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Abstract

During the past 20 years the material science community has seen a tremendous growth
in the development of metamaterials. These correspond to man made designed mate-
rials which, by virtue of its micro-structure, exhibit exotic effective properties and
apparently not available in nature. The common feature, and at the heart of a meta-
material design, is the spatial repetition of a motif which eventually controls its effective
behavior. Such spatial periodicity immediately brings Bloch’s theorem from solid state
physics as the fundamental analysis tool. The application of this theorem allows, in
a very economic way, the identification of potential wave propagation modes and di-
rectional behavior of the material at the macro-scale. Unfortunately, the false power
behind modern numerical methods has promoted an indiscriminate use of computa-
tional techniques in the study of periodic materials thus slowing down the development
of new designs as new and more difficult challenges arise. This work reviews the fun-
damental theoretical aspects of Bloch analysis, and with the aid of in-house numerical
tools, develops conceptual understanding regarding the response of periodic cellular
materials in order to facilitate its future application in emerging fields. To show the
effectiveness behind this rational approach these concepts are applied in the study of
a novel multi-stable periodic material available in the literature. The work concludes
with some ideas, rooted in the simple beam theory from strength of materials which are
intended to pave the way to the future study of wave propagation in periodic materials.

Keywords:

Periodic materials, Bloch analysis, User element subroutine, Directional behavior anal-
ysis, Timoshenko beams.
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Preface

This document summarises the work on wave propagation in periodic media held during
some years of research. The main motivation to make the work presented here was to
understand the unseen concepts under the analysis of periodic structures. Since the
analysis of periodic materials is made through numerical tools, a wide range of problems
can be solved. Also, with the high computational resources available nowadays, results
can be obtained in reasonably short machine times. These two features about the
analysis of periodic materials make it an appealing research area. For instance, if
a periodic material with specific dynamical properties are required, one could find
a periodic structure that matches those properties by trying hundreds of unit cells,
combining different material properties and geometries. At the same time, this ease
to get results can be dangerous since the physical phenomena behind the dispersive
behavior of a periodic material are not clearly understood. Having that in mind we
decided to make an effort to understand Bloch analysis as best as we could. First,
we developed a computational tool to analyse periodic materials; such a tool uses a
strategy that is general enough to consider any spatial dimension or physical context.
Next, we took simple periodic structures, like an infinite unsupported beam, in order to
deeply analyse their wave propagation behavior. The results from simple cases, allowed
us to understand and predict the results from more complex structures. This work
does not contain rare periodic materials or highly computational complex analyses. It
contains very simple cases analysed from a conceptual and rational approach.

This document is structured in 5 chapters. Chapter 1 talks about the general aspects
regarding Bloch analysis. The objective of this chapter is to explain theoretical and
practical concepts about wave propagation in periodic media in a simple way. It covers
from the formulation of Bloch’s theorem to its usage on some simple geometries. Chap-
ter 2 presents a strategy to implement Bloch analysis using user element subroutines.
As it will be shown later, the implementation of Bloch-related problems in commercial
finite element packages pose a series of challenges to be solved. The proposed strategy
deals with such challenges with a simple procedure to apply Bloch boundary conditions
by modifying the assemblage procedure in classic finite element analysis. Chapter 3 pro-
poses a new metrics to compute the directional behavior of periodic materials, which is
a measure of the preferred propagation paths of waves when propagating through the
material. Chapter 4 presents a practical case of study. The concepts and numerical
tools developed in previous chapters are now applied to the analysis of a bi-stable com-
pliant mechanism. The analysis of such mechanism revealed that its dispersive behavior

2



is independent of the stability position. Some structural components are modified in
order to change the mechanism’s dispersive behavior. Chapter 5 is a conceptual study
of simple two dimensional periodic structures. Some key concepts of periodic struc-
tures –like modulation of group speed and appearance of band gaps– are studied using
a Timoskenko beam model. The simplicity of a beam model permits to study the phe-
nomenon of dispersion in a clean and analytical way. After studying a single beam, the
acquired concepts are applied to more complex structures made of beams and to solid
domains under a plain strain idealization. This conceptual analysis finally conduces to
a closed-form expression that allows the tuning of a band gap in a predefined design
frequency. The main objective of chapter 5 is to explore a rational way to study periodic
materials. Several of the ideas exposed in that study require further work and analysis.
Finally, the last part of the document encloses all the previous chapters by presenting
a general conclusion about this work and gives some insights about future work.

In this document, every chapter has an introduction which is intended to put the
reader in context. Sometimes, a short literature review is included depending on the
topics covered by the chapter at hand. At the end of each chapter (except chapter 1)
there are some specific concluding remarks. The idea is that each chapter can be read
independently. They can be thought as independent papers, which are “sewed” to the
main document thanks to their introduction and conclusion sections.
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Chapter 1

Bloch analysis

Introduction

Periodic materials either in the form of composites, like in the so-called phononic crys-
tals, or those in the more exotic family of metamaterials, have received much atten-
tion during the recent years thanks to their various attractive features across different
disciplines (Banerjee, 2011). These artificial materials are designed to meet specific
functionalities through modifications at the microstructural level thus allowing effective
macroscopic responses non-present in nature. Among the most interesting responses one
finds, negative mass density, negative refraction, and electromagnetic cloaking (Hussein
et al., 2014a; Goldsberry & Haberman, 2018; Norris & Haberman, 2012a), while partic-
ular applications are identified in the works of Hiett et al. (2002) in photonic crystals,
Porter & Porter (2003) in micro-structured soils and Michel et al. (1999) in composite
materials. A particular instance of metamaterials are the so-called periodic materials,
which can be characterized through the use of Bloch’s theorem, (Bloch, 1929).

Bloch analysis was originally used at atomic scale in solid state physics (Bloch, 1929;
Brillouin, 1953; Kittel et al., 1976). It takes advantage of the ordered arrangement
of atoms as described by crystal structures; so that, free waves travelling through
an infinite material can be characterized by analysing only one crystal. Due to the
generality of Bloch’s theorem, its use has been extended to elastodynamics. In this
context, it is used to analyse general periodic structures, even in the scale of large
engineering systems Hussein et al. (2014a); Sigalas & Economou (1992).

Perhaps the most useful concept when studying periodic materials is that of the band
structure; a diagram that represents a relation between frequency (or energy) and
wave number along multiple directions in the material. In elastodynamics, the band
diagram is a representation of the dispersion relation describing the nature of free wave
propagation in an elastic (or acoustic) medium (Hussein et al., 2014a). The band
diagram of a material has essential information like the energy distribution of waves
in different directions of propagation; or the ranges of frequency where propagation is
forbidden in one or more directions.
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This chapter aims at explaining fundamental concepts of wave propagation in periodic
media in simple terms. It covers some theoretical concepts about Bloch analysis and
explains how to read and interpret a band or structure diagram. The chapter concludes
with the dispersion results for some unit cells.

1.1 Wave propagation in periodic media

A periodic material is defined as the repetition of a given motif in one, two or three
space dimensions. This motif refers to heterogeneities at the micro-structural level
and it may contain several materials and geometric features. Figure 1.1(a)-(c) show
a three dimensional material with periodicity in one, two and three dimensions. Such
periodic materials are completely described by a lattice and an elementary unit, termed
elementary or unit cell. The lattice is defined by a set of base vectors (fig. 1.1(d)), which
allow construction of the whole material through successive applications of translation
operations of the unit cell (Brillouin, 1953).

The occurrence of band gaps in periodic materials is controlled by two fundamental
mechanisms. Brag scattering, appearing when the wavelength λ of the propagating
field assumes values close to the characteristic size of the material miscroscructure,
and by local resonance induced by the combination of materials with strong impedance
contrasts (Hussein et al., 2014a). The intrinsic periodicity of the material facilitates
the characterization in terms of its dispersion relationships or band structure through
Bloch’s theorem as stated in Brillouin (1953) and discussed next.

(a) (b) (c)

Unit
cell

(d)

Figure 1.1. 3D periodic material with different periodicities. Even though a mate-
rial can be three dimensional, its periodicity could be (a) one, (b) two or (c) three
dimensional. (d) Definition of the unit cell of a periodic material. The material
is constructed applying translation operations to the unit cell following the lattice
vector a.

1.1.1 Bloch’s Theorem

Let us consider a generalized (reduced) wave equation in the frequency domain

Lu(x) = −ρω2u(x) , (1.1)

Bloch analysis 5



valid for a given field u at a spatial point x and where L is a positive definite differential
operator (Reddy, 1986; Kreyszig, 1978; Johnson, 2010), while ρ is the mass density
and ω the corresponding angular frequency. Bloch’s theorem from solid state physics
(Brillouin, 1953) establishes that a solution to eq. (1.1) is of the form

u(x) = w(x)eik·x , (1.2)

where w(x) is a Bloch function carrying with it the same periodicity of the material.
Since the spatial period in w(x) is the lattice parameter a, it follows that

w(x + a) = w(x).

Accordingly, 1.2 is the product of a spatially periodic function w(x), with the periodicity
of the lattice, and a plane wave (of wave vector k), which is also periodic. As a result,
field variables Φ at opposite sides of the unit cell and separated by the lattice vector a
are related through

Φ(x + a) = Φ(x)eik·a. (1.3)

In this case, Φ refers to the principal variable involved in the physical problem, or to
any of its spatial derivatives. From a physical point of view, eq. (1.3) means that a field
variable Φ at points x and x + a differ only by the phase shift eik·a.

In the particular case in which L is of order 2, the generalized Boundary Value Problem
(BVP) conisdering Bloch boundary conditions (BBCs) takes the form:

Lu(x) = −ρω2u(x) , (1.4a)

u(x + a) = u(x)eik·a , (1.4b)

∇u(x + a) · n̂ = −∇u(x) · n̂ eik·a , (1.4c)

where u(x + a) and u(x) give the field at x + a and x respectively while a = a1n1 +
a2n2 + a3n3 is the lattice translation vector shown in fig. 1.1(d).

Note that the BVP encompassed by 1.4 simultaneously describes the space-time pe-
riodicity of the solutions in the cellular material. Time periodicity is present in the
frequency-domain nature of the reduced wave equation, while space periodicity ex-
plicitly appears in the wave number representation of the boundary conditions. The
periodic relationship between opposite sides of the fundamental cell, present in the
boundary terms, allows characterization of the fundamental properties of the material
with the analysis of a single cell. At the same time wave vector k in eq. (1.4) simul-
taneously describes: (i) the propagation direction of a plane wave traveling through
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the unit cell and (ii) the spatial periodicity of the plane wave. In consequence, finding
solutions to the Bloch BVP amounts to finding those ω−k pairs satisfying 1.4 when k
is varied in the dual Fourier based representation of the fundamental material cell. This
dual space corresponds to the reciprocal space and since it carries with it the periodic
character of the physical space it suffices to consider values (and directions) of k within
this reciprocal space representation of the unit cell.

1.1.2 A simple one-dimensional periodic array

The fundamental idea behind Bloch analysis is now described with a simple discrete
one-dimensional problem. Consider the periodic mass-spring system shown in fig. 1.2.
The system is composed by infinite point masses m connected by springs with stiffness
K.

... ...

... ...

... ...

... ...

Figure 1.2. Example of 1D peri-
odic structure and illustration of
harmonic waves of different sizes
propagating along the material.
(a) Periodic array. (b) λ > 2d.
(c) λ = 2d. (d) λ < 2d.

Assume that the fundamental cell encloses a typical mass j and its boundaries with
masses j − 1 and j + 1. Since the inter-mass distance is 2d this is the cell parameter
analogous to a in eq. (1.3). The equation of motion of the j−th mass reads

K(uj+1 − uj)−K(uj − uj−1) = müj (1.5)

while its reduced frequency domain form is

K(uj+1 − uj)−K(uj − uj−1) = ω2müj. (1.6)

Bloch boundary conditions for the j−th mass follow from eq. (1.3):

uj−1 = uje
−i2kd, uj+1 = uje

i2kd. (1.7)

Replacing these Bloch boundary conditions into eq. (1.6) leads, after some manipula-
tions, to

Bloch analysis 7



ω(k) = 2

√
K

m
| sin(kd)| (1.8)

which is the dispersion relation or band structure of the one-dimensional periodic array.
This ω vs k relationship contains all the information relevant to all the possible solutions
to the equation of motion considering the periodic nature of the system.

-2 -1 0 1 2
0

0.5

1

1.5

2

2.5

Figure 1.3. Dispersion relation
of a mass-spring periodic array.
ω0 =

√
K/m.

The dispersion relation is plotted in fig. 1.3. It shows ω as a periodic function of
k with all the information of the dispersion relation being contained in the interval
k = [−π/d, π/d]. This is the reciprocal space or wave number domain representation of
the unit cell which in the physical space lies in the range k = [−d, d] . Furthermore,
k can be restricted to the range ‖k‖ = [0, π/d] since positive and negative values of k
mean waves propagating in opposite directions. The range ‖k‖ = [0, π/d] is equivalent
to the range λ = [2d,∞] since λ = 2π/κ. This range of possible wavelengths implies
that waves of length smaller than 2d do not appear in the specific material model.
Furthermore, since the motion in the periodic array is controlled by the displacements
of the different masses, a propagating wave with a wavelength smaller than the mass
separation distance (2d) cannot be spatially described (see Figure 1.2b-d). It is evident
that wave lengths λ < 2d are not captured by the masses in the periodic array. The
determination of the limit values of k is a topic of major importance in analysis of
periodic structures, since it defines the domain of existence of the possible wave vectors
in a periodic structure. This problem is the subject of the following section for the case
of two-dimensional materials.

1.1.3 Domain of ‖k‖ in 2D periodic materials

This section describes the steps required in the determination of the reciprocal space
description of the unit material cell. Since periodicity exists in both spaces, knowing
such description of the unit cell is convenient as it reduces the space of search for valid
wave vectors. Here, we first formalize the definition of the reciprocal space and then
we show the proper and required restrictions for the values of ‖k‖.
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Reciprocal space

Consider the Fourier expansion of the periodic Bloch function w(x) (Kittel et al.,
1976)

w(x) =
∑
G

wGeiG·x,

and where G is a set of vectors carrying with it the periodicity of w into the Fourier
domain. Evaluation of w(x + a) gives

w(x + a) =
∑
G

wGeiG·xeiG·a.

Since by definition w(x+a) = w(x) the set of vectors G satisfy the condition eiG·a = 1.
G can be expressed as

G = m1b1 +m2b2 +m3b3,

in terms of a set of vectors bi that satisfy the condition eiG·a = 1, and are constructed
according to (Kittel et al., 1976)

b1 = 2π
a2 × a3

a1 · a2 × a3

, b2 = 2π
a3 × a1

a1 · a2 × a3

, b3 = 2π
a1 × a2

a1 · a2 × a3

. (1.9)

The base vectors bi existing in the spatial Fourier domain define the reciprocal lattice
for the two-dimensional material. To further clarify note that while ai are the primitive
vectors for the physical lattice, bi are the primitive vectors of the reciprocal lattice.
Both sets of base vectors satisfy the condition

bi · aj = 2πδij,

where δij is the Kronecker delta.

Restriction of ‖k‖ and the Brillouin zones

Bloch’s theorem relates opposite sides of the unit cell. This can be used to establish a
relation between the wave vector k and the primitive vectors of the reciprocal lattice
G in terms of the Bragg or diffraction condition as (Kittel et al., 1976):

2k ·G = ‖G‖2 or k · 1

2
G =

(
1

2
‖G‖

)2

(1.10)

which can be graphically understood with the aid of fig. 1.4b.
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Figure 1.4. Schematic example of a 2D lattice in physical and reciprocal spaces. (a)
Physical lattice showing the primitive vectors ai. (b) Reciprocal lattice showing the
primitive vectors bi and the first three Brillouin zones. The zones are constructed in
the reciprocal space and they do not intersect. Each zone represents a set of wave
vectors k that hold eq. (1.10). k1 and k2 are drawn as an example.

Select a point from the reciprocal lattice and draw vectors G to neighbor points. Draw
a perpendicular bisector for each vector G. The smallest closed area created by those
bisectors is known as the First Brillouin Zone (FBZ). Every wave vector pointing to the
border of the FBZ satisfies eq. (1.10). The additional Brillouin zones shown in fig. 1.4b
are conformed by vectors G pointing beyond the FBZ. Although wave vectors pointing
to the borders of those additional Brillouin zones equally satisfy eq. (1.10), they do
not provide additional information as all the periodicity has already been captured by
the FBZ. In summary, the limits of the FBZ define the values of ‖k‖ required to fully
characterize the periodic material.

The irreducible Brillouin zone

Further reductions to the FBZ can be obtained after considering possible ( rotation or
mirror) symmetries. The resulting and smallest domain is now termed the Irreducible
Brillouin Zone (IBZ). Such a zone in the reciprocal lattice contains all the necessary
information concerning the wave number domain. Every point in the reciprocal lattice
can be represented using the IBZ and the primitive reciprocal vectors G. Figure 1.5
presents a series of 2D unit cells and their FBZ and IBZ where the FBZ is calculated
using eqs. (1.9) and (1.10) for each cell.
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Figure 1.5. FBZ and IBZ for some 2D unit cells. The first row corresponds to
the unit cells and their symmetry axes, depicted in dotted red lines. The second
row shows the FBZ (region inside blue border) and IBZ (region inside red border)
for each cell. Note that the exterior shape of the unit cell determines the shape of
the FBZ; whereas a combination of exterior and interior shapes determine the shape
of the IBZ. The corners of the IBZ are named after the notation used in solid state
physics.

The reduction of FBZ to IBZ can be acomplished in different ways depending upon
the existing symmetries. For instance, consider fig. 1.5a,b,e where the FBZ have the
same shape while the IBZ is remarkable different due to the symmetries in each case.
Figure 1.5a corresponds to the unit cell from a 2D homogeneous material; since it
exhibits the same response in every direction, its IBZ reduces to a line in the reciprocal
space. Furthermore, any straight line from the origin Γ to any point in the border of the
FBZ is a valid IBZ in the homogeneous case. The IBZ has to be always carefully selected
since a wrong IBZ can result in misleading conclusions as it skips essential dispersive
information from the FBZ. A discussion about the implications of a well-chosen IBZ
can be found in Maurin et al. (2018).

To take advantage of the symmetries it is a common practice to present the dispersion
results just over the contour of the IBZ. Such practice assumes that the extreme points
of the dispersion relations are always in that contour. In general, this assumption is true
(Harrison et al., 2007) however there are specific cases in which those extreme points
are at interior points of the FBZ (Craster et al., 2012; Maurin et al., 2018). There are
two critical cases in which results along the contour of the IBZ are not reliable: (i)
when the unit cell under study does not have too many symmetries, see fig. 1.5e; and
(ii) when the selected unit cell is not the minimum possible unit cell, i.e., the primitive
cell of the periodic material.
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1.2 The band structure and its interpretation

The dispersion relation or band structure of a periodic material is a ω = ω(k) relation
that describes the behavior of waves when propagating through a periodic material. It
is obtained after the application of Bloch’s theorem to the reduced, frequency domain
based equations of motion related to the kinematics and material model of the unit cell.
As a reference example of a band structure, we considered a homogeneous material unit
cell. The solution is shown along the FBZ and its reduced version along the contour of
the IBZ.

1.2.1 A 2D homogeneous material unit cell

Valid unit cells for the homogeneous material model are shown in fig. 1.6. The current
analysis considers a squared unit cell, fig. 1.5a.

Figure 1.6. Some valid unit cells for a homogeneous material unit cell.

Dispersion relationships for the homogeneous material models can be written solely as
closed-form frequency relationships with a functional dependence upon the magnitude
of the wavenumber like

ω ≡ ω(k) .

However, when these relationships are obtained from direct application of Bloch’s the-
orem the resulting relationships will also contain information from different Brillouin
zones leading to more general expressions of the form:

ωm,n ≡ ω(km,n) , (1.11)

where the subscripts m,n refer to integer numbers related to waves coming from adja-
cent Brillouin zones. In the case of a square cell the following generalized definition of
the wave number applies (Langlet, 1993):

km,n =

√(
kx +

mπ

d

)2
+
(
ky +

nπ

d

)2
and where kx and ky are the horizontal and vertical normal components of the wave
vector.
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In classical elastodynamics, described separately in terms of out-of-plane (SH) waves
and in-plane (P , SV ) waves, the dispersion relations for a homogeneous material cell
assume analogous linear forms in terms of phase speeds cT and cL given by:

ωSHm,n = cTkm,n , (1.12a)

ωPm,n = cLkm,n , (1.12b)

ωSVm,n = cTkm,n . (1.12c)

where c2T = µ/ρ and c2L = (λ+ 2µ)/ρ are the speeds of S and P waves respectively. In
the above λ and µ are the first and second Lamé parameters, while ρ is the volumetric
mass density. Making m = n = 0 in eq. (1.12), renders the dispersion relations for S
and P waves in those of two cones, fig. 1.7.
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Figure 1.7. Dispersion relations for a homogeneous material unit cell. (a) Dispersion
surfaces with m = n = 0 over the FBZ. (b) Dispersion curves with m = n = 0 along
the IBZ. (c) Dispersion curves over the IBZ with various values of m and n.

Figure 1.7 presents the dispersion relations for a homogeneous material unit cell made
of aluminium with λ = 5.12 × 1010Pa, µ = 2.76 × 1010Pa and ρ = 2770kg/m3. The
frequency axes uses the dimensionless frequency Ω = 2ωd/cT . Those dispersion re-
lations can be presented over the FBZ (fig. 1.7a) as dispersion surfaces or just along
the contour of the IBZ (fig. 1.7b-c) as dispersion curves. The red curves and surface
correspond to S waves while the blue ones represent P waves. The curves are often
easier to interpret and understand as they are a projection of the 3D dispersion surfaces.
Note that fig. 1.7c contains several curves not present in fig. 1.7b. These must not be
confused with additional waves propagating through the material but they correspond
to dispersion information coming from adjacent unit cells.
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Note that the IBZ for the homogeneous material unit cell is just a line (ΓX) in the
FBZ. In most general cases, as shown in fig. 1.5, the IBZ is a region of the FBZ. In those
cases, the dispersion curves are depicted along the contour of the IBZ and they look
as those in fig. 1.8. The resulting dispersion diagrams are the unfolded curves of the
intersection of dispersion surfaces and vertical planes. For this homogeneous material
it is not necessary to depict the dispersion curves in a direction other than ΓX.

Figure 1.8. Example of the representation of dispersion curves along the contour of
the IBZ and their counterpart in the dispersion surfaces. (a) IBZ following directions
ΓXSY Γ in the FBZ. (b) Dispersion surfaces in a section of the FBZ. (c) Dispersion
curves. Each color (blue, green, red and yellow) covers an edge of the IBZ.

1.2.2 The inherent spatial aliasing in Bloch analysis

Figures 1.7c and 1.8c are examples of general dispersion curves. The first branches of
these diagrams (coloured lines in fig. 1.8c) correspond to S and P waves. Figure 1.9
explains graphically the source of the extra branches in the band diagram. The central
set of cones is the same as in fig. 1.7a, corresponding to S and P waves starting from
Ω = 0. Due to the spatial periodicity of the material, an equivalent set of cones is
generated at every point of the reciprocal lattice, corresponding to adjacent cells. When
these cones intersect the IBZ, they appear like straight lines or hyperbolas, depending
on their original coordinates in the reciprocal space.

Since the reciprocal space results from the Fourier expansion of the Bloch function
w(x), it unavoidably exhibits inherent spatial aliasing. This effect is reduced if the
analyst effectively selects the smallest possible unit cell in the periodic material (Haque
& Shim, 2016). When using numerical tools like the finite element method to find the
band diagram of a material, results from the central unit cell and adjacent cells are
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Figure 1.9. Graphical explanation of dispersion surfaces intercepting the IBZ in a
homogeneous material. Left: extended wave number domain to show how information
from adjacent cells gets into the FBZ. Right: Dispersion curves along the contour of
the IBZ.

mixed (like in fig. 1.8c) and it is not possible to separate the actual and spurios (aliased
generated) information.

1.2.3 Some dispersion curves for simple unit cells

Examples of typical features of band diagrams are shown in fig. 1.10. These results are
for a bilayer and for a circular porous material cell. The bilayer material is conformed
by aluminium and brass whereas the porous material has an aluminium matrix. The
elastic properties for brass are λ = 6.45×1010Pa, µ = 3.47×1010Pa and ρ = 8270kg/m3.
Both models used plane strain assumptions. The dispersion diagrams in each case were
computed via the finite elment method after varying the wave vector over the contour
of the IBZ and finding the associated solving frequencies.

The regions of fig. 1.10a which are highlighted in blue represent gaps or stop bands in the
diseprsion relation and correspond to frequency ranges where free waves are forbidden
(i.e., are not allowed to propagate). The existence of band gaps makes periodic materials
a very attractive option for a variety of engineering applications, since they behave as
mechanical filters working at certain frequencies. On the other hand the dispersion
relations in fig. 1.10 reveal a linear behavior for low frequency values (Ω < 2.0) in
both cases. This is a natural and expected result since very long waves do not interact
with the microstructure of the unit cell but it propagates as in a homogeneous material
at a constant speed. The linear response ceases at high frequencies, and the material
behaves dispersively as the propagation velocity becomes frequency dependent. Results
in the high frequency regime in fig. 1.10b are hard to interpret due, most of all, to the
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Figure 1.10. Dispersion relations for some unit cells. (a) Bilayer material made
with aluminium and brass. Each layer has a thickness t = d. The analysis was made
considering only the direction in which the material is periodic. (b) Circular pore.
In this case the diameter of the pore is half of the unit cell length.

aliasing of Bloch analysis.

Conclusion

The fundamental conceptual tools requiered in the analysis of periodic cellular materi-
als have been presented starting with the definition of periodic materials and its basic
mathematical framework. Within this context Bloch’s theorem arises as the main the-
oretical artefact for the analysis of periodic media. The theorem combines space-time
periodicity into frequency-wave number domain periodicity. The time periodic nature
of the problem is considering by formulating the problem as reduced frequency domain
boundary value problem, while the space periodicity is introduced through the bound-
ary conditions which are relationships between oposite sides of a fundamental material
element cell. Several conceptual aspects of solutions of the equivalent BVP are also dis-
cussed aimed at providing supporting information for the interpretation of dispersion
diagrams descriptive of periodic materials.
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Chapter 2

A novel user element subroutine to
calculate dispersion relations of
periodic materials

Introduction

There are several issues that must be solved when computing band diagrams or disper-
sion relationships for periodic media with commercially available finite element codes.
First, the wide majority of general purpose finite element packages available in the mar-
ket are not equipped with the intrinsic functionality required to conduct the so-called
Bloch analysis. Secondly, the imposition of Bloch periodic boundary condition (hence-
forth referred to like BBCs), implies the modification of global coefficient matrices by
transformation arrays (McGrath & Pyati, 1994) which perform row-column operations
(McGrath & Pyati, 1996). Such access and manipulation of the global coefficient ma-
trix, is not only cumbersome but also prohibited in most commercial packages. Here
we propose a novel, yet simple technique to compute dispersion relations in periodic
materials with commercial finite element codes with intrinsic user-element functional-
ities. The main distinguishing, and most appealing feature in our method is the fact
that all manipulations are conducted directly at the element level thus allowing for
the treatment of a wide variety of physical contexts and problem dimensions. The
proposed approach is motivated by the work from Pask & Sterne (2005) who used a
similar technique to solve one dimensional problems after transforming the differential
equation not to consider Bloch’s theorem but the simpler case of periodic boundary
conditions. That idea was later extended by Sukumar & Pask (2009) who incorporated
BBCs although in problems restricted to scalar fields. The method proposed in this
work extends these ideas but it is valid for both, periodic and Bloch periodic boundary
conditions, in addition to the possibility of considering general problems regardless of
their dimensionality and kinematic assumptions. Thus it is valid for a wide variety of
scalar and vector valued functions belonging to different physical contexts. Further-
more, the numerical consideration of Bloch’s theorem in periodic media requires the
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solution of a complex-valued eigenvalue problem which can be solved using a 2-mesh
approach as proposed by Åberg & Gudmundson (1997) or through the direct implemen-
tation of the numerical scheme in a complex-algebra-based finite element code (Langlet
et al., 1995). Our element-based procedure can be implemented in both formats.

This chapter contains two sections. Section 1 formally introduces the proposed strategy
to apply BBCs directly into the local elemental-based arrays. In the second section we
conduct several verification exercises intended to show the generality of the numeri-
cal tool. Particularly, we solved elastodynamic problems for classical and Cosserat or
micropolar based materials. This last cases is intended to show the possibility of imple-
menting different kinematic assumptions. We considered, scalar problems correspond-
ing to out-of-plane waves and vector-valued problems for in-plane waves. Additionally
we also conducted numerical exercises to test the sensitivity of the implementation to
the cell-size. In the different verification problems considered we used analytic and nu-
merical results reported in the literature. As a complement we also included a package
of supplementary material consisting of: (i) a fully functional version of FEAPpv to
calculate the dispersion relations from a periodic material and (ii) a document explain-
ing the usage of this version of FEAPpv with an example of a homogeneous material
unit cell.

2.1 Finite element formulation of Bloch analysis

Figure 2.1. (a) Schematic 2D periodic material and its lattice translation vectors
a1 and a2. (b) FE mesh from the unit cell and division in groups of nodes. Nodes in
group 2 (blue) are equivalent to nodes in group 1 (red) in an adjacent unit cell. A pair
of nodes are equivalent if their coordinates can be expressed as x2

j = x1
i +ma1 + na2

for integers m and n.

Figure 2.1a shows an schematic representation of the unit cell in a periodic material.
The corresponding finite element discretization of the BVP stated in eq. (1.4) as shown
in the mesh in fig. 2.1b takes the form
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[
K − ω2M

]
{U} = 0 (2.1)

where in the context of elastodynamics, K and M would correspond to global stiffness
and mass matrices respectively. Note that eq. (2.1) constitutes an eigenvalue problem in
the eigenvalues ω. The schematic mesh contains also two different sets of nodal points
corresponding to (i) interior nodes, labeled as int; and (ii) exterior nodes, labeled as 1
and 2. Nodes from groups 1 and 2 are represented in red and blue colors respectively.
Imposition of Bloch periodic boundary conditions to the nodal sets 1 and 2 is dictated
by the boundary conditions specified in eq. (1.4)b, (Guaŕın-Zapata & Gomez, 2014).
In general, two equivalent nodes i, j in different adjacent cells can be related with the
BBCs by

U2
j = U1

i ×PSi→j, (2.2)

where U1
i is the field of node i belonging to group 1, U2

j is the field of node j (equivalent
to i in a different periodic cell) belonging to group 2, and PSi→j is the phase shift
between the nodes i and j, with PSi→j = eik·a. The imposition of the BBCs to the
complete system and the subsequent removal of redundant equations belonging to nodes
in group 2, yields the reduced version of eq. (2.1) in terms of reduced matrices KR and
MR as:

[
KR − ω2MR

]
{UR} = 0 . (2.3)

The periodicity condition is ilustrated in fig. 2.2 for the periodic material displayed in
the rectabgular domain. Periodicity along the vertical direction is equivalent to folding
the rectangular sheet onto itself forming the cylender at the top. Similarly, considering
also periodic variations in the horizontal direction converts the cylinder into a torus as
shown in the right. Note that KR and MR in eq. (2.3) depend upon the wave vector k.
Accordingly, for a given k eq. (2.3) gives a particular instance of the eigenvalue problem.
The band structure of the material is thus built after progressively covering the first
Brillouin zone (Brillouin, 1953) in the wave-number domain representation of the unit
cell. Each solution to the generalized eigenvalue problem given in eq. (2.3) represents
a free wave propagating at frequency ω, moreover each corresponding solution gives
all frequencies ω at which propagation of the specific free wave is possible and the
dispersion relation ω vs k is then constructed.

2.1.1 Imposition BBCs in global matrices

Figure 2.3a shows a 4-bilinear-elements mesh corresponding to the discretization of a
fundamental unit cell in a periodic material. The discrete equations from the general
mesh are assembled into global stiffness and mass matrices K and M respectively as
shown in the graphic description from fig. 2.3b and where each square section represents
the sub-matrix associated to the set of degrees of freedom (DOF) at a specific node. In
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Periodic in
one direction

Periodic in
two directions

Additional
periodicity

Figure 2.2. Topology for a rectangular region with periodicity in two directions.
When periodicity in one direction is applied the mesh can be thought as laying on
the surface of a cylinder. In the case of periodicity in two direction the mesh can be
thought as laying on the surface of a torus.

this case, and just for illustration purposes, we assume 1-DOF per node as in a scalar
problem so each element contributes to the global system with 4 × 4 global matrices
GM .

(a) Meshed unit
cell

(b) Global matrix scheme (c) Reduced matrix scheme

Figure 2.3. Schematic of the reduced eigenvalue problem after applying BBCs
to the global matrices. The squares in the global matrix represent sub–matrices
with equations from nodes in the mesh. After application of BBCs, blue squares
collapse into the white squares. Namely, equations from nodes in group 2 collapse
into equations from nodes in group 1. Finally, the redundant (blue) equations are
removed from the matrices resulting in a reduced set of matrices.

Now, imposition of the required BBCs implies collapsing into a single equation those
of nodes related as in eq. (2.2). For instance, nodes 9 and 1 at opossite corners of the
unit cell satisfy:
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R1 = R1 +R9 ×PS1→9, (2.4)

with Rn denoting a row (or a column) of sub-matrices in the general system GM as-
sociated to node n. This means that equations from node 9 will collapse into those
from node 1 after imposition of BBCs. Final application of BBCs to all relevant nodes
trhough a process of removing redundant equations from K and M leads to reduced
matrices KR and MR forming the generalized eigenvalue problem given in eq. (2.3).
With reference to the schematic example of fig. 2.3 note that equations from nodes
3, 6, 7, 8, 9 (blue squares in fig. 2.3b) were properly collapsed into those of nodes 1, 2, 4
(white squares in fig. 2.3b) producing the reduced matrices in fig. 2.3c. This row-
and-column operation scheme is widely used in Bloch analysis but it is difficult if not
ipossible to apply in finite element codes that restrain access to the global coefficient
matrices. Some available codes allow the manipulation to the global system as required
in Bloch analysis through the imposition of Multi-Point constraints (Hibbett et al.,
1998; Mazzoni et al., 2006). In these cases however, the analysis is restricted to the
physical context available in the code.

2.2 Procedure to impose BBCs with user element

subroutines

The implementation of Bloch analysis in commercial software, always require the manip-
ulation of global arrays after the assemblage process; as shown in the previous chapter.
The manipulation is normally carried out through row-and-column operations or trans-
formation matrices. In this section we introduce our alternative method to implement
BBCs as required in the analysis of periodic media. The proposed approach does not
require access to the global arrays but it conducts all modifications at the element level.
As such, the method is suitable for codes allowing the implementation of user element
subroutines. In these codes, the main program acts as a solver of a system of equations
where the user provides the contribution from each element to the global system. Here
we take advantage of these features and instead of conducting the typical row-column
operations leading to KR and MR onto the global arrays, we compute these matrices
directly at the element level just by varying the standard assembly procedure available
in FE codes.

2.2.1 Imposition BBCs in elemental matrices

Let us denote the set of connectivity nodes for a typical element m as Cm. Generally,
Cm is used to carry out two tasks: (1) to define the coordinates of the nodes in ele-
ment m which are required in the computation of elemental matrices; (2) to assemble
these elemental matrices into the global arrays at positions defined by the equations’
identifiers associated to these nodal points. In a classic FE problem, those two tasks
are performed with the same nodal set Cm; however, in the case of periodic materials
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with BBCs the assembly process proceeds differently. Here we define two kinds of con-
nectivity operators corresponding to the classical coordinate-connectivity Cc

m, and an
assemblage-connectivity set Ca

m. The first operator is used to compute the elemental
matrices as in the standard approach while the second is used to conduct the assem-
bly operation thus delivering global matrices where BBC have already been applied
depending on the definition of Ca

m . In this approach, Cc
m and Ca

m are defined only for
those elements containing nodes belonging to group 2 as described in fig. 2.1 while in
the remaining elements, Cc

m and Ca
m are identical.

Consider element 2 in the mesh shown in fig. 2.3a. Due to the periodicityfor this specific
cell, nodal pairs 6 and 4 and 3 and 1 are related by BBCs in such a way that in the global
matrices, equations from node 6 will collapse into those from node 4, while equations
from node 3 will collapse into equations from node 1. As a result, we define connectivity
operators Cc

2 = [2 3 6 5] and Ca
2 = [2 1 4 5]. This process must also incorporate the

phase shifts corresponding to the impositions PS1→3 and PS4→6 to the equations of
nodes 3 and 6 respectively in the local matrix. At the end of the procedure, equations
from nodes in element 2 would have the proper phase shift and would be assembled in
the proper global positions as pointed out by Ca

2 . This process is explained graphically
in fig. 2.4.

Figure 2.4. Application of BBCs to local matrices corresponding to element 2.
Equations from nodes 3 and 6 are represented as blue sub-matrices and these include
their proper phase shift and will be assembled in the positions dictated by Ca2 = [2 1
4 5]. The phase shifts are inferred locally from a comparison between assemblers Ca2
and Cm2 .

The next step in the assembly of the final global arrays is the elimination of redundant
equations (in this case those in nodes 3, 6, 7, 8, 9) to obtain reduced arrays KR and MR.
Here, this is achieved by restraining the degrees of freedom associated to these redun-
dant equations. That process guarantees that KR and MR are assembled considering
the required BBCs and that they are ready for solution of the generalized eigenvalue
problem. Since this strategy to apply BBCs to a discretized unit cell proceeds at the
element level and it is independent of the problem at hand, it can be straightforwardly
used for one-, two- or three-dimensional periodic materials, using any kinematic model
or interpolation scheme. Furthermore, it can be easily added to existing user element
subroutines by making just subtle changes.
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2.2.2 Reformulation in real algebra

An additional difficulty that appears often when conducting Bloch analysis with com-
mercial finite element codes, is the fact that the resulting generalized eigenvalue problem
given by eq. (2.3) is a complex-valued system. This is a consequence of the phase shifts
of the general form eik·a explicitly appearing in BBCs. Most codes have powerful and
efficient real-algebra-based built-in eigensolvers. To take advantage of these numerical
features, we have followed Åberg & Gudmundson (1997), who split eq. (2.3) into two
real problems as elaborated next.

Consider once again the 4-noded quadrilateral element showed in fig. 2.4 and repeated
with additional information in fig. 2.5. Recall that nodal pairs 6 and 4 are related by
U6 = U4 × PS4→6, with PS4→6 = eik·a and where U6 and U4 are the set of equations
from nodes 6 and 4 respectively. These are complex valued terms which can be split like
U• = UR

• + iU I
• , with UR

• and U I
• being respectively the real and imaginary components

of U while i =
√
−1 is the imaginary unit. The original mesh can be interpreted now

as a duplicated mesh where each part handles the real and imaginary component of the
equations. This is explained in fig. 2.5, where we show the full-matrix EA

2 composed of
the double consideration of the matrix E2 like:

EA
2 =

[
[E2] 0

0 [E2]

]
.

Figure 2.5. Application of BBCs to element 2 following the real algebra splitting
proposed in Åberg & Gudmundson (1997). The equations from the element are
separated into real and imaginary parts, producing an augmented elemental matrix.
BBCs are then applied to both parts of the new matrix.

Consideration of all nodes in element 2 satisfying Bloch periodic boundary conditions,
leads to a relation between real and imaginary meshes as stated by Åberg & Gudmund-
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son (1997) and given by:

UR
6 = UR

4 cos (k · a) + U I
4 sin (k · a) (2.5a)

U I
6 = U I

4 cos (k · a)− UR
4 sin (k · a) (2.5b)

UR
3 = UR

1 cos (k · a) + U I
1 sin (k · a) (2.5c)

U I
3 = U I

1 cos (k · a)− UR
1 sin (k · a) (2.5d)

These sets of DOF modified by BBCs are represented in the schematic matrix represen-
tation of fig. 2.5 as sub-matrices in blue rows and columns. Those specific sub-matrices
are to be assembled in the positions given by Ca

2 = [2 1 4 5]. Note that although BBCs,
like those in eq. (2.5) are just applied to local matrices from elements containing at least
one node from group 2, the dual-mesh representation has to be applied for all elements
in the mesh. According to the color scheme in fig. 2.5, local matrices from elements
containing any node from group 2, have blue equations; while the rest of elements have
white equations. The result is therefore a duplicated mesh where real and imaginary
parts from BBCs are applied to both real and imaginary portions of the mesh. Fig-
ure 2.6 shows a schematic illustration of the separation process over a general mesh and
the application of BBCs to the global terms of the mesh. The final assembly can be
thought as corresponding to two identical superimposed meshes, where the blue border
collapses into the red border. Finally, the positions from the blue border are removed
from the global arrays as indicated previously.

Figure 2.6. Schematic description of the splitting process. The mesh and BBCs
are split into real and imaginary parts. These real and imaginary components from
BBCs are then combined and applied to each part of the mesh following a procedure
similar to the one in eq. (2.5) for every pair of related nodes. The new mesh can be
thought as conformed by two identical meshes attached along the borders.
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2.3 Verification

To test the generality of our implementation, we computed the dispersion relations
in the context of elastodynamics for three classes of media with different kinematic
assumptions. However, the proposed methodology to impose BBCs is independent
of the physical context of the problem at hand and it can be equivalently applied
to scalar problems (e.g., linear acoustics); quantum mechanics; or to vector problems
(e.g., electrodynamics or elastodynamics). In the case of mechanical waves propagating
in unbounded domains, the problem can be separated in 2 two-dimensional problems
considering in-plane and out-of-plane wave polarization (Achenbach, 2012; Auld, 1973).
In this study we consider waves propagating in the xy plane for the cases considered
next.

Out-of-plane waves in elastic media: The simplest case corresponds to the out-
of-plane horizontally polarized shear waves (or SH waves). These are governed by
displacement equations of motion involving only the displacement in the z-direction uz,
with reduced wave equation of the form:

µ

ρ

[
∂2uz
∂x2

+
∂2uz
∂y2

]
= −ω2uz ,

where µ and ρ are: the second Lamé parameter (or shear modulus) and the volumetric
mass density. These two are typically combined in terms of the squared phase speed
c2T = µ/ρ.

In-plane waves in elastic media: The vector displacement field in elastic media is
completed considering in-plane polarization in terms of two degrees of freedom, corre-
sponding to the horizontal and vertical components ux and uy at each material point.
The wave motion in this case is described by the following specific form of the reduced
wave equation:

λ+ 2µ

ρ

[
∂2ux
∂x2

+
∂2uy
∂y∂x

]
− µ

ρ

[
∂2uy
∂y∂x

− ∂2ux
∂y2

]
= −ω2ux ,

λ+ 2µ

ρ

[
∂2ux
∂y∂x

+
∂2uy
∂y2

]
− µ

ρ

[
∂2ux
∂y∂x

− ∂2uy
∂x2

]
= −ω2uy ,

where now λ and µ are the first and second Lamé parameter respectively, while ρ is the
volumetric mass density. These parameters are also typically combined into squared
phase speeds c2L = (λ + 2µ)/ρ and c2T = µ/ρ corresponding to two different wave
modes.

In-plane waves in micropolar media: Micropolar media, inspired by contributions
from Cosserat et al. (1909), correspond to a continuum model where each material
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point is endowed with six degrees of freedom in the form of three displacements —
as in classical elasticity — and three rotations. In this resulting micropolar elasticity
theory the transmission of loads through surface elements, is now described by force
and couple stress vectors. As a consequence of these additional kinematic interactions,
waves in (homogeneous, isotropic) micropolar continua are inherently dispersive even
in the absence of explicit micro-structural details. Under two-dimensional idealizations
micropolar media is defined in terms of two displacements and one rotation leading to
the following form of the reduced wave equation representative of the motion for such
a class of media:

λ+ 2µ

ρ

[
∂2ux
∂x2

+
∂2uy
∂y∂x

]
− µ+ µc

ρ

[
∂2uy
∂y∂x

− ∂2ux
∂y2

]
+

2µc
ρ

∂φz
∂y

= −ω2ux ,

λ+ 2µ

ρ

[
∂2ux
∂y∂x

+
∂2uy
∂y2

]
− µ+ µc

ρ

[
∂2ux
∂y∂x

− ∂2uy
∂x2

]
− 2µc

ρ

∂φz
∂y

= −ω2uy ,

2µc
J

[
∂uy
∂x
− ∂ux

∂y

]
+
ξ

J

[
∂2φz
∂x2

+
∂2φz
∂y2

]
− 4µc

J
φz = −ω2φz ,

and where in addition to the first and second Lamé parameters λ and µ from classical
mechanics, there are also two new moduli µc and ξ with no classical counterparts. Also
in these equations ρ and J are the volumetric and rotational mass density. Under this
non-classical kinematic model there are three wave modes with a volumetric wave with
phase speed c2L = (λ+ 2µ)/ρ and two dispersive modes with phase speeds that depend
on the frequency (Nowacki, 1986).

All of the above kinematic models are particular instances of the generalized wave
equation in the frequency domain. In this study, we take as base materials aluminum
and brass with the following set of values for its mechanical properties:

Material properties
λ (Pa) µ (Pa) ρ (kg/m3) µc (Pa) ξ (N) J (kg/m)

Aluminum 5.12× 1010 2.76× 1010 2770 3.07× 109 7.66× 109 306.5
Brass 6.45× 1010 3.47× 1010 8270 8.65× 109 1.73× 109 691.7

Table 2.1. Mechanical properties for the materials used in the verification study
conducted to test the element-based approach to conduct Bloch analysis.

2.3.1 Test of generality about physics

The first set of analyses is aimed at testing the capabilities of our strategy to describe
new waves appearing into the material as we increase the complexity of the kinematic
model. The first problem is a comparison between numerical and analytical results
for a homogeneous material unit cell. We computed the dispersion relations using the
three different kinematic assumptions described previously, where in each case there
are additional degrees of freedom added to the model.
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Analytic dispersion relations for a homogeneous material

Dispersion relationships for the homogeneous material models can be written solely
as frequency relationships with a functional dependence upon the magnitude of the
wavenumber like

ω ≡ ω(k) .

However, when these relationships are obtained from Bloch’s theorem the dispersion
relationships also contain information from different Brillouin zones leading to more
general relations of the form:

ωm,n ≡ ω(km,n) , (2.6)

where the subscripts m,n correspond to integer numbers referring to waves coming
from adjacent Brillouin zones. In the case of a square unit cell we have the following
generalized definition of the wave number (Langlet, 1993):

km,n =

√(
kx +

mπ

d

)2
+
(
ky +

nπ

d

)2
(2.7)

where kx and ky are the horizontal and vertical normal components of the wave vec-
tor.

Classical elastodynamics: In classical elastodynamics, described separately in terms
of out-of-plane SH waves and in-plane P , SV waves, the dispersion relations for a ho-
mogeneous material cell take the analogous linear forms in terms of phase speeds cT
and cL as given by:

ωSHm,n = cTkm,n ,

ωPm,n = cLkm,n ,

ωSVm,n = cTkm,n .

Micropolar elastodynamics: In this model, in addition to the P- and S-waves in-
plane propagation modes there is also an in-plane transverse rotational wave (TR).
Furthermore, in the micropolar model transverse S-waves are dispersive as can be seen
in the following dispersion relations:

ωPm,n = cLkm,n ,

ωSm,n =

√
A

2
− 1

2

√
A2 − 4B ,

ωTRm,n =

√
A

2
+

1

2

√
A2 − 4B ,
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with

A = 2Q2 + (c22 + c24)k
2
m,n ,

B = 2Q2c22k
2
m,n −K2Q2k2m,n + c22c

2
4k

4
m,n ,

and

c22 =
µ+ µc
ρ

, c24 =
ξ

J
,

K2 =
2α

ρ
, Q2 =

2α

J
.

Numerical results

To test the proposed strategy, we implemented the elemental-based approach for the
kinematic models described previously into the finite element code FEAP (Taylor,
2011). The supplementary material of this work contains a complete version of the
algorithm as a FEAPpv binary file together with a fully defined test problem. The
files also include subroutines to read the required Cc

m and Ca
m operators and peripheral

codes to cover the cell representation in the reciprocal wave number domain. All the
dispersion graphs use the dimensionless frequency

Ω =
2ωd

cT
, (2.8)

for the vertical axis, where 2d is the dimension of the unit cell and c2T = µ/ρ is the
speed of the shear wave.

Figure 2.7 compares the closed-form dispersion relations with those obtained numer-
ically with the user-element subroutine. Note that each dispersion plot contains an
additional degree of freedom with respect to the previous model. This is evidenced by
an increasing number of dispersion branches in the figure. In the SH model there is
a single branch corresponding to the horizontally polarized shear wave. The model for
the in-plane material cell has an additional branch corresponding to the longitudinal P
mode with a larger phase speed. Finally, examination of the results for the micropolar
cell not only show an expected third branch corresponding to the rotational wave, but
they also reveal a dispersive shear wave mode. The microrotational wave, denoted as
the TR-mode appears after the cut–off frequency Ω = 2. This limited existence of the
microrotational model implies that there is a (microrotational) band-gap in the range
0 < Ω < 2. This is an interesting feature of the micropolar model which introduces
a micro-structural effect inherently contained into the kinematics of the model. This
effect is triggered for wavelengths λ > cT/Ω0, where Ω0 is the cut-off frequency. As
a final observation it is worth mentioning that the comparison between numerical and
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Figure 2.7. Dispersion relations for a homogeneous material with mechanical prop-
erties corresponding to aluminum as per table 2.1 under different kinematic models.
Solid and dotted lines show the analytic and numerical solution respectively. In all
cases the wave vector was assigned the particular value k = 〈0, κy〉.

the analytical results show a good agreement in every considered kinematic model, i.e.,
out-of-plane, in-plane and micropolar. Moreover, the maximum observed relative error
between numerical and analytical results which occur near Ω = 12 is less than 0.5%,
which shows that the subroutine is suitable for computing dispersion relationships under
different kinematic assumptions.

2.3.2 Test of generality about unit cell geometry and materi-
als

As a second example to show the versatility of the proposed approach, we considered
unit cells of different geometries and material properties. The first problem is that of
a skewed unit cell made of a homogeneous material with properties corresponding to
those of aluminum, as presented in fig. 2.8. This analysis was later extended to the case
of a bi-layer material where we introduced brass in addition to an aluminum layer. For
the in-plane kinematic assumptions both cases have closed-form solutions providing a
useful basis to compare with numerical results.

The lattice vectors (ai) and reciprocal lattice vectors (bi) for the skewed unit cell are
given by (Kittel et al., 1976):
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First Brillouin ZoneUnit cell
Figure 2.8. Unit cell
(physical space) and first
Brillouin zone (reciprocal
space) for a skewed unit cell
used to test the generality
of the approach in modeling
unit cells of different geom-
etry.

a1 = 2d(1, 0) , a2 = 2d(sin θ, cos θ) ,

b1 =
π

d
(1,− tan θ) , b2 =

π

d
(0, sec θ) ,

while the wavenumbers for the first Brillouin zone in the homogeneous material model
read:

km,n =

√(
kx +

mπ

d

)2
+

(
ky +

mπ tan θ

d
+
nπ sec θ

d

)2

. (2.9)

Similarly, the dispersion relations for the bi-layer material model under in-plane waves
traveling perpendicularly to the layers is given by the following implicit equation (Lan-
glet, 1993):

cos(2dk) = cos

(
ωd

c1

)
cos

(
ωd

c2

)
− (ρ1c1)

2 + (ρ2c2)
2

2ρ1ρ2c1c2
sin

(
ωd

c1

)
sin

(
ωd

c2

)
,

where ci refers to the transverse or longitudinal wave of each layer, and ρi refers to the
mass density of each layer.

Figures 2.9a and 2.9b show the results for the 2D homogeneous material under plane
strain idealization computed with the squared and the skewed unit cell respectively.
As shown in these plots, the results from the numerical implementation are in good
agreement with those predicted by the closed-form dispersion relationships regardless
of the geometry considered for the unit cell.Similarly, fig. 2.9c shows the results for
the bi-layer material with vertical wave incidence (i.e., perpendicular to the layers).
As indicated previously the material properties in each layer are those of aluminum
and brass. From the dispersion diagrams, it is observed that in the low frequency
regime (Ω < 1), the bi-layered material behaves as a homogeneous material with a
linear group velocity. This effective velocity is in fact an average between the wave
propagation velocities of aluminum and brass. The results show once again a very good
agreement in comparison to the analytic solution. In all cases shown in fig. 2.9 we found
a relative error under 0.5% near Ω = 12.
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Figure 2.9. Dispersion relations for unit cells and material models with closed-form
band structures under in-plane waves and a classic continuum mechanics model. Solid
and dotted lines in each figure represent the analytic and numeric solution respec-
tively. (a) Homogeneous material square unit cell with k = 〈0, κy〉. (b) Homogeneous
material skewed unit cell with ΓX direction defined in fig. 2.8). (c) Bilayer material
unit cell with k = 〈0, κy〉.

2.3.3 Verification against external numerical results

In order to increase the level of complexity in the analysis conducted with the element-
based approach, we studied several unit cells reported in the literature and with dis-
persion relations computed numerically. Particularly, we considered symmetric cells
corresponding to a square brass inclusion embedded in an aluminum matrix and a cir-
cular pore embedded in the same aluminum matrix. Both cases are reported in reference
Langlet (1993). As a third case we also included the asymmetrical unit cell conformed
by the Sierpinski right-angles isosceles triangles reported in Maurin et al. (2018). In
this case, the porosity corresponds to a volume fraction of 40% with respect to an alu-
minum matrix. In all cases we used in-plane waves and a classic Cauchy model under
plane strain idealization.

Squared inclusion and circular pore

The comparison for the dispersion relations obtained numerically with our proposed
technique and those by the implementation reported in Langlet (1993) are displayed in
Figure 2.10 and they clearly show to be in excellent agreement. The ratio between the
characteristic dimensions of the inclusion and the side of the unit cell corresponds to
as/2d = 1/3 for the brass inclusion and of ap/2d = 1/2 for the circular pore. In the low
frequency regime both materials exhibit a linear dispersion relationship highlighting the
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fact that at long wave lengths (i.e., λ >> 2d) both materials behave as homogeneous
non-dispersive materials with a group speed being an average from both materials
present in the cell. This effect is however stronger in the case of the brass inclusion
which, even at this low frequency regime, exhibits a higher group velocity than the
material with the circular pore for both P and S waves. This is a rather obvious and
expected result due to the lack of material continuity of the circular pore. Notice also
that there is a small partial band-gap appearing in the porous unit cell right above the
value of the dimensionless frequency of 3. This band-gap could be associated to the
loss of material continuity caused by the pore.

X
0

1

2

3

4

5

6

(a) Squared inclusion
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(b) Circular pore

Figure 2.10. Dispersion relations for unit cells conformed by (a) a squared inclusion
and (b) a circular pore embedded in a homogeneous matrix. Solid line: Current
strategy solution. Dotted line: results from Langlet (1993). For both cases k =
〈0, κy〉.

Asymmetrical unit cell

The results for the periodic Sierpinski right-angles isosceles triangles reported in Mau-
rin et al. (2018) are shown and compared to those obtained with our approach in Fig-
ure 2.11. We computed the band structure over the complete Brillouin zone and over
an additional arbitrary contour, and compare them with those reported in Maurin et al.
(2018). As expected, the group speeds for the P ans S modes have linear non-dispersive
behavior in the low frequency regime (see fig. 2.11c) showing once again the averaging
effect upon the effective group speed introduced by the pores and without any signifi-
cant effect of their shape. This cell also shows an interesting result which is observed
when comparing low-frequency group speeds along the ΓX and ΓM directions. While
P ans S waves have similar group speeds in the ΓM direction, they significantly differ
along the ΓX direction. This particular aspect of the response can also be intuitively
associated to the rupture of material continuity along particular propagation directions
of the unit cell. It must also be observed that the asymmetry of the unit cell trans-
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lates into asymmetries for the dispersion surfaces which are shown for completeness in
fig. 2.11b. These surfaces have also been included, in an interactive visualization in
the supplementary material of this article. In summary from the comparison between
numerical results obtained via our element based approach and those reported in the
literature it is concluded that the proposed technique allows also the computation of
dispersion relations over arbitrary regions of the Brillouin Zone
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Figure 2.11. Dispersion relations for a periodic Sierpinski right-angled isosceles
triangles with a porosity of 40%, under in-plane waves and a classic Cauchy model.
(a) Sierpinski unit cell. (b) Dispersion relations surfaces for the first Brillouin zone.
(c) Dispersion relations through an arbitrary contour in the first Brillouin zone. Solid
line: current strategy solution. Dotted line: results from Maurin et al. (2018). (d)
Detail on the dispersion relations surfaces.
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2.3.4 Additional results

As a final test to show the versatility of our element-based approach to conduct Bloch
analysis in periodic materials, we combined the three different kinematic models dis-
cussed previously with various microstructural configurations. We included the cases of
a bi-layer material, a circular pore and a square and a checkerboard inclusion. Due to
the common symmetry of these unit cells they all shared the same irreducible Brillouin
zone (see fig. 2.12).

Bilayer

Square inclusion Circular pore

Checkerboard

First Brillouin ZoneUnit cells

Figure 2.12. (Left) Unit cells used in the analyses. Light gray: Aluminum, dark
gray: Brass. (Right) Illustration of first Brillouin zone and the irreducible Brillouin
zone for the considered analyses. The unit cells were selected to have the same
irreducible Brillouin zone.
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Figure 2.13. Dispersion relations for a bilayer material made with aluminum and
brass under different kinematic models. Each layer has a thickness t = d. The
analysis was made considering only the direction in which the material is periodic.

Figure 2.13 shows the results for the bi-layer material with base properties as per
table 2.1. There are three S wave band gaps (shown by the shaded rectangle) in
the out-of-plane kinematic model and all of them occurring along the vertical (ΓX)
direction. Note that this is precisely the direction of periodicity of the microstructure.
The lower frequency bandgaps are interrupted by the arising of the P wave modes after
we consider the in-plane kinematic behavior. This pattern of elimination of bandgaps
with the introduction of additional degrees of freedom, is also observed in the micropolar
case shown in fig. 2.13c.

Similarly, fig. 2.14 presents the results for the circular pore, and square and checkerboard
inclusions. In all unit cells, the out-of-plane case exhibits partial band gaps along the
ΓX direction. As observed previously, these gaps are progressively eliminated as we
introduce additional degrees of freedom into the model. For the micropolar model the
rotational wave has a bandgap in the range 0 < Ω < 2, but for Ω < 2, the responses
with the micropolar and classical model are equivalent. The results for this last set
of microstructures and kinematic assumptions are physically consistent as indicated by
the additional branches obtained as we increased the number of degrees of freedom.
Also, in the low frequency regime (under Ω = 1), the group speed has a linear behavior
which implies that waves with wavelength values λ >> 2d (i.e., propagating at low
frequencies), any microstructure will be blind to the propagating disturbance.
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Figure 2.14. Dispersion relations for different unit cells under different kinematic
models. First row: Circular pore. Second row: Square inclusion. Third row: checker-
board. Columns 1 to 3 correspond to out-of-plane, in-plane and micropolar kinematic
models respectively.
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Conclusion

We have presented a novel and easy-to-implement computational alternative to obtain
dispersion relationships in periodic phononic crystals using commercial (or already ex-
isting) finite element codes. The proposed approach has two basic appealing features:
first, it avoids manipulating the global arrays, which is a forbidden operation in most
codes; and second, Bloch periodic boundary conditions are imposed at the element
level thus allowing for the consideration of problems belonging to different physical
contexts. The approach is based on the creation of two assembly operators for those
elements m subjected to Bloch boundary conditions, namely a Cc

m operator, which is
used to retrieve element nodal coordinates and other relevant geometric information;
and an operator termed Ca

m which assembles the element into the global arrays consid-
ering the proper boundary conditions at the onset. At the same time, the generality in
the proposed technique makes the implementation to 2D and 3D problems equally easy.
Moreover, the proposed strategy can be directly incorporated into existing user element
subroutines just through subtle changes. Once implemented, the technique is straight-
forward to use since the user just needs to input the coordinate-connectivity operator
Cc
m and the assembly-connectivity operator Ca

m for each element in the mesh. On the
other hand, the complex-valued nature of the global arrays arising as a consequence of
Bloch periodic conditions is dealt with using a duplicate-mesh approach reported in the
literature. The method and its implementation was verified against closed-form solu-
tions for a homogeneous and a bi-layer material under different kinematic assumptions
and geometries for the unit cell. We also conducted additional verification exercises
using numerical results reported by Langlet (1993) and Maurin et al. (2018). Finally, a
detailed description to implement the presented strategy is provided in the supplemen-
tary material of this work in terms of a compiled version of FEAPpv with user element
subroutines to compute dispersion relations.
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Chapter 3

Directional response of periodic
materials

Introduction

A second byproduct of the wave propagation analysis of periodic media is the charac-
terization of the directional response of the material. As a fundamental question tere is
interest in identifying how the possible wave modes propagate along different space di-
rections. This chapter focuses in those fundamental aspects. It starts by describing the
classical approach to conduct directional analysis. After pointing out some limitations
of this approach the chapter introduces an alternative, or complementary technique
which provides a more objective metric of the directional response. The chapter ends
with the discussion and a comparisson through a simple example of both methods.

3.1 Classical metrics of wave directionality

The dispersion relation over the first Brillouin zone gives a set of phase constant (or
dispersion) surfaces, where the number of surfaces corresponds to the dimension of
the eigenvalue problem in eq. (2.3). When the dispersion surfaces are represented as
iso-frequency contour plots, the direction of wave propagation at a given frequency
can be calculated as the normal to the corresponding iso-frequency contour line. It is
a common practice in the directional analysis of periodic materials to provide results
in terms of iso-frequency contour plots Casadei & Rimoli (2013) and group velocity
polar histograms based on iso-frequency contour lines (Ruzzene et al., 2003; Ruzzene &
Scarpa, 2005). However in most of these analysis typical results are based on the first
two modes of wave propagation, namely M1 and M2.

The surfaces associated to the modes M1 and M2 for wave propagation in a homoge-
neous material are shown in Figure 3.1(a). The wave propagation characteristics of a
material are known to be tightly linked to their mechanical properties; therefore, in
a homogeneous isotropic material where wave propagtion is independent of the prop-
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agation direction an intuitive and appropriate measure of wave directionality should
be in the form of a circle. However, as revealed in the contour plots and the corre-
sponding polar histogram shown in Figure 3.1(c) and (d) respectively, this behaviour is
only observed for mode M1, while in M2, the contour and radar plots incorrectly show
anisotropic response, which is caused by S- and P-waves belonging to different Brillouin
zones. Therefore, this approach provides biased results when considering directionality
at low and high frequency regimes.
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Figure 3.1. Traditional representation of directional behaviour for a homogeneous
material unit cell with mechanical properties E = 1e9Pa, ν = 0.3 and ρ = 1g/cm3. (a)
Surfaces white and blue correspond to modes M1 and M2 respectively. (b) Contour
plots of modes M1 and M2. (c) polar plots showing the directional behaviour of each
mode. Mode M1 (S-wave) has an isotropic directional behaviour, while mode M2

(P-wave) does not.

3.2 Definition of the new metrics

In this chapter, we propose an alternative strategy to obtain wave propagation direction-
ality, which considers the contribution of multiple modes Mi. The approach provides
the opportunity to conduct a more complete and objective description of the directional
response of a periodic material valid in the low and high frequency regimes.

The wave propagation directionality, D, is defined here like

D =
∑
i

e>tol

di(θ) ; di(θ) = C

(
∇Mi

α

)
(3.1)

where ∇Mi is the gradient of the i-th mode in the dispersion relation, α is the P-wave
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speed of the base material, tol is a predefined tolerance, θ = [0, 2π] is the angle defining
the propagation direction. In this definition, the operator C(V ) performs the following
operations over every vector vt in the vector field V :

i Calculates the direction and magnitude of vt.

ii Normalizes the magnitude of vt by α.

iii Accumulates the normalized magnitude for all group velocity vectors sharing the
same histogram bucket as vt.

Consequently, di = C (∇Mi/α) corresponds to a weighted polar histogram representing
the distribution of group velocity for mode Mi in any propagation direction. For in-
stance, fig. 3.2 shows the polar plots resulting after applying the C operator over modes
M1, M2 and M3 in a homogeneous material unit cell.
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Figure 3.2. Result from appliying C operator to the first three modes from a
homogeneous material unit cell with mechanical properties E = 109Pa, ν = 0.3 and
ρ = 1g/cm3. Surfaces white, blue and red correspond to modes M1, M2 and M3

respectively. On the right hand side: polar representation of d1, d2 and d3; result of
applying C operator to modes M1, M2 and M3 respectively.

It should be considered that in this directional descriptor the error, e, is updated after
each mode Mi is added to eq. (3.1). Here e is defined as:

e =
1

i

i∑
j=2
i>2

nθ∑
k=1

(
dkj
dkj−1

− 1

)
1

nθ
(3.2)

where dkj is the k-th value of dj(θ), and nθ is the number of bins used to calculate
the polar histogram charts. This error metric is an average measure of the general
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change in directional behaviour produced by the introduction of a new term di(θ) into
eq. (3.1). The process of adding modes is stopped when the error parameter e reaches
the prescribed tolerance i.e. the marginal contribution from the last mode is smaller
than a specified threshold.

3.3 Directinal response of a homogeneous material

Consider the application of eq. (3.1) to the unit cell of a homogeneous and isotropic ma-
terial. Figure 3.3a shows the evolution of the polar plot describing directionality when
considering 7, 14, 40, and 114 propagation modes. As the number of modes increases,
the polar plot approaches a circular shape. In this particular case a tolerance of 0.05
is reached after including 114 modes. For the rest of results reported in this work, tol
was set to 0.05 and nθ = 32. The algorithm for this directional analysis approach, is
fully detailed in section 3.3.
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Figure 3.3. Evolution of directionality D and error e for a homogeneous material
unit cell with mechanical properties E = 109Pa, ν = 0.3 and ρ = 1g/cm3. The terms
DN mean the directionality afer consedering N modes. The predefined tolerance
tol = 0.05 is reached after 114 modes.
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Data: Dispersion surfaces from Bloch analysis, tol, nθ
Result: Final directional behaviour D
initialization of D, e, i; Comment: Arrays size: D(nθ), d(nθ)
while e > tol do

vector field V ← ∇Mi/α ;
G← magnitude of V (group velocity of mode i) ;
initialization of d;
Comment: Vector count over the vector field V : d← C(V )
for j ← every vector vt in V do

dirθ ← calculate direction of vector vt and assignment inside one angular
section;
d(dirθ)← d(dirθ) + Gj;
Comment: d informs how much group velocity is present inside each
angular section

end
Comment: Update of D
D ← D + d;
Comment: Update of e
e← compute error;
i← i+ 1;

end
Algorithm 1: Detailed calculation process of directional behaviour

3.4 Comparisson of the studied metrics

Figure 3.4 shows the results of applying the classical and the propossed approach to
three different unit cells. From the first row, corresponding to the homogeneous mate-
rial, it is evident that the classic approach predicts an isotropic directional behavior for
the 1st S-wave mode; while the 2nd P wave mode has an anisptropic behavior which is a
misleading result. This incorrect directional behavior is due to the presence of branches
belonging to adjacent unit cells, as exposed in chapter 1. The inherent mixture of infor-
mation in Bloch analysis has to be carefully handled and consequently, modes M1 and
M2 cannot be associated to S and P waves respectively. For the additional cases and
due to the same spurious branches, the results from the classic approach are complex
to analyse. For instance, the second row shows the results for a small squared pore
embeded in a homogeneous material. In this case, mode M1 predicts that the waves
propagate along diagonal paths and it predicts horizontal and vertical paths for mode
M2. Analysing the available propagation paths in th unit cell, mode M2 has an intuitive
directional behavior while mode M1 does not. For the case depicted in row 3, the results
of directional behavior seem to be correct for modes M1 and M1 since they match the
propagation paths of the unit cell.

On the other hand, the proposed approach always predicts directional behaviors that
are in agreement with the propagation paths present in the material. These results show
that the directional behavior is easier to analyse when computed with the propossed
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approach.
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Figure 3.4. Directional behavior measured with two approaches. (a): Geometry of
the unit cell. (b): Classic approach. In each subfigure the two rows correspond to
the contour and polar histogram of modes M1 and M2 respectively. (c) Result with
the proposed approach.

3.5 Results of directionality for different geometries

and a Micropolar kinematic model

The directionality metrics are now applied to unit material cells whose kinematical
behavior is that of a micropolar model. The mechanical properties of the material are
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the same as those in the classical material model. In each one of the following figures the
unit cell geometry is shown on the left while the right panels describe the evolution of
directionality D and error e. The terms DN inidcate the directionality after considering
N modes.
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The new approach shows good results for the micropolar model. In the homogeneous
case, S waves are dispersive and there is a new rotational wave which is also dispersive.
Despite the dispersive nature of waves, we also expect to see a circle in the directionality
plot because energy propagates in the same way in any direction. The circular shape in
the polar plot becomes more evident as the number of modes considered increases. The
rest of cases correspond to a circular pore with different sizes. This results, together with
the results using a classical kinematic model shown before, agree with the propagation
paths available in each analysed case.
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Conclusion

We introduced a new metrics to describe the directional behavior of waves in a pe-
riodic material. This approach does not separate modes Mi and wave types (P or
S); instead, it deals with several modes and all the wave types present in a periodic
material. As seen in the first chapter, Bloch analysis has an inherent spatial aliasing
since it contains information from infinite unit cells. Our approach takes advantage
of that aliasing and considers all the information contained in Bloch analysis. Then
it is not necessary to pre-process the dispersion surfaces before making directionality
calculations. It is a qualitative tool, useful to describe the global behavior of waves
when propagating through the analysed material; and it is intended to be used as a
complement to dispersion curves and surfaces. Additional applications of this metric
are shown in chapter 4. The directionality metrics are also tested for some unit cells
with a micropolar kinematic model. This new approach is not better nor worse that
the classic one, but it just provides different information.

46 Directional response of periodic materials



Chapter 4

Analysis of a Phase Transforming
Cellular Material

Introduction

Architectured materials offer the possibility of tailoring its macroscopic response to meet
prescribed requirements by virtue of its microstructural design. Common examples of
this emerging field within the material science community are identified in the strong
development of cellular and metamaterials applications (Banerjee, 2011; Hussein et al.,
2014b; Norris & Haberman, 2012b). Among the many appealing features of such class
of materials, energy dissipation is specially attractive as it can be achieved through
the combination of several mechanisms Lu et al. (2009); Kadic et al. (2013); Leroy
et al. (2015). In parallel, cellular materials posses intrinsic wave attenuation capabili-
ties introduced by its spatially periodic nature (Hussein et al., 2014b). Moreover, the
importance of energy dissipation and wave manipulation in many fields of engineering
and physics and the interesting properties associated to metamaterials have motivated
the engineering community to embrace in the study, analysis and design of new and
novel cellular materials. Restrepo et al. (2015) and Correa et al. (2015) have proposed
a phase transforming cellular material (PXCM) which, depending upon the values of its
geometrical parameters has the ability to sustain multiple equilibrium configurations
and thus to dissipate energy through the change from one stable configuration to the
other: interestingly, this energy dissipation occurs while the base material remains elas-
tic as it takes place by large elastic deformations. On the other hand, cellular materials
are known by its attractive features to attenuate, forbid or enforce the propagation of
waves in certain frequency ranges and directions. The phase change inherent in the me-
chanics of the PXCM occurring hand-to-hand with the change in the cellular structure
raises natural questions regarding the band structure of the periodic arrangement. This
paper focuses in the characterization of the dynamic features of PXCMs in connection
with its possible stable configurations.

The study of periodic cellular materials from its wave propagation perspective is com-
monly conducted in terms of its dispersion properties or band structure and direction-
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ality description (Gonella & Ruzzene, 2008; Mousanezhad et al., 2015; Trainiti et al.,
2016). In the case of spatially periodic materials this can be achieved using numerical
methods together with the application of Bloch’s theorem (Brillouin, 1953) over the
unit material cell. A dispersion analysis for a cellular PXCM material, closely related
to the one proposed by Restrepo et al. (2015) has been conducted by Meaud & Che
(2017). These authors analyzed the dispersive properties of a multistable architectured
mechanism in the direction of bistability. That analysis however focused in the re-
sponse of the material along a single direction based upon the fact that the material
was strictly periodic along that specific direction. Although the one-dimensional pe-
riodicity of the PXCM precludes the existence of complete or multi-directional band
gaps, the cellular nature of the material introduces additional effects in the propaga-
tion characteristics together with its directional behaviour. Some additional analyses
of multistable cellular materials can be found in Shan et al. (2015), these authors made
numerical and experimental analyses to test the capabilities of a multistable mecha-
nism to trap strain energy. Debeau et al. (2018) analyzed negative stiffness honeycomb
materials under quasi-static and impact loads. Schaeffer & Ruzzene (2015) studied
the dispersive behaviour of magneto-elastic lattices. Haghpanah et al. (2016) tested a
variety of 2- and 3-dimensional multistable Shape-Reconfigurable mechanisms. Finally,
Frazier & Kochmann (2017); Nadkarni et al. (2014) performed some theoretical and
numerical analyses over mechanisms containing bistable elastic elements.

In this chapter the dispersive properties imposed by the cellular structure of the PXCM
are explored from a conceptual point of view and aiming at the identification of mecha-
nisms controlling band gap properties (i.e., width and location); as well as its directional
behaviour, computed with the approach proposed in chapter 3. For that purpose, Bloch
analysis and transient simulations to determine the response of finite domains are used.
All of the concepts and the computational tools developed previously are used in this
chapter. To develop conceptual understanding of the cell response we progressively
track –from the gap structure perspective– the behaviour of an initially perfect homo-
geneous material cell and subsequent degenerations until reaching the final configuration
of the actual PXCM. The progressive analysis is also conducted for the directional re-
sponse in terms of an alternative approach which objectively considers the contribution
from low and high frequency modes. After identifying some key aspects governing the
cell behaviour steaming from the progressive analysis, we also conduct a second study,
directly in the time domain and where we impose a displacement-controlled excitation
over a finite 10 × 1 super-cell. To test the effective wave filtering capabilities in the
material the excitation to the super-cell is applied as a single-frequency wavelet with
characteristic frequencies inside and outside of the previously found band-gaps. As a
result, we are able to identify: (i) mechanisms responsible for the presence (or absence)
of band gaps in vertical direction; (ii) mechanisms that control the frequency loca-
tion and bandwidth of the gaps in vertical direction; and (iii) mechanisms that control
the directionality properties of the cells. Such conceptual understanding of the problem
allows us to develop fine-tuning capability of the unit cell to match a target input.

This chapter is organized in two main sections. The first part discusses fundamental
theoretical aspects related to the basic mechanics of the PXCMs. The second part
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describes the dispersive analysis of the PXCM per se including the study of the pro-
gressive cells conducted upon partial configurations of the unit cell leading to the final
geometry of the PXCM together with the full analysis of the super cell in the time
domain.

4.1 Mechanics of the phase transforming cellular

material

A unit cells of a PXCM comprises two compliant bistable mechanisms. Each of these
bistable mechanisms exhibits a force-displacement response that is characterized by two
limit points ((dI , FI) and (dII , FII)) as seen in fig. 4.1a. This allows us to segment the
response into three characteristic regimes: regimes I and III that are characterized by a
positive stiffness as they represent the deformation of stable configurations of the unit
cell, and regime II that is characterized by a negative stiffness (Howell, 2001; Howell
et al., 1994). These unit cells are arranged in a space-filling array to make PXCMs.
The mechanical response of a two unit cell material is as shown in fig. 4.1(b).

The unit cell configurations corressponding to the two stable equilibria are interpreted
as phases of the PXCM, and a change in the configuration of its unit cell between
stable configurations is interpreted as a phase transformation (Restrepo et al., 2015).
The propagation of the phase transformation corresponds to a progressive change of
configurations from one row of bistable mechanisms to the next one, leading to a serrated
plateau in the force-dispalcement response. Traversal of the limit points results in
the non-equilibrium release of stored strain energy. Thus, PXCMs exhibit hysteresis
under mechanical loading and the force-displacement has two finitely separated serrated
plateaus that correspond to loading and unloading respectively. is different for loading
and unloading; therefore, PXCMs exhibit large hysteresis. If the unit cells are designed
such that despite undergoing large deformations the strains in the cell elements do not
exceed the elastic limit of the constituent material, there is no irreversible deformation
during the loading and unloading of these materials. Hence, the material can be used
to dissipate energy multiple times.

In addition to energy dissipation, phase transformations in PXCMs are accompanied
by large configurational changes in the unit cell. These changes affect macroscopic
properties of the material such as its effective density. In this chapter we investigate the
effect of these changes on the wave propagation behavior of the material e.g. changes in
the propagation of elastic waves over certain frequency bands (band gaps), and changes
in the direction of vibrational energy propagation through the material.

In this part we focus our analysis on the PXCM shown in fig. 4.1c which was introduced
by Restrepo et al. (2015). The unit cells of this PXCM are composed of two curved
beams that are connected by stiffening walls, which provide local support and prevent
transverse displacements. This lateral constraint allows the curved beams to function
as bistable mechanisms. The shape of the curved beams is described by y = (A

2
)[1 −

sin(2π(x− λ/4)/λ)], where λ is the wavelength; and A the amplitude (peak to valley).
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Other geometric parameters for the unit cell are the beam thickness t, out of plane
depth b and the thickness of the stiffening walls which is set to 1.5t. The mechanical
response of the curved beams is primarily determined by the amplitude to thickness
ratio Q = A/t; bistable behavior is obtained when Q ≥ 2.41 (Vangbo, 1998; Qiu et al.,
2004; Restrepo et al., 2015). The maximum strain in the beams, εmax = 2π2 tA

λ2
, should

be kept below the yield strain of the base material to avoid irreversible deformation and
allow the material to be used multiple times. In this work the geometric parameters
describing the unit cell of the PXCM were kept constant with values corresponding to
A = 9.04 mm, λ = 60 mm, b = 20.576 mm, and t = 0.742 mm.

Although this PXCM is a 2D cellular material, phase transformations take place only
for loads in the y-direction and its deformation is mainly governed by the deflection of
the curved beams. Three stable configurations can be identified at the unit cell level:
open, intermediate, and closed as shown in fig. 4.1d.
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Figure 4.1. Phase Transforming Cellular Materials (PXCM). (a) Schematic repre-
sentation of the force-displacement (F − d) behavior and change of potential energy
(U) as function of displacement for a bistable mechanism, (b) force-displacement
behavior for a two unit cell PXCM sample, (c) geometric parameters for a PXCM
sample and a constituent mechanism and (d) stable phases at the unit cell level. (e)
First Brollouin zone and Irreducible Brillouin zone. Parameter h is the total height
of the unit cell at hand.
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4.2 Dispersive behaviour of a PXCM

We now conduct a series of dynamic analyses aimed at elucidating the most relevant
physical aspects governing the dynamic properties of PXCMs. The unit cell and the
first Brilloun zone used for this analysis are shown in fig. 4.1. We start by examining the
dispersion diagram of a simple homogeneous cell and subsequent states corresponding
to perturbations of this base geometry, until obtaining the unit cell corresponding to a
PXCM (See Figure 4.2). Since we proceed through a sequential approach in which a
given cell is a one-step modification of the previous one, we refer to this as a progressive
cell analysis. The results from this progressive method of analysis are presented in
terms of dispersion relations along the irreducible Brillouin zone ΓXSY Γ and direc-
tional behaviour plots, aiming to provide insights about the contribution of different
members forming the PXCM to the dynamics of wave propagation. Subsequently we
studied the PXCM in each of its stable configurations (open, intermediate, and closed)
using Bloch theory, and complementing with full-scale time domain finite element sim-
ulations with the goal of testing the filtering capabilities of these materials resembling
conditions corresponding to an actual application. For all results reported in this paper
the base material forming the walls of the PXCM is considered to be linear isotropic
with properties E = 109Pa, ν = 0.3, and ρ = 1g/cm3. It is also noted that self-contact
effects are neglected in the simulations.

4.2.1 Progressive construction of the Open PXCM cell

1 2 3 4

5

6
7

8
(Open)9

Figure 4.2. Progressive construction of the open PXCM unit cell. Stages 1 to final
open configuration.

Figure 4.2 shows the evolution of the geometry to reach the final open configuration in
our progressive analysis approach. At stage 1, we started from a squared homogeneous
material unit cell, where the Bloch-periodicity response is fully understood as this
material only propagates P and S waves with no dispersion. Then, we progressively
introduced a variable-sized square pore in the center of the unit cell beginning with a
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negligible defect (stage 2) that grows until the unit cell becomes a thin frame (stages 3-
4). As a final perturbation we changed the aspect ratio of the cell (stage 5) and added
elements to reach the open-cell configuration of the PXCM (stages 6-9). Although,
stage 1 can be fully characterized using direction ΓX , and stages 2-4 can be described
using ΓXSΓ, in all our analyses we used the IBZ as in the final PXCM, i.e., ΓXSY Γ
in fig. 4.1(e), allowing us to track down the modes and wave-types in the dispersion
diagrams, and to relate the cell geometry and topology to group velocity and to the
emergence of band gaps. For each configuration we report the dispersion diagram and
the directional behaviour (see figures 4.3-4.5). As a physical reference to support the
interpretation of results, dashed red lines are overlaid over the dispersion diagrams
indicating the P and S-wave speeds in the homogeneous material.
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Figure 4.3. Progressive construction of the unit cell. Stages 1 to 4. Column (a)
illustrates the unit cell while columns (b) and (c) show the dispersion diagrams along
the IBZ and directional behaviour respectively. As a physical reference, dashed red
lines are overlaid over the dispersion diagrams indicating the P and S-wave speeds in
the homogeneous material.

Figure 4.3 shows the results from the progressive analysis during stages 1 to 4 and
corresponding to the introduction and subsequent grow of the square pore in the homo-
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geneous unit cell. There are two important observations from these results. First, from
the band diagrams along the ΓX and Y Γ directions it is evident that group velocity
for the P and S-waves decreases as the size of the pore increases. This is a consequence
of the wave packages encountering less material to propagate. Second, along the ΓX
direction, this decrease occurs at a higher rate for the S-wave than for the P-wave.
When the unit cell turns into a thin frame (stage 4) the group velocity of the P-wave is
still close to the reference value of the homogeneous cell, while the S-wave is already at
a low value of 5% of its homogeneous counterpart. This feature of the response is the
result of the horizontal bars along the ΓX direction having a large longitudinal stiffness
in comparison with its transverse response thus favoring a higher P-wave velocity. An
analogous response is observed along the Y Γ direction. Finally, as the pore size in-
creases, the directionality diagrams show that waves tend to propagate in vertical and
horizontal directions.

The next steps in the progressive analysis are indicated by stages 5 and 6, corresponding
to the flattening of the square cell (stage 5) and to the addition of a horizontal bar (stage
6). The results for these stages are shown in fig. 4.4. From the dispersion diagrams, it
is noted that the change in the aspect ratio with respect to the square cell destroyed
the symmetry along S in the IBZ. In addition, stage 5 shows a strong directionality
of propagation along the vertical direction, associated to the thicker thickness of the
vertical walls. This result becomes evident after a comparison of the directionality
diagrams in stages 4 and 5. However, this behaviour is reversed after the introduction
of the additional horizontal wall in stage 6, which creates more favorable conditions for
propagation along the horizontal direction.

In the final steps of the progressive analysis we introduced stiff vertical (stage 7) and
horizontal bars (stage 8), and finally, in stage 9 the main horizontal element is deformed
into its final sinusoidal shape. The main topological difference between stages 7 to 9,
with respect to previous stages, is the rupture of material continuity introduced by
the vertical bar added during stage 7. Here we define a material as continuous in a
specific direction if a ray can follow an uninterrupted path when traveling along that
direction. If such path exists, the material is therefore continuous and a wave would
be able to propagate independently of the value of k. This is precisely the case for
stages 1 through 6 where there is horizontal and vertical continuity, and therefore,
there are neither complete nor partial bandgaps. To clarify this last aspect we define a
bandgap as complete when it covers all the IBZ and as partial otherwise. The results
for this last set of perturbations are shown in fig. 4.5. According to these results, it
is observed that a given direction favors the propagation of a single wave type. For
instance, considering the horizontal (ΓX) direction and the fact that the horizontal
bars coincide with the polarization direction of P waves, while they oppose that of S
waves, favors the transport of energy for the P-wave while it slows down the propagation
of the S-mode. The same analysis can be performed onto P and S-waves propagating
vertically. The same directional behaviour is also visible in the dispersion relations.
Along the ΓX direction there are branches with high group velocity,corresponding to
P-waves. On the other hand, along the Y Γ direction the P and S-wave group velocities
exhibit a considerable decrease as compared with the previous stage. In this case and
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due to the interruption in material continuity there are now partial band gaps in the
material. They are identified along the XS and Y Γ directions. Results from stage
7, 8 and the final open PXCM cell are similar in terms of dispersion relations and
directional behaviour. At this point is clear that the progressive analysis has been
effective in establishing the connection between the final PXCM geometry and the
resulting dispersion diagram.
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Figure 4.4. Progressive construction of the unit cell. Stages 5 and 6. Column (a)
illustrates the unit cell while columns (b) and (c) show the dispersion diagrams along
the IBZ and directional behaviour respectively.As a physical reference, dashed red
lines are overlaid over the dispersion diagrams indicating the P and S-wave speeds in
the homogeneous material.
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Figure 4.5. Progressive construction of the unit cell. Stage 7 to open configuration.
Column (a) illustrates the unit cell while columns (b) and (c) show the dispersion
diagrams along the IBZ and directional behaviour respectively.As a physical reference,
dashed red lines are overlaid over the dispersion diagrams indicating the P and S-wave
speeds in the homogeneous material.

4.2.2 PXCM cell in different stable configurations

For completeness we present the results corresponding to the unit cell of the PXCM in
its stable open, intermediate, and closed configurartions. As pointed in the previous
section, the wave propagation response is controlled by the directions of continuity in
the material; therefore, there are not considerable changes observed in the dispersion
diagrams for each of the stable configurations of the PXCM in relation with the results
from stages 7 through 9. Moreover, the responses in the open, intermediate, and closed
configurations are equivalent as it can be seen from the band diagrams and directionality
plots shown in fig. 4.6, where all the partial bangaps observed in the dispersion digrams
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occur at near the same frequency values, and the directionality is strongly horizontal
in all the three cases. This effect can be understood by considering the concept of
material continuity. For instance, a ray traveling along the vertical direction finds the
same amount of material interruption regardless of the cell being open or closed. This
occurs, because, although the cell geometry changes, the cell topology does not. And
consequently, the energy distribution through the cell is not altered in the different
configurations.

Finaly, from the progressive analysis and the study of the PXCM cell in its 3 stable
configurations, it can be concluded that PXCMs can be effectively used as a low-pass
mechanical filter along the vertical direction (Y Γ) and designed for a determined cut-off
frequency. In this sense energy can be attenuated near the same frequencies indepen-
dently of the cell topology. At the same time the material can be used as a P-wave
guide in horizontal direction. These properties of the material due to its periodic na-
ture can additionally be combined with the energy dissipation capability associated to
the process of switching between multiple stable configurations previously reported by
Restrepo et al. (2015).
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Figure 4.6. Comparison between different configurations. Column (a) illustrates
the unit cell while columns (b) and (c) show the dispersion diagrams along the IBZ
and directional behaviour respectively. As a physical reference, dashed red lines are
overlaid over the dispersion diagrams indicating the P and S-wave speeds in the
homogeneous material.

4.2.3 Super cell analysis

To complement the Bloch analyses, we conducted direct time domain analysis of a super-
cell with dimension 10 × 1 unit cells for the 3 stable configurations of the PXCM. For
each of the simulations, the super-cell model was excited at the bottom with an imposed
displacement time history following a harmonic function and producing an incident P-
wave traveling along the vertical direction (Y Γ), corresponding with the direction where
phase transformations occur and where partial band gaps were previously identified. We
used roller supports on the lateral sides and absorbing boundaries on the top surface.
In order to verify the effectiveness of the material in different band gaps, the input
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excitation is designed using the dispersion relations shown in fig. 4.7 and corresponding
to the dispersion properties along the (Y Γ) direction. We used frequencies f1 = 2000
rad/s, f2 = 4500 rad/s, f3 = 8000 rad/s and f4 = 20000 rad/s. Note that f2 and f4 are
located inside a band gap, whereas f1 and f3 are located outside this bandwidth.
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Figure 4.7. Selection of harmonic frequencies for super-cell analysis. f1 and f3 are
selected outside a band gap, while f2 and f4 are selected inside. Dispersion curves in
Y Γ direction for (a) Open, (b) Intermediate and (c) Closed configurations.

Figure 4.8 shows snapshots of the displacement response of the open supercell under in-
put excitations at different frequencies. For excitation frequencies f2 and f4, which are
located inside the partial band gaps (see fig. 4.7) there is no energy propagation display-
ing the filtering capabilities of the material. By contrast, the response to excitations
composed by harmonics of frequencies corresponding to f1 and f3 allows propagation
along the complete domain. From the snapshots, we also observe a difference in group
velocity between cases f1 and f3 which can also be identified in the dispersion relation
shown in fig. 4.7. At frequency f1 the dispersion curves have a steeper slope than at fre-
quency f3. It is also evident that since the material is now deployed over a finite domain,
there is a limited effectiveness in filtering waves. On the other hand, examination of the
snapshots suggests that the central bar plays a fundamental role in the response of the
supercell as it prevents the propagation of waves in the frequency range near f2 = 4500
rad/s. Additionally, it is observed that when the propagation is fully developed, the
central and bottom bars oscillate 180◦ out of phase producing destructive interference.
This is visible in the frames corresponding to t2 and t3. Figures 4.9 and 4.10 show
the same set of snapshots for the remaining two configurations of the PXCM although,
and as anticipated there are no appreciable differences in the response, as all three
configurations are equivalent from the perspective of directional continuity.
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Figure 4.8. Snapshots of the open supercell excited with a harmonic prescribed
displacement at times (a) t1 = 0.34ms, (b) t2 = 1.12ms and (c) t3 = 4.36ms. At each
time frame, excitation frequencies f1 to f4 from left to right.
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Figure 4.9. Snapshots of the semi-closed supercell excited with a harmonic pre-
scribed displacement at times (a) t1 = 0.34ms, (b) t1 = 1.12ms and (c) t1 = 4.36ms.
At each time frame, excitation frequencies f1 to f4 from left to right.
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Figure 4.10. Snapshots of the closed supercell excited with a harmonic prescribed
displacement at times (a) t1 = 0.34ms, (b) t1 = 1.12ms and (c) t1 = 4.36ms. At each
time frame, excitation frequencies f1 to f4 from left to right.

As an additional analysis, and in order to have a quantitative measure of the attenu-
ation effectiveness of the material we computed the transmissibility in each excitation
frequency and for each configuration of the unit cell. The results for each configura-
tion are displayed in fig. 4.11 and these correspond to the ratios between maximum
displacement response with respect to the amplitude imposed in the harmonic excita-
tion. The response output was measured for a set of receivers located at the interface
between adjacent cells as shown in the inset for fig. 4.11. In the f2 case, inside a band
gap, near 60% of the energy remains trapped in the first cell while in f1 and f3 cases,
almost all the energy is transmitted from one cell to the other. The f4 case is even more
interesting, since 90% of the energy remains in the first cell. There is also a significant
difference in the width of the band gaps containing f2 and f4. In the f4 case, the band
gap is wider than in the f2 case. Then the attenuation capabilities of the material are
more visible in f4 case. This implies that fewer cells are needed to reach the same
attenuation level when the excitation frequencies are inside wider band gaps.
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Figure 4.11. Maximum vertical displacement along some receivers in the supercells.
(a) Open configuration, (b) semi-closed configuration, (c) closed configuration

4.2.4 Modal analysis and tuning of the first band gap

Transient simulations showed that the central bar moved out of phase with the sinu-
soidal segments for excitations in the two band gaps that were explored earlier. In this
section, we investigate this connection further and use it to tune the band gaps in the
Y Γ direction for the PXCM material.

Salient mode shapes and frequencies from the modal analysis of a single unit cell in the
open configuration are shown in column (b) of fig. 4.12. The motion of the unit cell is
unrestrained in this analysis except the left and right edges, which are constrained to
move only in the vertical direction. The modes shown here are chosen because they lie
in the band gaps of the PXCM material for waves propagating in the vertical direction.
We observe that the modes with frequencies ωu1 = 4823 rad/s, ωu2 = 11243 rad/s and
ωu4 = 25389 rad/s, all feature the central bar moving out of phase with respect to the
sinusoidal beams. Two of these frequencies (ωu1 = 4823 rad/ and ωu4 = 25389 rad/s)
are close to the band gap excitation frequencies that were used in the transient RVE
simulations (f2 = 4500 rad/s and f4 = 20000 rad/s respectively). Recall that when the
unit cell is subject to a harmonic excitation at a frequency near a natural frequency, we
expect the corresponding mode to contribute significantly to the overall motion of the
cell. Thus, we can establish a connection between the modes of a unit cell and band
gaps in the Y Γ direction for this PXCM.

We can take this reasoning a step further. A closer look at the modes corresponding to
ωu1, ωu2 and ωu4 shows that the deformation of the central bar in these modes of the
unit cell is similar to that in the first three modes for a fixed-fixed beam in bending.
The natural frequencies and mode shapes for these modes are shown in column (c) of
figure fig. 4.12. The close correspondence between these frequencies and the band gaps
in the Y Γ direction for the PXCM suggests that these are locally resonant bandgaps
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that arise when the frequency of excitation approaches the resonance frequencies of
some structural elements in the cell (Celli & Gonella (2015); Liu et al. (2000); Sigalas
& Economou (1992)). Such band gaps are associated with energy localization, which is
consistent with our observations on the transient responses of the RVE in the previous
section. We can now exploit the above correspondence to tune these band gaps.

Y
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0.5

1

1.5

2

2.5
10 4

Figure 4.12. Modal response of the unit cell in the open configuration. (a) Disper-
sion diagram in the Y Γ direction for open cell configuration. (b) Modal shapes and
their frequency location inside the dispersion diagram. (c) First three fundamental
modes of a fixed-fixed beam with geometric and material properties as the central
bar.

The dynamic behavior of the central bar can be modulated by varying its material
properties (e.g. modulus and density) or its geometry (e.g. cross-section dimensions,
non-prismatic profile, etc.). Closed form analytical expressions can be used to estimate
the natural frequencies of the central bar for any of these modifications. Thus, we can
readily determine the magnitude and nature of the modifications needed to achieve
a target band gap frequency for the PXCM. In this study, we chose to modulate the
density of the material used for the central bar while keeping all other attributes of the
central bar and the rest of the unit cell unchanged. This is indicated in fig. 4.13(a) by
using a different color for the central beam as compared to the rest of the unit cell.
Let ρc and ρ denote the densities of the materials used for the central beam and the
rest of the unit cell respectively. We computed the dispersion diagrams for various
values of the parameter ρ̄ = ρc/ρ ratio in the range [1.0, 10.0]. Figure 4.13(c) shows
the Y Γ part of the dispersion diagram for salient values of this parameter. We note
that a partial band gap in the Y Γ direction does not exist around ω = 2000 rad/s in
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Figure 4.13. Modulating the partial band gap in the Y Γ direction for the PXCM
by varying the density of the material used for the central bar. (a) Unit cell geometry
- blue region: density ρ, red region: density ρc. (b) Evolution of UBL, LBL and
BW for the PXCM with increasing ρ̄. (c) Dispersion relations for various values of
ρ̄ = ρc/ρ. For values of ρ̄ > 2.0, a modal shape (which its frequency is plotted as a
black dashed line inside the band gap) within the new band gap and involving the
central beam, was always found. The red dashed line represents the first natural
frequency of the central bar analysed as a fixed-fixed beam.

the original (ρ̄ = 1.0) unit cell; the lowest frequency band gap in the original cell is
around ω = 4000 rad/s. A partial band gap around ω = 2000 rad/s does not appear
until ρ̄ > 2.0. The band gap stretches from a lower limit of LBL to an upper limit
of UBL (see fig. 4.13(c)). The band gap width is defined as BW = UBL − LBL.
Further increases in the value of ρ̄ beyond 2.0 lead to i) a monotonic reduction in both
LBL and UBL, and ii) a concomitant monotonic increase in BW . This variation in
the band gap frequency interval (especially, the LBL) closely follows the dependence
of the first natural frequency for a fixed-fixed beam in bending on the density of the
beam material. This dependence (ωb = ωb1/

√
ρ̄) is indicated on figure fig. 4.13(b) by a

red dashed line.

The results in this section show that key insights gained from a step-wise deconstruction
of the unit cell and transient analyses of an RVE enable us to tune the partial band
gaps along the Y Γ direction in the PXCM in a straightforward manner. Although, we
illustrated this ability by tuning only the lowest band gap, it should be evident that
the other resonance band gaps in the material’s response can also be tuned in a similar
manner.

64 Analysis of a Phase Transforming Cellular Material



Conclusion

We have studied the dispersive properties of a multi-stable cellular material (PXCM) in
terms of its band diagrams and directional response. Such class of materials is attractive
due to its inherent capability to dissipate energy by virtue of the geometric configuration
of its microstructural elements which allows it to develop that ability through the phase
change from one stable configuration to the other while the base material remains
elastic. In addition to this appealing property the material can exhibit further dynamic
attenuation introduced by its cellular periodic arrangement. To study the directional
behaviour we used the novel method proposed in chapter 3, that takes information from
several modes, as opposed to single mode biased methods. This new approach is useful
as it allows to obtain highly representative descriptions of the directional response valid
in the low and high frequency regime. We used the finite element method to conduct
Bloch analysis in progressive (intermediate) geometries of the unit cell leading to the
final PXCM. Based on the dispersion results, we investigated the filtering properties
of the PXCM with time-domain simulations and a modal analysis. We found that
band gaps along the vertical and horizontal directions of the PXCMs are explained
in terms of material continuity concepts, while its properties (i.e., cut off frequencies,
width, etc.) are related to the natural frequencies of local elements of the unit cell.
Particularly, in the low frequency regime these band gaps are found to be controlled by
the flexural modes of the central horizontal bar as suggested by super-cell and modal
analyses. The material discontinuity in vertical direction and the resonant central bar,
makes the PXCM suitable to be tuned in the same way that the one used in section 5.5,
where we proposed a closed-form expression to control the location of a resonance band
gap. Modification of the modal response of the central bar allowed us to fine-tune the
associated band gaps. As a major result it was found that the dispersive properties
of the PXCM remain invariant to the configuration of the cells due to its multi-stable
nature. This may be understood as a good complement to the already appealing feature
of the PXCM of dissipate energy through non-linear response while the base material
remains elastic.
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Chapter 5

Further work: some ideas to
conduct a rational analysis of 2D
periodic materials made up of
beams

Introduction

In the preceding chapters of this work Bloch analysis was shown to be a powerful tech-
nique to study the elastodynamic response of periodic materials. We also formulated
a very general computational framework in terms of a finite element implementation
which was shown to be useful in conducting analysis of very general kinematic models.
The framework is also powerful as it is easy to incorporate into commercial packages
that admit user subroutines. With this numerical tool it is straightforward to find the
dispersion relations for a predefined unit cell. In fact this set of tools was used in the
analysis of the multi-stable cellular material of chapter 4. Despite of these undeniable
capabilities for the analysis of periodic media, the big challenge from an engineering
perspective still remains in solving the inverse problem. That is, finding a unit cell that
matches prescribed dispersive properties. In this final chapter we explore and present
as an approach for further work, some basic and fundamental ideas aimed at under-
standing the response of 2D periodic materials whose base elements are beams. The
chapter does not include final nor definite results, however it is expected to pave the
way for a deeper and rational exploration of popular 2D cellular materials where fine
tuning capabilities are desired.

To study the basic mechanics of the frame-based 2D materials we followed a reduc-
tionist approach beginning with the review of an improved Timoshenko beam model
(Timoshenko, 1921, 1922). After describing the possible propagating waves and dis-
persive properties of this simple fundamental material we used our numerical tools to
focus on the response of a unit cell whose fundamental building block is precisely a
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Timoshenko beam. Using the concepts from the single Timoshenko beam model we
tried to separately control the group speed of longitudinal and transversely polarized
motions. Although these motions are shown to resemble P and S waves they are not
strictly P and S. From these analysis it was found that we can generate band gaps in
a specific material by dropping the group speed of those motions resembling P waves.
This was also shown to be achieved through what we have called The continuity mate-
rial concept. The final part of the chapter compares the dispersive properties for a unit
material cell modeled with beam elements and with plane strain idealizations. This is
a natural questions as there is a great number of contributions where 2D analysis is
conducted based upon this idealization. As a final result we propose a closed-form to
control the location of a band gap in a specific unit cell.

Some of the unit cells analysed in this chapter have small structural elements modelled
as beams. In those cases b/L > 0.1, then the Timoshenko model is appropriate. Pe-
riodic materials made of beams have been widely investigated since the 60’s. Seminal
contributions can be found in Heckl (1964); Lin & McDaniel (1969), where the authors
studied dispersion in 1D periodic structures composed by beams. Some years later,
Langley et al. (1997) extended the analysis to 2D periodic lattices combining theo-
retical, numerical and experimental techniques. More recently, Ruzzene et al. (2003);
Ruzzene & Scarpa (2005) studied wave beaming effects and directional behavior of
in two-dimensional cellular structures; then Gonella & Ruzzene (2008) extended the
analysis to consider changes in the shape of the cellular structures, which modify the
dispersive and directional behavior of the periodic material. Phani et al. (2006) studied
different arrangements of 2D periodic structures made with beams. Here the authors
analysed fuor different topologies of periodic structures, showing dramatic differences
in their dispersion relations. Then they used homogenized properties to analyse the
asymptotic values of the dispersion relations in the long wavelength regime. Finally,
Liu & Hussein (2012) studied the transition between Bragg scattering and local reso-
nance in periodic beams with different boundary conditions or periodic supports.

5.1 Wave propagation in a Timoshenko beam model

This section describes the band structure of a simple material model corresponding to
a Timoshenko beam incorporating shear strains. To consider all possible motions the
model is also enriched with axial deformations. From the dispersion relations for the
material, which are derived from the governing equations of motion, it is observed that
the material admits the propagation of 3 different types of waves, namely a longitudinal,
a rotational and a bending wave . The dispersion relations are then used to find the
group speeds of these possible waves.

5.1.1 Equations of motion

Figure 5.1 shows a differential element of a beam of cross section A, moment of inertia I,
shear modulus G, Young’s modulus E, mass density ρ and external force per unit length
q(x, t) undergoing transverse displacement w. In the considered Timoshenko beam
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model it is assumed that plane sections normal to the neutral axis prior to deformation
remain plane and at an angle ψ with the neutral axis after deformation. Note that due
to the consideration of the shear strain γ0 over the cross section, the angle ψ is given
by:

ψ =
∂w

∂x
− γ0. (5.1)

This improved beam-theory model should be contrasted with the classical Euler-Bernoulli
beam model where shear strains are neglected resulting in:

ψ =
∂w

∂x
.

Figure 5.1. Infinite unsupported beam undergoing flexural motion. (a) Beam and
cross-section with geometric properties A and I and it is restricted to symmetric
shapes. (b) Differential element of the beam subjected to load. (c) Kinematical
details of shearing deformation.

Consider the force and moment equilibrium for a differential element of size dx and
where M and V are the internal moments and internal shear forces. Using the proper
force-displacement relations these equations yield, (Graff, 1976):

GAη

(
∂ψ

∂x
− ∂2w

∂x2

)
+ ρA

∂2w

∂t2
= q(x, t) (5.2)

GAη

(
∂w

∂x
− ψ

)
+ EI

∂2ψ

∂x2
= ρI

∂2ψ

∂t2
(5.3)
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In eq. (5.2) and eq. (5.3) η is the Timoshenko shear coefficient introduced to compensate
for the assumption of constant shear strain over the cross section. This coefficient can
be derived for a given cross section using a force balance relation like:

V = G

∫
A

γdA = (Gγ0A)η.

In this work η is computed as defined by Cowper (1966). Equations (5.2) and (5.3) are
the equations of motion for the Timoshenko beam theory.

For the analysis that follows, it is also convenient to consider the axial (or longitudinal)
response of the beam element. The corresponding equation of motion follows from
equilibrium considerations along the longitudinal direction giving:

E
∂2u

∂x2
+ p = ρ

∂2u

∂t2
, (5.4)

and where u(x, t) is the axial displacement of a material point in the beam and p is an
axial force per unit length.

5.1.2 Dispersion relations

Dispersion properties in terms of ω vs κ curves for the beam model can be derived after
assuming that motion is a plane wave of the form

() = Aei(kx−ωt).

with amplitude A, constant angular frequency ω and wave vector k. Using the specific
representations

u(x, t) = Bei(kx−ωt)

w(x, t) = B1e
i(kx−ωt)

ψ(x, t) = B2e
i(kx−ωt)

in 5.4, 5.2 and 5.3 respectively yields after dropping the load terms:

ω = ck (5.5)

and

EI

ρA
k4 − I

A

(
1 +

E

Gη

)
k2ω2 − ω2 +

ρI

GAη
ω4 = 0. (5.6)
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which are the dispersion relationships associated to the axial and bending kinematic
assumptions introduced previously. Note that in the derivation of the dispersion rela-
tionship associated to beam bending, the transverse motions w and section rotations ψ
were assumed like independent plane waves. However, enforcing the condition:

ψ =
∂w

∂x
− γ0

results in a single dispersion relationship from 5.2 and 5.3. The details of the compu-
tation leading to eq. (5.6) can be found in Graff (1976).

Equation 5.6 can be written in the compact form

C1k
4 − C2k

2ω2 − ω2 + C3ω
4 = 0

and then solved for ω2 to arrive at the following ω vs κ relationship

ω2 =
C2k

2 − 1

2C3

± 1

2C3

√
(C2k2 + 1)2 − 4C1C3k4. (5.7)

Solving the dispersion relation in the form ω ≡ ω(k) yields positive and negative real
roots corresponding to rightward- and leftward-propagating harmonic waves. Taking
the positive real solution and considering also the positive and negative internal signs
results in two curves corresponding to different wave modes. These curves were plotted
in fig. 5.2 for the case of an aluminium beam with properties corresponding to E =
73×1010Pa, ν = 0.325 and ρ = 2770kg/m3 and cross-sectional properties of A = 0.01m2

and I = 6.33 × 10−4m4. In the figure we considered also the linear relationship given
in eq. (5.5) with c =

√
E/ρ corresponding to the longitudinal mode associatted with

the displacement component u. The remaining curves in the figure correspond to the
waves associatted to the transverse displacement w and to the section rotation ψ. In
what follows, we will refer to these wave modes as bending waves and rotational waves
respectively.
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Figure 5.2. Dis-
persion curves for
a beam made of
aluminium. Longi-
tudinal and flexural
waves are depicted in
the same plot.
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The rotational wave associatted to ψ has a cut-off frequency

ωR =

√
GAη

ρI
(5.8)

while for the bending wave

ωB = 0. (5.9)

The frequencies corresponding to k = 0 are found after solving eq. (5.7) in the long
wavelength limit (k → 0). According to these results, a very long bending wave (k ≈
0.0) cannot propagate through the beam since its group speed (slope of the dispersion
curves) is zero.

5.1.3 Group speed

The group speeds for the waves present in the Timoshenko beam material model, can be
computed from eq. (5.7) after calculating ∂ω/∂k. Applying the chain rule to eq. (5.7)
yields

CB,R =
∂ω

∂k
≡ 1

2ω
f ′(k) (5.10)

where ω is the positive real solution of eq. (5.7) plotted in fig. 5.2 and
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f ′(k) =
C2k

C3

± 1

2C3

[
1

2S(k)

(
4C2

2k
3 + 4C2k− 16C1C3k

3
)]
,

with

S(k) =

√
(C2k2 + 1)2 − 4C1C3k4.

The constants C• are those implicitly defined in eq. (5.7). On the other hand, CB,R in
eq. (5.10) takes the value of group speed of the bending or rotational waves according
to the sign of ω and f ′(k).

The group speeds for the longitudinal, bending and rotational waves are plotted in
fig. 5.3. In the figure the wave number axis is extended by a factor n, which is useful
to show the asymptotic behavior of the group speed. When the shear stiffness becomes
infinite (zero shear strain) the beam behaves as an Euler-Bernoulli beam resulting in
an unbounded group speed for the bending wave. As pointed out by Graff (1976) this
results in an illed-condioned medium where an applied pulse inmediatly appears in the
far field. The assymptotic values of the group speeds are found by making k → ∞ in
eq. (5.10) leading to

C∞R = CL; C∞B =

√
Gη

ρ
(5.11)

Figure 5.3. Group speed
of longitudinal and flex-
ural waves in an infinite
unsupported beam. Note
the asymptotic behavior of
group speed.
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Two observations are relevant when k → ∞. First, the bending and rotational wave
becomes non-dispersive at long wavelengths, and second the rotational wave propagates
at the same group speed as the uncoupled longitudinal wave. On the other hand, at high
frequencies waves do not interact with the geometry of the beam as the wavelengths
are so small in comparisson to the the beam dimensions that they propagate as in a
free space.

Since the bending and rotational waves have transverse polarization when propagating
through the beam, the values of A and I are expected to affect their group speed.
Assume a rectangular cross section with dimension a× b. From eq. (5.6), it is evident
that the geometric properties are always related as I/A. Furthermore, for a rectangular
cross section it folllows that I/A ∝ b2; then a will not have any incidence on the group
speed and the only required variation is in the height parameter b. The group speeds for
3 different values of the height paramter, labeled as 1, 2 ,3 are shown in fig. 5.4.
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(c) Zoom on the results

Figure 5.4. Variation of group speed of longitudinal and flexural waves in the beam
for various values of cross-sectional height. A base value b = 0.01m was used. Follow-
ing the previous color convention; blue, black and red curves represent longitudinal,
bending and rotational waves respectively. Dashed line: 2b, dotted line: b and solid
line: b/2.

As expected, only the group speed of the bending and rotational waves waves are sen-
sible to changes in geometric properties. In order to find a relation between changes in
the cross section dimensions and changes in the group speed, we did a simple dimen-
sional analysis of the geometric terms (A, I) appearing in eq. (5.10). It was found that
for low wave number values, i.e. when the group speed is nearly linear, the slope of
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eq. (5.10) is proportional to
√
I/A which is equivalent to the prediction using Euler-

Bernoulli theory. This last relation is valid for any cross-sectional shape as eq. (5.10)
is general.

5.2 Finite element modeling of a periodic beam el-

ement

This section describes for completeness the verification of the finite element implemen-
tation of the Timoshenko beam element within the context of Bloch analysis. The
numerical implementation is required in order to study periodic materials whose base
elements are beams. The beam element was implemented as a user element subrou-
tine in the finite element code FEAP. The verification problem compares the closed-
form dispersion relations obtained after applying Bloch theorem to a material cell of
a Timoshenko beam and the corresponding results obtained with the finite element
implementation.

5.2.1 Analytical periodic beam

Conisder the infinite Timoshenko beam shown in fig. 5.5. The beam can be assumed like
a periodic material model conformed by successive unitary beams of length 2d.

Figure 5.5. Scheme of a periodic homogeneous beam of length 2d. The previous in-
finite beam is now represented as a repetition of a finite-sized beam in both directions
(left and right).

The dispersion relationships for the beam considering the Bloch periodic boundary
condition is obtained after using the information from different Brillouin zones of the
form

ωm ≡ ω(km), (5.12)

in the disepersion relations given in eq. (5.7). Here the subscript m corresponds to an
integer number referring to waves coming from adjacent Brillouin zones. In the case
of a unit cell from a 1D periodic material, the following definition of the wave number
applies (Langlet, 1993):

km =
(
kx +

mπ

d

)
, (5.13)
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where kx is the wave vector and takes values kx = [0, π/2d] covering the first Brilloun
zone. The dispersion curves considering Bloch boundary conditions are shown in fig. 5.6
for the beam of rectangular cross section. The resulting curves show information from
adjacent unitary beams.
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Figure 5.6. Dispersion relations in the first Brillouin zone for a periodic beam of
length 2d. The geometric parameter b is varied to show the variation of group speed
of shear waves in the dispersion relations.

5.2.2 Numerical periodic beam

Figure 5.7. Details of the
two-noded beam element imple-
mented in FEA. It is a Tim-
oshenko beam element coupled
with a classic frame element ori-
ented in a general angle φ.

The numerical framework to compute dispersion relations in periodic beams was im-
plemented in the user element subroutine described chapter 2. The element is a
displacement-based two-noded beam (fig. 5.7) following the formulation from Friedman
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& Kosmatka (1993) in terms of cubic and quadratic Lagrangian polynomials to inter-
polate transverse and rotational displacements respectively. The element also includes
axial displacements representing longitudinal waves through the beam (Przemieniecki,
1985). The numerical implementation was verified against the analytical solution using
the same parameters as for the cases shown in fig. 5.6. The results from the verification
are presented in fig. 5.8 and show a good agreement with the analytical solution.
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Figure 5.8. Comparison between analytically and numerical results of dispersion in
a periodic beam. Solid lines correspond to analytical solutions and dots correspond
to the numerical solution. The parameters used to make this comparison were the
same as in fig. 5.6.

5.3 A simple 2D periodic structure made of beams

This section is devoted to the investigation of the response of a simple bi-dimensional
periodic material whose base elements are Timoshenko beams. The section starts with
the definition of the unit cell and the numerical computation of the band structure
for the unit cell. This dispersion characterization is then analyzed using the concepts
discussed in the previous section complemented by a study of the modal response of
the full cell and the local beams. The final introduces a geometric perturbation to the
cell in order to obtain a target band structure.
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5.3.1 Unit cell and dispersion results

The simple two-dimensional periodic material is shown in fig. 5.9a. The base elements
are aluminum Timoshenko beams with a rectangular cross section a×b, with b = 0.01m
while the unit cell has dimensions 2d×2d where 2d = 1m . Figure 5.9b-c show the unit
cell geometry and its first Brillouin zone respectively. The band structure computed by
the finite element based user subroutine discussed previously is shown in fig. 5.10 over
the IBZ illustrated in fig. 5.9c. For simplicity all the analyses that follow are restricted
to the horizontal ΓX direction.

Figure 5.9. Two dimensional squared frame. (a) Periodic reticular material made
of beams. (b) Unit cell composed by four beams. (c) First and Irreducible Brillouin
zones in the wave number domain.
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Figure 5.10. Dispersion
curves for a squared frame
made of beams over the
IBZ. Not complete nor par-
tial band gaps are detected.
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5.3.2 Analysis of the dispersion relations in ΓX direction

The fundamental concepts identified in section 5.1 are now used in the analysis of the
band diagram of the full cell using the conventions described in fig. 5.11. The left part
of the figure shows a motion originally polarized in the form of a P wave along the
horizontal (ΓX direction) with displacements parallel to the propagation direction. As
described in the figure, this motion is expected to impart local modes corresponding to
a longitudinal wave in the horizontal element and transverse modes, corresponding to
bending and rotational waves in the perpendicular elements. Similarly, the figure on
the right shows a motion along the horizontal ΓX direction but now polarized like an
S wave. This motion is expected to impart local modes corresponding to a longitudinal
waves in the elements normal to the direction of propagation, and transverse modes,
corresponding to bending and rotational waves in the elements parallel to the direction
of propagation. These modes are inidcated in the figure by the letters L and T placed
in the corresponding elements. In general, beam elements parallel to the global polar-
ization are excited by a local longitudinal mode and beam elements perpendicular to
the global polarization are excited by a local transverse mode in the form of bending
and rotational waves.

Figure 5.11. Definition of global propagating waves through the frame and effects
on local beams composing the frame. A global wave (P or S) can trigger local
longitudinal (L) and transverse (T ) modes on the beams. The black arrows represent
the direction of propagation whereas blue and red arrows represent the polarization
of P and S waves respectively, propagating along ΓX direction.

Global and local vibration modes for the 2D frame are shown in fig. 5.12. The color
code used in the results represents the amplitude of the displacement field in such a
way that fully red or blue contours describe pure horizontal or vertical displacements
respectively, while a magenta-like contour represents mixed displacement fields. The
deformed frames in fig. 5.12a are the global modal shapes associated with the eigenvalues
at k = 0.0. It is observed that the first global mode, with natural frequency ω =
409rad/s, shows a mixed-colored response consistent with a combination of horizontal
and vertical displacement components. The remaining modal shapes exhibit a response
with fully red or blue elements which is consistent with the presence of local modes. On
the other hand the local modes for a fixed-fixed beam element, computed as described
in the appendix, show local frequencies located at points in the band diagram where
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Figure 5.12. Local and global modal shapes. (a) Global modal shapes and frequen-
cies of the frame at k = 0.0. Red color: horizontal displacement. Blue color: vertical
displacement. (b) Dispersion relations of the frame in ΓX direction. The red dashed
lines correspond to the local frequencies shown in (c). (c) Local modal shapes of a
fixed-fixed beam with the same properties as the beams composing the frame. All
frequencies in rad/s

the group speed is zero (indicated by the red dashed line in the figure). Some of these
local modes are nearly coicident with those in the global response. For instance, the
second local mode at 913 rad/s is close to the global mode at 915 rad/s; the fourth local
mode at 2941 rad/s is close to the global mode at 2964 rad/s. The global modes at 915
rad/s and 2964 rad/s, show the local beams conforming the frame vibrating with the
same shape as the local beam at 913 rad/s and 2941 rad/s respectively.

The previous set of results suggests that every point in the dispersion relation of the
periodic frame, can be expressed as a combination of local longitudinal and transverse
modes corresponding to local bending and rotational waves. To verify this aspect of the
response, some salient modal shapes associated with the band diagram are plotted in
fig. 5.13. It shows that modal shapes consistent with an S wave branch, are always fully
blue or red. On the other hand, when the modal shape belongs to a P wave branch,
it results in a magenta-colored response. This result is indicative of the fact that global
S waves only trigger local transverse modes whereas global P waves can trigger both,
longitudinal and transverse modes.
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Figure 5.13. Global modal shapes of the frame with BBC applied with different
values of kx. Red color: horizontal displacement. Blue color: vertical displacement.
The arrows in each modal shape point from their actual frequency in the dispersion
relations. Blue and red arrows point from modal shapes related to S and P wave
branches respectively. Modal shapes associated to P wave branches, always have
magenta color; which means a combination of local longitudinal and transverse modes.

5.3.3 Controlling the group speed of the global P and S waves

According to the results from the single beam, the group speed of bending and rotational
waves is proportional to

√
I/A. On the other hand, P waves were shown to be related

to local longitudinal modes which are not dependent upon cross-sectional properties.
Thus it can be easily concluded that it is necessary to modify the axial stiffness of
the local beams in order to control the group speed of the global P wave. This can
be acomplished by (i) changing the base material of the beams or (ii) changing the
stiffness in a specific prescribed direction by introducing geometric changes to some
specific elements.

Controlling the group speed of S waves

Figure 5.14 shows the dispersion relations for the frame using different heights b of the
rectangular cross section of the local elements. The change in the group speed of the
S waves is evidenced by the changes in the number of branches and in the slope of the
first S branch. As expected, the group speed increases with b. It must be observed that
the group speed of the P wave remains unchanged.
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(a) b = 0.005m
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(c) b = 0.02m

Figure 5.14. Variation of group speed of S waves by varying the cross sectional
properties. The red dashed line is a physical reference, which represents the group
speed of longitudinal waves in a local beam, dictated by

√
E/ρ.

Controlling the group speed of P waves

To introduce changes to the group speed of the P wave, components changes are now
introduced into the local elements in terms of the geometric perturbation shown in
fig. 5.15. As h increases, the unit cell becomes“softer” in the horizontal direction. The
dispersion results for different values of h, shown in fig. 5.16, illustrate how the group
speed for the P wave branches is affected. It is evident how these branches fall down
for high values of h while those for the S waves remain constant. It is clear that the
geometric perturbation also modifies the path of propagation of the S waves along the
original horizontal beams introducing small variations in the S wave branches. An
interesting result from this analysis was found in fig. 5.16a. For h = b, a small band
gap appears near ω = 2 × 103rad/s and it grows with h. This band gap is somehow
affected by the geometric perturbation.

Figure 5.15. Illustration
of the geometric perturba-
tion h. The unit cell be-
comes softer in horizontal
direction when h increases.
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(c) h = 10b

Figure 5.16. Variation of group speed of P waves by modifying the global horizontal
stiffness for different values of h, with b = 0.01m. The red dashed line is a physical
reference, which represents the group speed of longitudinal waves in a local beam,
dictated by

√
E/ρ.

5.4 Continuity material concept

Figure 5.17 depicts the progressive evolution of the geometric perturbation. The left
part coresponds to the beam theory model and the right part shows its plane strain
equivalent. In each case a ray representing an incident plane wave front is shown by
the double-headed arrow. Depending upon the value of the parameter h the ray path
migth appear interrupted. This is indicated by the green (continous) and red (inter-
rupted) dots in each figure. The concept of material continuity is defined as follows:
If in a specific direction a ray can find a continuous propagation path, the material is
continuous in that direction. If on the contrary such path does not exist, the material
is discontinuous in that direction. As an additional observation to differentiate both
models note that while the plane strain model allows for in-plane particle motions the
beam model does not. Notice also that in the beam model the smallest perturbation
along the propagation path interrupts material continuity.

5.4.1 Beam model vs Solid model

In the beam theory model the geometric parameters do not have a direct effect in a
given domain since A and I only appear in the mathematical formulation. This is
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Figure 5.17. Definition and illustration of the continuity material concept. Green
and red circles represent continuous and discontinuous paths of propagation respec-
tively. Left: Beam model. The black solid line is the actual beam domain while the
gray dashed line represent the virtual domain defined by the cross-sectional proper-
ties. Right: Plane strain model. In all cases the unit cell has dimensions 2d = 1m
and b = 0.01m.

illustrated in fig. 5.17(left) by the black solid lines. In the same figure the plane strain
equivalent is described by the gray representation of the cross section surrounding those
beams. Similarly fig. 5.17(right) shows three different domains represented with plane
strain.

Figure 5.18 shows the band diagrams for the periodic material explicitly using beam el-
ements for 3 different values of the perturbation parameter h. Cases 1 and 2 correspond
to h = 0 (no perturbation) and h = b/5. In these case the perturbation parameter does
not interrupt the propagation path and the band diagram is complete. By contrast,
case 3 which exhibits an interruption in the propagation path contains several band
gaps (shown by he gray rectangles). Figure 5.19 shows equivalent results for the solid
(plane strain) model.

From a physical point of view, a material discontinuity interrupts the natural prop-
agation of a P wave through the material. Moreover in P waves, the directions of
propagation and polarization are aligned and a material discontinuity prevents the flow
of momentum through the particles. This implies the general result that material dis-
continuities generate band gaps by interrupting the propagation paths of P waves.
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(b) h = b/5
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(c) h = 5b

Figure 5.18. Material continuity concept under a beam model. The red dashed
line is a physical reference, which represents the group speed of longitudinal waves
in a local beam, dictated by

√
E/ρ. (a) (b) and (c) correspond to cases 1, 2 and 3

respectively.

The results from the beam theory and the plane strain model are highly similar with the
only difference corresponding to the frequency values for the S waves. This is explained
in terms of the differences in phase velocities between both models. In beam theory
longitudinal waves propagate at α2 = E/ρ while in the plane strain model the phase
velocity is α2 = E(1− ν)/(ρ(1 + ν)(1 − 2ν)). Now for the cases shown in fig. 5.19a-b,
the plain strain model captures the dispersive behavior of S waves, which demonstrates
that a beam can be modelled with a plain strain model. However, this can be done
only for low values of b/2d, since plain strain does not include a rotational mode of
deformation in its kinematics. For thin structures like the beams and frames studied
in this chapter a beam model is more suitable, because it is more efficient than a plane
strain analysis from a computational point of view.
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X
0

1

2

3

4

5

6

7

8

9

10 10 3

(b) h = b/5
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(c) h = 5b

Figure 5.19. Material continuity concept under a plane strain model. The red
dashed line is a physical reference, which represents the group speed of longitudinal
waves in a local beam, dictated by

√
E/ρ. (a) (b) and (c) correspond to cases 1, 2

and 3 respectively.

5.4.2 A complex geometry using Plane strain

The 2D periodic material shown in fig. 5.20 was analyzed in order to test the concept
of material continuity. The material is conformed by Chakana-shaped unit cells with a
variable-sized squared pore as the base geometry. Depending on the size of the pore,
the unit cell has material discontinuities along the vertical and horizontal directions.
Stages 1-3, where hc < tc, exhibits continuity in both directions. On the contrary,
when hc becomes larger than tc the propagation paths are interrupted and the material
becomes discontinuous in both directions.

1 2 3 4 5

Figure 5.20. Sequence of the inclusion to illustrate the continuity material concept.
Stages 4 and 5 has material discontinuities in horizontal and vertical directions.
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According to the concept of material continuity more band gaps are expected in stages 4
and 5 than in stages 1 to 3. Figures 5.21 and 5.22 show the dispersion results along the
IBZ for each considered unit cell. There are band gaps only in stages 4 and 5. Further-
more, the band gap of stage 5 is larger than that of stage 4. This is attributed to the size
of the pore. Due to the pore shape, it generates material discontinuities in all directions
in stages 4 and 5. Note that the band gaps are omnidirectional, which means waves in
that frequency band can not propagate in any direction through the material. This is
also consistent with the omnidirectional nature of the material discontinuity.
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Figure 5.21. Progressive construction to evaluate the material continuity concept.
Stages 1-3. Each frame contains the unit cell and its dispersion relations.
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Figure 5.22. Progressive construction to evaluate the material continuity concept.
Stages 4 and 5. Continuation of fig. 5.21.
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As shown above, the probability of having band gaps in a periodic material is increased
by the presence of material discontinuities. However there is no specific recipe to fine
tunning the band gap.

5.5 A resonance band gap

The alternative of controlling the band structure of the periodic material through a
material discontinuity is now revisited. In particular, a second element is added to the
softening mechanism of size h as shown in fig. 5.23. The idea behid this element is
to explore resonance as a mechaism to introduce band gaps. This concept has already
been explored by Liu et al. (2000); Celli & Gonella (2015). In the current unit cell, the
additional element connected to the frame through the softening mechanism is partially
decoupled from the rest of the cell. In what follows this extra blue element is termed
the resonance beam (RB). Now, conisdering the RB as a fixed-fixed element it is now
possible to compute its fundamental frequency as (Blevins, 1979)

ωb =

(
3π

2L

)2
√
EI

ρA
. (5.14)

Figure 5.23. Frame with a ma-
terial discontinuity and a resonant
beam drawn in blue. For the anal-
ysis in this section, a value h = 0.1
was used.

Equation (5.14) is a closed-form expression relating material and geometric properties
to the natural frequency of the beam. Although the expression is intended to predict
the frequency location of a resonance band gap its most interesting application is when
it is used to obtain the geometric properties of the resonant beam having a predefined
frequency and a specific building material. Bloch analysis of the unit cell shown in
fig. 5.23 is performed in order to verify the predictive capabilities of this expression.
The unit cell has a characteristic dimension 2d = 1m and it is made of beams with a
rectangular cross section of height b = 0.01m. Here ρb denotes the mass density of the
resonant beam while ρ is the density of the rest of the unit cell. The dispersion relations
for various values of the parameter ρ̄ = ρb/ρ are shown in fig. 5.24 where the results
from applying eq. (5.14) to the resonant beam are plotted as a red dashed line. For
ρ̄ = 2.0, the resonance band gap is located at ω = [347, 446] rad/s and the frequency
of the resonant beam is ωb = 364 rad/s; moreover, the red line is inside the resonance
band gap for all values of ρ̄. On the other hand, the global modal shape located at
the frequency of the band gap always shows the resonant beam vibrating with the first
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Figure 5.24. Tuning of the resonance band gap. For each value of ρ̄, the global
vibration mode associated to the frequency of the band gap is shown. That mode
always have the vertical beam vibrating with the first local modal shape. The red
dotted line, plotted at the frequency calculated with eq. (5.14), is always inside the
resonance band gap.

local modal shape. The global natural frequencies and the location of the resonant
band gap decrease when ρ̄ increases. These results show how the first natural vibration
mode of the resonant beam can be used to tune the resonance band gap of the full unit
cell.

The most appealing feature of eq. (5.14) is the possibility of obtaining the geometric
properties of a resonant beam having a predefined frequency. This can be used to
create fine-tuned mechanical filters based on periodic structures. In that case, the
resonant beam interacts with a potential incident wave and its mechanical energy will be
dissipated by resonance. Depending on the application, different ranges of frequencies
are required and the resonant beams should have practical sizes and weights. Figure 5.25
presents a frequency-and-sizes analysis for resonant beams made of different engineering
materials. For each material with known values of properties E and ρ, we plotted
ωb = ωb(L, b); where L is the length of a potential beam and b is the height of its
rectangular cross section. The black lines in the plot are iso-frequency lines with its
frequency value plotted in red. This series of plots is useful to have an idea of the size
of a resonant beam, depending on the chosen material and the required frequency to
tune the resonance band gap. For instance, if one needs a resonant beam tuned at
ωb = 1000Hz, it can be achieved with a beam made of concrete with L = 0.2m and
b = 1cm; or a beam made of wood with L = 0.1m and b = 1cm. Finally, the mass of the
beam is determined after choosing a width for the cross section. The design has to be
made considering that massive beams dissipate more energy than light beams. Another
design aspect is the number of unit cells conforming the periodic structure; having in
mind that larger dissipation levels are achieved as more unit cells are included. This
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was illustrated in chapter 4.
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Figure 5.25. First natural frequencies calculated with eq. (5.14) for different mate-
rials. Since E and ρ have fixed values, ωb = ωb(L, b) is plotted as a contour plot. For
each material: the black lines are iso-frequency lines at the frequency shown in red.
The blue line marks a limit for the slenderness ratio b/L = 0.2; below that blue line,
the results are not reliable. Note that the plots are in log-log scale. All frequencies
shown in Hz. Last row shows the relative error for the first natural frequency when
comparing Euler-Bernoulli and Timoshenko theories for different slenderness ratios.
Values computed with the first row of table A.1.

For specific applications like seismic engineering, the idea of protecting a building with
periodic materials is very attractive. The design objective is to dissipate the energy
coming from a seismic event (≈ 10Hz) using a periodic structure below the building with
a band gap around 10Hz. The plot for concrete in fig. 5.25, suggests that a resonant
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beam tuned at 10Hz can be accomplished with L = 4m and b = 5cm.

Conclusion

Some fundamental concepts about the relation between the properties of a unit cell
and its band structure were discussed. To that end, we used results from simple cases
to explain the dispersive phenomena in more complex unit cells. First, a beam model
was used due to its simplicity and analytical robustness. Later, the results for a single
beam were extended to two dimensional periodic materials whose base elements were
beams.

It was shown how the geometric parameters of the cross section affect bending and ro-
tational waves only. By contrast the phase velocity of longitudinal waves depends only
upon the material properties. For waves propagating through a 2D periodic material-
composed by beams, it is possible to modify the group speed of global S and P waves by
varying the stiffness of the material along transverse and longitudinal directions respec-
tively. These waves can be modified independently by introducing geometric changes
that affect the stiffness along one specific direction at a time. The group speed of S
waves also modified by changing the cross-sectional area of the beams conforming the
2D periodic material; while group speed of P waves was modified by interrupting the
continuity of the material along the longitudinal direction of the beams. The interrup-
tion of material, which cut the continuous propagation path for the P waves, allowed
us to introduce the concept of material discontinuity as a tool to increase the presence
of band gaps in a periodic material. A material discontinuity drops the group speed of
P waves, in that case it is more probable to have band gaps in the direction where the
discontinuity was introduced.

Finally, we were able to fine-tune a resonance band gap to a predefined frequency.
The tuning was made through the first transversal natural frequency of a resonant
beam. In order to locate a resonant band gap in a unit cell made of beams, transverse
displacements have to be induced in the resonant beam. For instance, on the presented
unit cell the neutral axis of the resonant beam was perpendicular to the direction of
propagation (ΓX) of incident waves. This strategy is general for unit cells having two
characteristics: (i) material discontinuities to drop the group speed of P waves and to
increase the probabilities of having band gaps and (ii) resonant elements in which the
modal frequencies can be analytically calculated.
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Concluding remarks

This chapter encloses the results from all the previous chapters in a general conclusion.
For specific and technical conclusions about the topics treated in the present work,
please go to the conclusion section of each chapter.

The present work treated theoretical, numerical and conceptual aspects of Bloch anal-
ysis. In the first chapter, Bloch analysis was introduced and explained in a simple
way. The main point there, was the illustration of the spatial aliasing present in Bloch
analysis; which its intrinsic symmetry was used later in the directionality approach.
After that, it was shown how to perform Bloch analysis in the finite element method
(FEM). During the process of applying Bloch boundary conditions in FEM we identi-
fied some difficult challenges to deal with; that is why we proposed a novel strategy to
compute dispersion relations in commercial –or available– finite element software. The
new approach is general enough to deal with different mesh dimensions, kinematics and
material models. An example of its versatility is shown in all the different elements
implemented for the realization of this work. We implemented: (i) 1D Timoshenko
beams and (ii) 2D Solid elements with anti-plane, in-plane and micropolar kinematic
models. The implemented elements allowed us to analyse an important number of cases
in short calculation times.

Up to that point, we had some theoretical background about Bloch analysis and an
efficient way to calculate a band structure in FEM. The next challenge we found, was
related to the interpretation of that band structure. We decided to go to the simple
by making a conceptual study held with analytical and simple cases, which spanned
from the analysis of a single one dimensional beam to a proposal to fine-tune a bang
gap in a two dimensional material made of beams. During the conceptual study, three
main aspects were treated: (i) the modulation of group speed of S and P waves, (ii)
the concept of material continuity and (iii) the role of natural vibration modes in
the dispersive behavior of a periodic material. Those concepts were studied using a
Timoshenko beam model, but it was shown that they can be applied to solid domains
as well.

Finally, in the case of study that we chose, all the concepts and numerical tools devel-
oped in this work were applied. For the Bloch analysis of the PXCM and the progressive
construction of the unit cell, we used the strategy proposed in chapter 2. The concepts
of modulation of group speed in beams and material continuity, studied in chapter 5,
were used in the progressive construction of the PXCM unit cell in open configuration.
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Even if the PXCM was analysed with a solid discretization, the reasoning used to fine-
tune the resonant band gap was the same as in the beam case. Also, the directionality
analysis was made with the new approach presented in chapter 3. The directional be-
havior presented for the homogeneous case and for the progressive construction of the
PXCM unit cell, showed that the new approach describes the directional properties of
the material in a very intuitive way. Furthermore, the results from the new metrics
of directionality support the concept of material continuity. This new concept can be
extended to a more general concept of energetic paths in a material. In the results
shown in this work, it can be seen how the directions of material continuity and the
preferred directions of propagation are always highly correlated.

Several ideas were born during the realization of the present work. Some of them seem
highly promising and an additional effort should be made to develop them. One of
them is the idea of making periodic structures to protect a building from a seismic
event, presented in chapter 5. Currently, some studies have been made to find periodic
materials with band gaps in very low frequencies (10Hz). The main practical limitations
for such periodic materials is the size of the unit cells. Further work is required in order
to reduce the size of a potential unit cell or to find practical applications using such
large dimensions. Another idea that deserves a deeper study is the new directionality
metrics and its relation with the concept of material continuity. With a combination of
those concepts and anisotropy factors reported in literature, the directionality approach
could become a quantitative tool to measure the distribution of energy along continuous
and discontinuous propagation paths in a periodic material.
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Guaŕın-Zapata, N. & Gomez, J., 2014. Evaluation of the spectral finite element method
with the theory of phononic crystals, Journal of Computational Acoustics .

Gupta, G. S., 1970. Natural flexural waves and the normal modes of periodically-
supported beams and plates, Journal of Sound and Vibration, 13(1), 89–101.

Haghpanah, B., Salari-Sharif, L., Pourrajab, P., Hopkins, J., & Valdevit, L., 2016.
Multistable shape-reconfigurable architected materials, Advanced Materials , 28(36),
7915–7920.

Han, S. M., Benaroya, H., & Wei, T., 1999. Dynamics of transversely vibrating beams
using four engineering theories, Journal of Sound and vibration, 225(5), 935–988.

Haque, A. T. & Shim, J., 2016. On spatial aliasing in the phononic band-structure of
layered composites, International Journal of Solids and Structures , 96, 380–392.

Harrison, J., Kuchment, P., Sobolev, A., & Winn, B., 2007. On occurrence of spectral
edges for periodic operators inside the brillouin zone, Journal of Physics A: Mathe-
matical and Theoretical , 40(27), 7597.

Heckl, M. A., 1964. Investigations on the vibrations of grillages and other simple beam
structures, The Journal of the Acoustical Society of America, 36(7), 1335–1343.

Hibbett, Karlsson, & Sorensen, 1998. ABAQUS/standard: User’s Manual , vol. 1,
Hibbitt, Karlsson & Sorensen.

Hiett, B., Generowicz, J., Cox, S., Molinari, M., Beckett, D., & Thomas, K., 2002.
Application of finite element methods to photonic crystal modelling, IEE Proceedings-
Science, Measurement and Technology , 149(5), 293–296.

Howell, L. L., 2001. Compliant mechanisms , John Wiley & Sons.

94 REFERENCES



Howell, L. L., Rao, S., & Midha, A., 1994. Reliability-based optimal design of a bistable
compliant mechanism, Journal of Mechanical Design, 116(4), 1115–1121.

Huang, T., 1961. The effect of rotatory inertia and of shear deformation on the frequency
and normal mode equations of uniform beams with simple end conditions, Journal
of Applied Mechanics , 28(4), 579–584.

Hussein, M. I., Leamy, M. J., & Ruzzene, M., 2014a. Dynamics of phononic materi-
als and structures: Historical origins, recent progress, and future outlook, Applied
Mechanics Reviews , 66(4), 040802.

Hussein, M. I., Leamy, M. J., & Ruzzene, M., 2014b. Dynamics of phononic materi-
als and structures: Historical origins, recent progress, and future outlook, Applied
Mechanics Reviews , 66(4), 040802.

Johnson, S. G., 2010. Notes on the algebraic structure of wave equations, Tech. rep.,
Massachusetts Institute of Technology.

Kadic, M., Bückmann, T., Schittny, R., & Wegener, M., 2013. Metamaterials beyond
electromagnetism, Reports on Progress in physics , 76(12), 126501.

Kittel, C. et al., 1976. Introduction to solid state physics , vol. 8, Wiley New York.
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Appendix A

A.1 Calculation of natural frequencies in Timoskenko

beams

In the case of flexural waves, it is not generally possible to obtain a closed form solution
to calculate the natural frequencies of a Timoshenko beam (Blevins, 1979). However,
several numerical approaches have been developed to that end. See for example Han
et al. (1999); Lee & Schultz (2004); Kocatürk & Şimşek (2005); Ferreira (2008). Here
we used the approach and the MATLAB subroutines proposed by Ferreira (2008),
who solved the problem using finite element analysis. Table A.1 presents the non-
dimensional natural frequencies for a fixed-fixed beam with rectangular cross section
given by:

β2
i = ωFi

√
ρAL4

EI
(A.1)

where ωFi is the natural frequency of the i-th mode for flexural waves. In this expression
L denotes the length of the beam.

Mode E-B
b/L

0.005 0.01 0.05 0.1 0.2
1 4.73004 4.72963 4.7284 4.68991 4.57955 4.24201
2 7.8532 7.85163 7.8469 7.70352 7.33122 6.41794
3 10.9956 10.9917 10.9800 10.6401 9.85611 8.28532
4 14.1372 14.1294 14.1062 13.4611 12.1454 9.90372
5 17.2788 17.2651 17.2246 16.159 14.2324 11.3487
6 20.4204 20.3985 20.3338 18.7318 16.1487 2.6402
7 23.5619 23.5292 23.4325 21.1825 17.9215 13.4567

Table A.1. β values for the first 7 modes of a fixed-fixed beam for different slen-
derness ratios b/L. The second column correspond to natural frequencies calculated
using classic Euler-Bernoulli theory.

The results listed in table A.1 show that the Timoshenko beam results are very close
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to the Bernoulli–Euler results when b/L is less than 0.01. As b/L gets larger, the
calculated values show significant differences from the Euler-Bernoulli results; showing
larger difference for high frequency modes. For instance, for b/L = 0.2, the relative
difference for mode 1 is 10%; while it reaches 40% for mode 7. On the other hand, for
longitudinal waves in a fixed-fixed beam, natural frequencies can be calculated using
the exact expression (Blevins, 1979)

ωLi = i
π

L

√
E

ρ
, (A.2)

where the superscript L in ωLi means longitudinal. It must not be confused with the
length of the beam L.
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