evaluated this on Cu(111) by comparing OH in a periodic water bilayer and in a micro-

solvated environment (with and without dispersion corrections190, as well as with and 

without an implicit medium149). Since there are no sizable differences between the 

values of OH obtained in a micro-solvated environment and a full water layer 

combined with an implicit solvent, without any loss of generality, n corresponds in the 

following analysis to the adsorbate’s first solvation shell (more precisely, to the number 

of water molecules connected to the adsorbate by hydrogen bonds). Our model assumes 

that the surface is large enough to accommodate *A, that there are enough water 
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molecules in the system to solvate it and that the coverage of *A enables its full 

solvation. 

We have verified that the use of PBE and accounting only for the first solvation shell 

do not induce large errors in our approach. To do so, we compared the results of PBE 

to those obtained with the DFT-D3 method developed by Grimme et al190, as 

implemented in the VASP code, and the solvation corrections using the first solvation 

shell and a full water bilayer. We have taken *OH as a case study. A 3×3 Cu(111) slab 

with 4 atomic layers (denoted 3×3×4) was used for the simulations. The dimensions of 

the cell were chosen to ensure that the adsorbed cluster did not interact with itself when 

periodic boundary conditions were applied. First, we simulated the first solvation shell 

of *OH on the Cu slab, as is shown in (4.1).  

4*H2O → *OH + 3*H2O + (H++e-) (4.1) 

The reaction energy of that process is ∆GOH
MS

,  

∆GOH
MS = ∆G4*H2O − ∆G*OH − ∆G3*H2O −  ∆G(H++e-) (4.2) 

where MS stands for micro-solvation to comply with the notation in ref173. 

Subsequently, the calculations were performed including a full (i.e. periodic) water 

layer on the same Cu slab, which can be described using the following the reaction:  

6*H2O → *OH + 5*H2O + (H++e-) (4.3) 

The reaction energy of that process is ∆GOH
WB

,  

∆GOH
WB = ∆G6*H2O − ∆G*OH − ∆G5*H2O −  ∆G(H++e-) (4.4) 

where WB stands for water bilayer. In Figure 4.6. the configurations of both systems 

used to model solvated *OH are shown. Note that the configurations for the water-only 

clusters to the left of (equation 4.1 and equation 4.3) are rather like those in Figure 4.6 

and differ mostly on the fact that the central molecules are *H2O instead of *OH. 
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Figure 4.6. Top views of the two systems considered for the dispersion analysis of *OH on Cu(111). H 

and O atoms are shown in white and red. Cu atoms are shown in different purple and pink shades 

depending on the layer. Adsorbed clusters included on each periodic cell are highlighted. a) *OH, on a 

top site including only its first solvation shell (3*H2O). b) *OH, with a complete layer of adsorbed water 

molecules (5*H2O). In both cases, we used 3×3×4 Cu(111) super-cells. 

 

When comparing the solvation correction calculated with a full water bilayer (ΩOH
WB

) to 

the one obtained using only the first solvation shell (ΩOH
MS

) for a given level of theory, 

e.g. PBE, the difference should be close to zero if the first shell is indeed enough to 

capture the essence of solvation:  

ΔΩ
i = ΩOH

WB,i − ΩOH
MS,i ≈ 0 (4.5) 

Equation (4.5) should also hold if dispersion corrections are not strictly necessary for 

a fair assessment of the solvation corrections. On the other hand, one can show that the 

difference between the solvation corrections calculated with the full water bilayer and 

the first solvation shell is: 

ΔΩ = ΔGOH
WB − ΔGOH

MS
 (4.6) 

As can be seen in Table 4.7, ΔGOH
WB

 changes from 0.04 to −0.12 eV when including D3 

dispersion corrections. Similarly, ΔGOH
MS

 changes from 0.08 to −0.05 eV when 

including D3 dispersion corrections. These changes are expectable, as dispersion 

stabilizes water adsorption171, 173. However, ΔΩ is close to zero in both cases, which 

shows that there are no sizable differences in using all the molecules of the water layer 
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or using only the first solvation shell of the adsorbate, with or without including 

dispersion corrections.  

 

Table 4.7. Adsorption and solvation corrections of *OH within a full water bilayer (WB) and including 

the first solvation shell (MS) only. All values are in eV. 

Method ΔGOH
WB ΔGOH

MS  ΔΩ 

PBE 0.04 0.08 −0.04 

PBE+D3 −0.12 −0.05 −0.07 

 

Moreover, in Table 4.8 we provide results for a water bilayer with/without an implicit 

solvent (VASPsol149) in the calculations, the micro-solvation environment 

with/without an implicit solvent, and an implicit solvent with no explicit H2O 

molecules in the simulation.  

 

Table 4.8. Adsorption energies of *OH within an explicit full water bilayer with and without implicit 

solvation (WBI, WB, respectively), in the micro-solvation environment with and without implicit 

solvation (MSI, MS, respectively), and with implicit solvation only (I). All values are in eV and 

calculated using PBE. 

Adsorbate ΔGOH
WB ΔGOH

WBI ΔGOH
MS  ΔGOH

MSI ΔGOH
𝐼  

*OH 0.04 0.12 0.08 0.05 0.86 

 

The results in Table 4.8 hint toward two facts: first, the implicit solvent provided by 

VASPsol does not capture hydrogen bonds, as all values from calculations including 

some degree of explicit water are in the narrow range of 0.04-0.12 eV, and the result 

of the implicit method is considerably more positive (0.86 eV). Second, the micro-

solvation environment approximates well the results of a more complete simulation 

including a full bilayer combined with an implicit medium; their difference for *OH is 

0.04 eV (ΔGOH
WBI − ΔGOH

MS = 0.12 − 0.08 = 0.04 eV). 



68 

 

4.5. Estimation of solvation contributions using DFT energies 

The method developed in chapter 3 calculates the solvation corrections Ω𝑖  directly 

from the differences in ∆EDFT instead of the full expression for ∆G, that is, including 

EZPE and TS corrections. Thus, it is important to assess the validity of the 

approximation ∆EZPE − T∆S ≈ 0 for the adsorption systems under study. *COH is 

used as an example to show the effect of these corrections on the solvation 

contributions. As n = 1 for *COH, the process and the solvation contribution can be 

written respectively as: 

*COH + [1*H2O+*] → * + [*COH+1*H2O] (4.7) 

ΩCOH = ∆Gf
*COH+1*H2O

− ∆Gf
*COH − ∆Gf

*+1*H2O
 (4.8) 

According to the method developed in chapter 3, this was approximated as: 

ΩCOH ≈ ∆Ef
*COH+1*H2O

− ∆Ef
*COH − ∆Ef

*+1*H2O
 (4.9) 

Table 4.9 shows the DFT and Gibbs energies of formation for this adsorbate-water 

system. The solvation correction of *COH without accounting for EZPE and TS 

(equation 4.9) is ΩCOH = 0.06 − 0.68 − (−0.17) = −0.45 eV. Analogously, the solvation 

correction of *COH accounting EZPE and TS (equation 4.6) is 

ΩCOH = 1.36 − 1.45 − 0.36 = −0.45 eV (values taken from the fifth column of 

Table 4.6). This suggests that zero-point energy and entropy corrections can be safely 

neglected when computing solvation corrections with the proposed method. Indeed, we 

find that ΔEZPE = −0.03 eV and TΔSvib = −0.03 eV, thus ∆EZPE − T∆Svib = 0. 

 

Table 4.9. Zero-point energy and vibrational entropy contributions to the adsorption energies of *COH 

solvated by 1*H2O and in vacuum. All values are in eV. 

Description EZPE TSvib ΔEf ΔGf 

*COH + 1*H2O 1.07 0.32 0.06 1.36 

*COH 0.46 0.15 0.68 1.45 

* + 1*H2O 0.63 0.20 −0.17 0.36 

* - - 0.00 0.00 
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4.6. Evaluation of the work function 

Finally, we calculated the changes in work function upon water co-adsorption on 

Cu(111) with *COH adsorbed in vacuum, [*COH + 1*H2O], and [*COH + 2*H2O]. 

The obtained values were 4.68, 4.67, and 4.68 eV, respectively. Thus, we can conclude 

that in this case the work function does not significantly change as the number of 

adsorbed water molecules is moderately increased. 

Summary 

In this chapter, we successfully applied our micro-solvation model to CO2RR on Cu 

and other transition metals. We used the same solvation corrections between facets of 

the same metal, and we found no apparent inconvenience. The discrepancies of some 

solvation approaches were evaluated, and it was found that by applying this method, 

the MAE and MAX errors in the onset potential calculations decrease. Our results also 

show that the magnitudes of the solvation interactions are significant for accurate 

modeling of the reaction. 

However, the solvation energies for the same adsorbates may drastically change among 

metals. Therefore, opposite to common ad hoc solvation practices, we do not encourage 

the extrapolation of solvation corrections obtained for a given metal to another, since 

solvation energies not only depend on the adsorbate but also depend on the metal used. 

Additionally, for the estimation of the solvation corrections, the dispersion effects, 

vibrational contributions to the entropy for Ω, and work function changes were 

neglected. We have found that this is a safe approximation for small adsorbates, but we 

recommend a careful analysis of these considerations if different adsorbates are 

evaluated.  

Our results of CO2RR on Cu using the micro-solvation method, suggest the formation 

of *COH, agreeing with more elaborate computational studies. In the next chapter we 

explore in deep this observation and the subsequent catalytic routes enabled through 

this key reaction intermediate.  
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Chapter 5. Analysis of the deactivation of Cu 

catalysts during CO2RR to CH4 

 

The deactivation of Cu electrodes during long-term operation significantly affects the 

scalability and deployment of CO2 electrolyzers. It has been observed that Cu surfaces 

that tend to deactivate are often CH4-selective191. On the other hand, oxide-derived Cu 

catalysts (OD-Cu), which reduce CO2 dominantly to ethylene and ethanol, do not tend 

to deactivate rapidly192, 193. These facts suggest that there are reaction pathways in 

CO2RR that promote the deactivation, producing reaction intermediates that poison the 

surface. Moreover, such pathways should operate particularly while producing C1 

species, like CH4. A similar behavior has been often observed in gas-phase thermal 

catalysis194. However, in the field of CO2RR this possibility has been generally side-

stepped.  

Many possible routes to CH4 have been suggested in literature39, 101, 183, 195-197. Starting 

from the *CO hydrogenation products, they are:  

*CHO → *CH2O → *OCH3 → CH4,  (5.1) 

*CHO → *CHOH → *CH → *CH2 → *CH3 → CH4, (5.2) 

*COH → *CHOH → *CH2OH → *CH2 → *CH3 → CH4,  (5.3) 

*COH → *C → *CH → *CH2 → *CH3 → CH4.  (5.4) 

Equation (5.4) shows that CO2RR can lead to *C and *CH, both of which could 

polymerize, thereby coking the electrode. However, few studies have suggested that 

CO2 reduces to graphitic carbon198-200, and deactivation of Cu catalysts has been 

generally attributed to the cathodic deposition of Fe and Zn contaminants from the 

electrolyte onto the Cu cathode during CO2RR201, or to surface restructuring after 

operation202. Most common strategies to mitigate Cu deactivation, include the use of 
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ultrapure salts for preparing the electrolytes and cation-exchange resins to scavenge for 

these trace metal ions203.  

The following sections contain the experimental results of the CO2RR on Cu 

electrodes3 (Cu(100), Cu(110), and Cu(111) surfaces), and provide a joint theoretical-

experimental analysis of the facet- and potential-dependent Cu deactivation pathways. 

5.1. Experimental CO2RR on polycrystalline and single-crystal 

Cu facets 

Experimental measurements of CO2RR activity were performed on different Cu 

electrodes*. The results are condensed in Table 5.1.  

 

Table 5.1. Summary of the chronoamperometric behavior of the CO2RR in aqueous 0.1 M KHCO3 

electrolyte measured over a two-hour period on polycrystalline Cu (Cupoly), Cu(111) and Cu(100) 

electrodes at -0.90, -1.05 and -1.20 V vs RHE3. (Averages of three sets of measurements). 

Applied V Cupoly Cu(100) Cu(111) 

-0.90 

V vs RHE 

Small activity, 

 jCH4 from -0.01 

to -0.03 mA cm-2 

Deactivation of 67%, 

jCH4 from -0.037  

to –0.012 mA cm-2 

Negligible activity 

-1.05 

V vs RHE 

Deactivation of 66%, 

jCH4 from -2.3  

to -0.8 mA cm-2 

Deactivation of 57%, 

jCH4 from -3.0  

to -1.3 mA cm-2 

Deactivation of 89%, 

jCH4 from -0.92  

to -0.10 mA cm-2 

-1.20 

V vs RHE 

Not deactivated,  

average jCH4  

of 11.1 mA cm-2 

Not deactivated,  

average jCH4  

of -10.0 mA cm-2 

Deactivation of 62%, 

jCH4 from -11.3  

to -4.4 mA cm-2 

 
* Experimental measurements were performed in collaboration with Qi Hang Low, Samantha Hui Lee 

Hong, and Professor Boon Siang Yeo, from the Solar Energy Research Institute of Singapore (SERIS), 

at National University of Singapore. 
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To identify the causes of Cu deactivation, a thorough characterization of the electrolyte 

and of Cu surfaces after CO2RR of Cu electrodes was done. Table 5.2 summarizes the 

main results of such analyses.  

 

Table 5.2. Main characterization results after CO2RR for the aqueous 0.1 M KHCO3 electrolyte and 

polycrystalline Cu (Cupoly), Cu(111) and Cu(100) electrodes.  

Component Technique Parameters Results 

Electrolyte 

(0.1 M KHCO3) 

ICP-OES: 

Plasma-Optical Emission 

Spectroscopy 

Detection limit: 

 ~ 0.003 ppm 

No presence of  

metal contaminants 

Cupoly XPS: 

X-ray Photoelectron 

Spectroscopy 

Energy regions: 

Zn: 1010-1050 eV 

Ni: 840-880 eV 

Fe: 40-70 eV 

No signals observed  

in these regions 

Single crystals 

Cu(100) 

Cu(111) 

CV: 

Cyclic Voltammetry 

Scan rate: 

50 mV/s 

 

Similar CVs.  

Surface orientation mainly 

unchanged. 

 

The measurements in Tables 5.1 and 5.2 indicate that the deactivation of Cu electrodes 

did not result from changes in surface crystallography or the presence of metal 

contaminants on the catalyst. Instead, deactivation may be a consequence of coking by 

the generation of reaction intermediates during CO2 electrolysis. As can be seen in 

Table 5.1, such deactivation is potential- and facet-dependent: the onset potential for 

the constant production of CH4 is less negative on Cu(100) (-1.05 V vs RHE) compared 

to Cu(111) (-1.20 V vs RHE). Since changes in surface structure and poisoning by 

trace metals can be ruled out as the causes of this phenomenon, the evidence hints 

toward mechanistic formation of graphite during the catalytic cycles of CO2RR. We 

postulate that the “coking” pathway dominates at low applied overpotential, and at high 

applied overpotential there appears to be a non-coking pathway, where *C (common 

cause for coking) is not formed during CH4 production.  
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5.2. Combining theory and experiments to analyze Cu 

deactivation 

Schematics of the CO2RR pathways to CH4 on Cu are shown in Figure 5.1.  

 

Figure 5.1. Schematics of the CO2RR to CH4 on Cu electrodes. The bifurcation between the non-coking 

(right, via *CHO) and coking (left, via *COH) pathways occurs during *CO hydrogenation. Steps along 

the reaction network are electrochemical, as the barriers of chemical steps for C-O bond scissions are 

considerably larger than the corresponding electrochemical barriers37, 195, 204. 

 

CH4 evolution on Cu likely proceeds via two different pathways as the potential is 

varied. The two pathways diverge from *CO hydrogenation, as *COH or *CHO can 

be formed. At less negative potentials, CH4 production proceeds through a mechanism 

that deactivates the electrode. At more negative potentials, an additional mechanism 

for CH4 evolution, that does not poison the electrode, is opened. Importantly, the 
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analysis proceeds by reconsidering the usual experimental approximation that the 

symmetry factors (see section 1.2.8) of electrochemical steps () are identical and 

equal to a half205. 

The coking pathway proceeds via *COH (route (d) mentioned before), and we suggest 

that *C, rather than *CH, is the coking species, as the formation of acetylene has not 

been reported on Cu during CO2RR67, 69, 206. On the other hand, a pathway via *CHO 

will likely form *CHOH69, 195, which avoids the formation of *C.  

In Figure 5.2, we show the adsorption energies of *CO, *CHO, and *COH on Cu(111) 

and Cu(100) with respect to *CO at 0 V vs RHE. The transition states to electroreduce 

*CO to *COH (TSCOH, black) and *CHO (TSCHO, red) are also shown for the lower-

bound case in which the kinetic barriers coincide with the uphill energy differences. 

However, knowledge of the exact location of the transition states is not required in the 

following analysis. We will only assume that the thermodynamic differences at 

0 V vs RHE of the transition states are equivalent to those of the final states, as is 

shown in Equation (5.1). This assumption is justified by Brønsted-Evans-Polanyi 

(BEP) relations3, 37, 207. 

 

Figure 5.2. Gibbs energy diagrams for the hydrogenation of *CO on (a) Cu(100) and (b) Cu(111) at 

0 V vs RHE. The formation of *COH (black) and *CHO (red) is shown for both facets. The values in 

parentheses correspond to the energies of formation calculated with respect to *CO, protons and 

electrons. For convenience and without any impact on the analysis, the transition states are set to the 

lower-bound case in which they are equal to the final states (see text for details). Dashed lines are merely 

a guide to the eye to connect initial, transition and final states. 
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∆GTSCHO
− ∆GTSCOH

≈ ∆GCHO − ∆GCOH (5.1) 

According to Figure 5.2, the thermodynamic differences for the formation of *COH 

and *CHO are 0.16 and 0.21 eV on Cu(100) and Cu(111), respectively (see also Table 

4.3). The assumption also seems reasonable when considering that earlier reports on 

Cu(111) showed differences of 0.25-0.27 eV in the kinetic barriers of *CHO vs *COH 

at 0 V vs RHE182, 195. Based on Equation (1.32), the potential-dependent difference of 

Gibbs energies between the transition states of two competing pathways, namely those 

via *CHO and *COH, is given by Equation (5.2). 

ΔGTSCHO

# − ΔGTSCOH

# ≈ ΔGTSCHO
− ΔGTSCOH

+ (β
CHO

− β
COH

)eU (5.2) 

The left side of this Equation (i.e. ΔGTSCHO

# − ΔGTSCOH

#
) is potential-dependent because 

the kinetics may change as a function of the applied potential. The difference at the 

right side, ΔGTSCHO
− ΔGTSCOH

, is independent of the applied potential and 

corresponds to the thermodynamic states at 0 V vs RHE. And the potential dependence 

is incorporated by the last term, (β
CHO

− β
COH

)eU. 

According to Figure 5.2, at 0 V vs RHE the *COH-based pathway dominates, but a 

shift happens when there is a sign change in equation 5.2. In other words, the pathways 

will shift at the potential for which the difference in the energies of the transition state 

is zero (ΔGTSCHO

# − ΔGTSCOH

# = 0). Given that ΔGCHO − ΔGCOH > 0, in Figure 5.3 this 

can only happen if β
CHO

> β
COH

 and the potential is made increasingly negative. We 

emphasize that, based on equation 5.2, if the symmetry factors of competing 

elementary reactions are assumed equal, there should be no pathway shift at different 

applied potentials. However, if β
CHO

≠ β
COH

, it is possible to calculate the difference 

in symmetry factors as:  

β
CHO

− β
COH

≈ (ΔGCHO − ΔGCOH)/−eU (5.3) 
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Given that deactivation starts declining on Cu(100) at -1.05 V vs RHE and on Cu(111) 

at -1.20 V vs RHE (see Table 5.1), we conclude from Equation (5.3) that 

(β
CHO

− β
COH

)
@Cu(100)

≈ 0.15  and (β
CHO

− β
COH

)
@Cu(100)

≈ 0.18 . We note that 

equation 5.3 predicts the difference of the symmetry factors for two competing 

intermediates. To know one of the individual symmetry factors, it is necessary to know 

or assume the other one. For instance, assuming β
COH

= 0.5, equation 5.2 predicts 

β
CHO

= 0.65 for Cu(100) and 0.68 for Cu(111). Alternatively, assuming β
CHO

= 0.5 

we obtain β
COH

= 0.35 for Cu(100) and 0.32 for Cu(111). 

These symmetry factors (β
COH

= 0.5 for both facets, β
CHO

= 0.65 for Cu(100) and 

0.68 for Cu(111)) can be used to modify Figure 5.2 (made at 0 V vs RHE) so as to 

observe pathway shifts at -1.05 and -1.20 V vs RHE for Cu(100) and Cu(111), 

respectively. The resulting Gibbs energy diagrams are presented in Figure 5.3 at the 

applied potential required to shift the mechanisms from *COH-based (coking pathway) 

to *CHO-based (non-coking pathway). Altogether, Figures 5.2 and 5.3 show that 

thermodynamics makes the CO2RR pathway proceed initially via *COH but, because 

of the smaller symmetry factors of *COH, kinetics incline the pathway toward *CHO 

as the potential is increasingly negative. 

 

Figure 5.3. Gibbs energy diagrams for the hydrogenation of *CO to *COH (black) and *CHO (red) at 

the potentials for which the non-coking pathway becomes kinetically more favorable than the coking 

pathway. (a) Cu(100) at -1.05 V vs RHE. (b): Cu(111) at -1.20 V vs RHE. The symmetry factors used 

are βCOH = 0.5 for both Cu(111) and Cu(100), and βCHO = 0.68 for Cu(111) and βCHO = 0.65 for Cu(100). 

Dashed lines are merely a guide to the eye to connect initial, transition and final states. 
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The quality of the predictions made with equation 5.2 depends on the accuracy of the 

calculated adsorption energies in solution, which comprise adsorbate-solvent 

interactions. While different methods consistently predict low or null solvation 

stabilization for *CO in H2O, significant differences (~0.2 eV) are observed for *COH 

because hydrogen bonding is generally not captured by implicit solvation methods167, 

173, 196. Thus, it is advisable to account for solvent-adsorbate effects by explicitly 

including H2O in the calculations using method described in Chapter 4. 

Summary 

In this chapter we analyzed the two-existing potential-dependent pathways on Cu 

during CO2RR to CH4 at different potentials. The lower overpotential pathway 

deactivates the electrodes, whereas the higher overpotential pathway does not. Using 

experimental findings and our calculations, we illustrate that the deactivation of Cu 

catalysts may not solely be due to contamination from trace metals, as commonly 

believed, but it may also be a consequence of a *COH-based coking pathway. 

Therefore, to produce CH4 at low overpotentials without electrode deactivation, it 

would be advisable to stabilize *CHO with respect to *COH and/or increase its 

symmetry factor.  
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Conclusions and future directions 

 

The work present in this dissertation explores strategies to improve DFT-based 

approaches for modeling the CO2RR in transition metals. To this aim, some of the most 

common assumptions and parameters in CO2RR modeling were reconsidered and 

recalculated. 

It is well known that computational electrochemistry contributes to a richer 

understanding of CO2RR. However, alongside in-depth explanations of CO2RR 

experiments, the main goal and challenge is still the rational design of cost-effective, 

efficient and stable materials to be implemented in CO2 electrolyzers. In this work we 

show that with the incorporation of new assumptions in calculations, the accuracy and 

descriptiveness of CO2RR models increased, and this not necessarily has a negative 

impact in computational time.  

We present in this work, for the first time, a convenient and systematic method to 

calculate solvation in electrochemical reactions, in which only thermodynamic 

calculations are required. This method relies in the fact that the aqueous environment, 

(which could be the “universe” of in-vacuum DFT systems in terms of the second law) 

only form hydrogen bonds with adsorbates if such interaction provides a more stable 

state to the system. 

Hence, in contrast to the conventional assumption of constant solvation interactions, 

we revealed that it is safe to extrapolate corrections to other facets of the same metal, 

but not between different adsorbates, much less between different metals. Correction 

values reported here can be used in future related studies of CO2RR within the same 

exchange correlation functional. And our results also served to prove that the errors of 

the gas phase are also important for the adsorbed phase. 
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Furthermore, the micro-solvation method could be applied to studies of other reactions 

with different adsorbates (e.g., with more than one carbon) or using different 

functionals. It would be interesting to evaluate if the method can be further simplified 

with energy decomposition models. And It would be also insightful to calculate the 

electrochemical barriers of CO2RR on Cu with the micro-solvated environment. 

Our findings also provide an important explanation of deactivation of Cu during 

CO2RR to C1 products at low overpotentials. Since there are two different potential-

dependent pathways and one of them can lead to deactivation. We concluded that to 

avoid coking it would be advisable to stabilize *CHO with respect to *COH and/or 

increase its symmetry factor, instead of assuming them as equal.  

Therefore, to conclude this thesis, I would like to remark that, all the advances obtained 

in this work arose from a careful approach to the thermodynamics of the 

electrochemical system.   
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