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Abstract 

Landslides triggered by rainfall are one of the most frequent causes for natural disasters in the 

tropical and mountainous countries, such as Colombia. However landslide susceptibility 

assessments are often limited due to the scarcity of reliable observations and available information, 

particularly in remote high-mountain regions. Although Colombia is a tropical and mountainous 

terrains dominated by landslide prone region, it has little availability of data for landslide 

susceptibility assessment. This study presents the application of a logistic regression model to 

assess landslide susceptibility in the La Liboariana catchment. It is a basin on a tropical inaccessible 

terrain in northern Colombian Andes, where on May 18th, 2015, more than 40 landslides and an 

associated flash flood and debris flow afterwards killed 104 inhabitants. The applied approach is 

based on free access remote sensing tools to complete and obtain the missing landslide causative 

factors. To select key factors related to landslide occurrence the prediction and successes 

performance of the susceptibility maps for each combination of landslide causative factors was 

estimated using the Receiver Operating Characteristics (ROC). The results show that only three 

factors gave the best predicting accuracy. All the factors were obtained by free remote sensing 

tools, indicating they can provide enough information to achieve a successful approach to landslide 

susceptibility assessment in complex terrains as the study area. This suggests that the proposed 

approach could be implemented in several tropical regions with similar characteristics based only in 

free access information. 
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1 Introduction 

Landslides are among the most deadly natural hazard and cause large economic losses all over the 

world each year (Alexander, 2005; Nadim, Kjekstad, Peduzzi, Herold, & Jaedicke, 2006; Schuster, 

1996; Schuster & Highland, 2001). In fact, around 5 percent of the total global population lived in 

landslide prone areas (Dilley, Chen, Deichmann, Lerner-Lam, & Arnold, 2005), and in countries 



	
  

	
   2	
  

such as the United States, Japan, Italy, and India economic losses are estimated over $1 billion per 

year (Schuster & Fleming, 1986). It has been estimated that between 2004 and 2010 a number of 

32.322 people lost their lives as a result of nonseismic landsliding (Petley, 2012). 

 

Rainfall is the most common cause of landslides (Guzzetti, Peruccacci, Rossi, & Stark, 2007; 

Iverson, 2000; Zêzere, Trigo, & Trigo, 2005) and has been responsible for the highest number of 

casualties, the 89,6 % of worldwide landslide fatalities were a result of landslides triggered by 

rainfall (Petley, 2008). Based on the EM-DAT database from OFDA/CRED, between 2005 and 

2014 an world annual average of 914 deaths caused by landslides triggered by rainfall were 

reported (Guha-Sapir, Hoyois, & Below, 2016).  

 

Landslides triggered by rainfall are one of the most frequent causes for natural disasters in the 

tropical and mountainous countries of the Circum-Pacific region (Schuster, Salcedo, & Valenzuela, 

2002; Sepúlveda & Petley, 2015; Varnes, 1981). Colombia, located in the northern corner of South 

America, is characterized by tropical conditions and mountainous terrains. The most important 

urban centers are located in the highlands and valleys of the Andes Mountains. Because of this 

natural conditions Colombia has a long history of landslide disasters. A debris flow on November 

13, 1985 devastated the city of Armero killing around 22.000 people and economical losses over 

$339 million (Garcia, 1988; Mileti, Bolton, Fernandez, & Updike, 1991; Voight, 1990). In the city 

of Medellin on September 27, 1987 a mudslide with a volume of 20,000 m3 destroyed more than 80 

houses and killed around 500 people (Tokuhiro, 1999). Recently on April 1, 2017 a total of 130 mm 

of torrential rains triggered several landslides in the mountainous terrains of the southern 

Colombian Andes causing a flash flood and debris flow along the Mocoa, Sangoyaco and Mulato 

rivers that destroyed 17 neighborhoods of the city of Mocoa, which were built along the river banks. 

At least 314 people were killed and a further 106 were missing (Cruz Roja Colombiana, 2017). 

 

However landslide impacts assessments are often limited due to the scarcity of reliable 

observations, particularly in remote high-mountain regions, such as the Colombian mountains. Data 

availability is one of the most important factors for analysis, assessment and modeling of landslides 

triggered by rainfall. The areas affected by landslides are often remote and difficult to access. For 

this reason the development of regional landslide susceptibility analysis has proven difficult in the 

places where it is most needed (De Graff, Romesburg, Ahmad, & McCalpin, 2012). Due to this lack 

of data in many regions, remote sensing data may be used to landslide susceptibility analysis in 

developing countries. Although such data sometimes might not have the accuracy and precision of 
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directly measured data, appropriate methodologies and satellite data could be used to overcome the 

limitations and produce adequate landslide susceptibility maps. 

 

Landslide susceptibility assessment is critical for planning, sustainable development and risk 

mitigation because provide information on the likelihood of landslides occurring in an area given 

the local terrain conditions (Brabb, 1984). Although, there are several methodologies to assess 

landslide susceptibility, they can be divided into qualitative or knowledge driven methods and 

quantitative or data driven methods (Aleotti & Chowdhury, 1999). Knowledge driven methods are 

based entirely on the judgment of the earth scientist, and the baseline data for zoning comes directly 

from field visits (Cardinali et al., 2002; van Westen, Soeters, & Sijmons, 2000). A main limitation 

of qualitative method is that the accuracy depends on the knowledge of the experts. Data driven 

methods are subdivided into deterministic and statistically based methods (Baum, Savage, & Godt, 

2008; Pack, 1998). While deterministic methods assess slope failures using the factor of safety at 

large scales (Montgomery & Dietrich, 1994) and required detail information and parameters, the 

statistical methods evaluate the relationship between landslide and causative factor to predict the 

occurrence probabilities through the use of GIS tools, reducing the subjectivity and biases in the 

process of weighting landslide causative factors. The widely used statistical methods are bivariate 

(Aleotti & Chowdhury, 1999; Lee, 2005; Süzen & Doyuran, 2004), multivariate (Carrara, 1983; 

Gorsevski, P.V.; Gessler, P.;Foltz, 2000; Lee & Pradhan, 2007), and neural networks (Ermini, 

Catani, & Casagli, 2005; Lee, Ryu, Won, & Park, 2004). Logistic Regression (LR) is the 

multivariate statistical analysis method most widely used (Ayalew & Yamagishi, 2005; Bai et al., 

2010; Brenning, 2005; Chevalier, Medina, Hürlimann, & Bateman, 2013; Greco, Sorriso-Valvo, & 

Catalano, 2007; Lee & Pradhan, 2007). LR is independent on data distribution and can incorporate 

into the analysis a variety of data sets such as continuous, categorical, and binary data. However the 

selection of landslide causal factors are significant to logistic regression methods (Lee & Talib, 

2005). Irrelevant independent variables should be removed, and include into the analysis only 

optimal causative factors (Lee & Talib, 2005; Pradhan & Lee, 2010). 

 

This case study aims to contribute to the knowledge by applying a methodology to assess landslide 

susceptibility in a data-scarce study area in the Colombian Andes, where on May 18th, 2015, 

dozens of landslides were triggered by a rainstorm, leading to a major debris flow and flash flood, 

causing a total of 104 deaths and economic losses not estimated yet. The study uses Satellite DEM, 

Google Earth, othophotos and aerial photography. To select the positive causative factors related to 

landslide occurrence and the validation of the model the area under the ROC curve was applied. 
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2 Study Area 

The Liboriana catchment is located in the northern side of the Western Cordillera in the Colombian 

Andes, about 500 km northwest of Bogota City (Fig. 1). It lies between latitudes 5º55’30”N - 

6º1’0”N and longitudes 75º58’W - 76º6’W, and covers an area of nearly 59 km2. Two populated 

areas extend along the central and lower portion of the river valley, named La Margarita village and 

Salgar town, which have a population of about 8.820 inhabitants. 

The catchment has a tropical humid climate with a mean annual temperature of 22 °C. The maximum 

temperature occurs between February and April, while the minimum between October and 

November. The precipitation regime is dominated by high variability at both inter-annual and inter-

seasonal scales. The mean annual rainfall is 3073 mm; and the monthly rainfall distributions show 

evident seasonal patterns with two rainy seasons, with rainfall peaks in May and October (Poveda, 

2004; Poveda et al., 2005). 

 

 
Fig. 1 Location of the Liboriana River basin on the mountainous terrain in Western Cordillera of 

the Colombian Andes. 
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The geomorphology of the catchment exhibits in the upper part a mountain region with a rugged 

morphology, narrow valleys, and very steep forested hillslopes. The elevation varies from 1233 to 

3741 m a.s.l. with a mean of 2487 m a.s.l. The area with slope gradients exceeding 30° accounts for 

the 67% of the total area. The upper part of the catchment consists of deep forests, while in the 

middle and lower zones grasslands and coffee plantations have already substituted forest. 

 

The geological area that comprises the La Liboriana catchment is composed predominately by a 

Cretaceous sedimentary rock formation (shales, limolites, sandstones, cherts and conglomerates 

with some intercalations) and an intrusive Miocene body (Calle, González, de la Peña, Escorce, & 

Durango, 1980; Calle & Salinas, 1984). These rocks have been severely weathered in situ under the 

humid tropical climate forming residual soils and saprolite. 

 

3 The May 18th, 2015 rainstorm 

On 18 May 2015 heavy rains in the northern Colombian Andes caused a MORLE-type landslide 

(multiple-occurrence regional landslide event) (Crozier, 2005) in the La Liboriana 

catchment. The great majority of the individual landslides constituting this MORLE event displaced 

all the regolith, leaving rock exposed. But because of the steep slope of the 

terrain, surficial rockslides also occurred. A huge amount of water and solid material went down to 

the main channel of the river and caused a flash flood and a debris flow sweeping away everything in 

its paths, including La Margarita village and the lowest areas of Salgar Town. Authorities confirmed 

104 deaths, 62 people were injured and 1440 were directly affected. At least 66 houses and 6 local 

bridges were completely destroyed by the flash flood and debris flow. The disaster is the fourth 

deadliest weather-related disaster in Colombia’s recorded history. 

 

Reports from the SIATA weather radar (Early Warning System of the city of Medellin and the 

Aburrá Valley, in spanish) indicate that between 10 pm on May 17th and 2 am on May 18th a rain cell 

on the west side of the catchment, place known as Cerro Plateado, caused a very intense precipitation 

in about 30% of the total area of the basin (~20 km2). During this four-hour period the total 

accumulated rainfall was 100 mm. Other minor rains occurred until 7 pm on May 18th, for a total of 

160 mm of rain that fell in the upper part of the basin in a 24 hour period. 

  

Google Earth provided a free and open post-event satellite imagery, which permitted to obtain the 

event landslide inventory and the flash flood path and area occupied by the debris flow (Fig. 2). 
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Around 160 shallow landslides were triggered by the May 18th, 2015 rainstorm, but in the La 

Liboriana catchment a total of 50 landslides were identified.  

 

 

Fig. 2 Landslide inventory map. (a) complete inventory obtained by the multi-temporal analysis,  

(b) detail of May 18th, 2015 rainstorm landslides.  

 

 

 

a 

b 
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4 Methodology 

A wide range of quantitative methodologies are used to landslide susceptibility assessment (Aleotti 

& Chowdhury, 1999; Chacón, Irigaray, Fernández, & El Hamdouni, 2006; Fell et al., 2008; Guzzetti, 

Carrara, Cardinali, & Reichenbach, 1999; Soeters & van Westen, 1996). Statistical methods estimate 

landslide probabilities based on correlation analysis between causative factors and historical 

landslide occurrence. Logistic Regression (LR) is one of the most frequently used multivariate 

statistical analysis models to predict landslide occurrence at medium and regional scales (Ayalew & 

Yamagishi, 2005; Brenning, 2005; Lee & Pradhan, 2007). LR estimates the relationship between a 

dependent variable, measured with dichotomous values such as 0 and 1, and a set of independent 

terrain variables. The advantage of LR is that the predictor factors does not compulsorily require a 

normal distribution data, and may be either categorical or non-categorical, or any combination of 

both types (Atkinson & Massari, 1998). Quantitatively, the dependency relationship between 

landslide occurrence and the independent variables can be expressed as:  

 

𝑃 𝑦 = 1/(1 + 𝑒!!)          (1) 

 

where 𝑃 𝑦  is the estimated spatial probability of landslide occurrence and ranges from 0 to 1. And 

𝑧  is the following linear combination of the independent factors: 

 

𝑧 = 𝑏! + 𝑏!𝑥! + 𝑏!𝑥! + 𝑏!𝑥! + 𝑏!𝑥!        (2) 

 

where b0 is the intercept of the model given in the LR output, the bi values (i=1, 2, 3, …, n) are the 

regression coefficients, i.e. variable weights; and the xi values (i=1, 2, 3, …, n) are the independent 

factors. The final model is then a LR based on the independent variables of the occurrence of 

landslides (presence or absence). 

 

The LR algorithm was applied for landslide susceptibility assessment of the La Liboriana catchment 

using the IBM Statistical Package for Social Science (SPSS) for five different causative factor 

combinations (Table 1).  

In order to validate the accuracy and prediction capability of the models and to select the best 

susceptibility model, different validation methods were applied. The most common validation 

methods in landslide studies are thresholds independent approaches, especially the Receiver 

Operating Characteristic (ROC) analysis (Fawcett, 2006, Chung & Fabbri, 2003). ROC analysis is 

based on the Confusion Matrix, in which actual classes, called positives and negative class label, 
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according to landslide inventory databases, are compares with the predictive classes, called true and 

false class labels, produced by the model. (Fawcett, 2006). Figure 3 shows the four possible 

outcomes of the Confusion Matrix. An advantage of ROC analysis is that several statistic have been 

defined for evaluating models performance and prediction. During the performance and prediction 

evaluation the hit rate (TPR), false alarm rate (FPR) and odds ratio (OR) were calculated and used 

for a quantitative comparison. 

 

 
Fig. 3 ROC analysis confusion matrix. 

 

The area under the ROC-curve (AUCROC) is a useful indicator to validate the success and 

prediction performance of the model. AUC is between 0 and 1, a higher value indicates a higher 

prediction success or prediction rate, whereas a value near 0,5 means the prediction is not better that 

a random guess (Chung and Fabbri, 2003).  

 

Table 1 Combination of causative factors of the five different susceptibility models to apply LR. 
Models Included factors Missing factors 
M1 Aspect, land cover, curvature, slope, TWI  
M2 Land cover, curvature, slope, TWI Aspect 
M3 Aspect, land cover, slope, TWI Curvature 
M4 Aspect, land cover, curvature, slope TWI 
M5 Aspect, land cover, slope Curvature, TWI 

 

Additionally to this analysis, the distance to perfect classification (r) (Cepeda, Chávez, & Cruz 

Martínez, 2010; Kirschbaum et al., 2015), and the degree of fit (D.F.) (Fernández, Irigaray, El 

Hamdouni, & Chacón, 2003) were calculated using the following equations: 

 

𝑟 = (𝐹𝑃𝑅! + (1 − 𝑇𝑃𝑅)!)        (3) 
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𝐷.𝐹.= !!/!!
!!/!!

          (4) 

 

where  𝑍! is the area occupied by the rupture zones in the i class of susceptibility and 𝑆! is the area if 

the i class of susceptibility. 

 

Landslide inventory 

Landslide inventories are the first and most important step in landslide susceptibility analysis by 

statistical methods (Chung & Fabbri, 2003; De Graff et al., 2012; Guzzetti et al., 2012; Kavzoglu, 

Kutlug Sahin, & Colkesen, 2015; Lin et al., 2013). In this study, landslide locations were 

determined using the 2015-updated Google Earth imagery, an open access 1:10.000 scale 

orthophoto from the period 2010-2012, and aerial photography from 1998 and 1999. As a result, a 

total of 259 landslides were collected (Fig. 2). All landslides cover an area of 0,56 km2, and 

accounts for approximately 0,95% of the catchment. Which 33% of them correspond to landslides 

triggered by the 16 May 2015 rainstorm, and the 67% correspond to multitemporal landslides with 

no time occurrence specification that occurred previous to the 16 May 2015 event. 

Considering the cross validation method proposed by Chung & Fabbri (2003), the landslide 

inventory data was split into three groups: (i) the training dataset which correspond to 80% of the 

pre-event and multitemporal landslide inventory to be used for building the LR model (167 

landslides); (ii) the spatial validation dataset which correspond to 20% of randomly selected 

landslides of the pre-event and multitemporal landslide inventory to be used for the spatial 

validation process (42 landslides); and (iii) the event-based landslide inventory of 50 landslides 

associated to the May 18th, 2015 storm, which were used to carry out a temporal validation of the 

landslide susceptibility map. 

In addition to landslide areas, non-landslide areas are required to form the dichotomous variable to 

apply the LR (Kavzoglu et al., 2015). In this study, non-landslide points were determined by 

randomly choosing the same amount of pixels from the areas with no record of landslides.  

Several mapping strategies are used to elaborate a landslide inventory map (Hussin et al., 2016).  

Spatial location of landslides are represented by points which correspond in raster-based maps to 

the centroid of the entire landslide or the scarp area (Brenning, 2005; Galli, Ardizzone, Cardinali, 

Guzzetti, & Reichenbach, 2008; Thiery, Malet, Sterlacchini, Puissant, & Maquaire, 2007; Van Den 

Eeckhaut et al., 2006), polygons which correspond to all the pixels within the entire landslide body 

or the scarp area (Ayalew & Yamagishi, 2005; Chung & Fabbri, 2003; van Westen et al., 2000), and 

lines which correspond to the pixels of the upper edge of the landslide scarp area (Clerici, Perego, 

Tellini, & Vescovi, 2002; Donati & Turrini, 2002). Several studies have indicated the scarp as the 
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best sampling strategy to landslide susceptibility assessment (Poli & Sterlacchini, 2007; Simon, 

Crozier, de Roiste, & Rafek, 2013; Yilmaz, 2010). In this study was adopted the scarp of landslide 

to represent pre-failure conditions, excluding both the transport and the deposition zones of existing 

landslides. 

  

Landslide causative factors 

The selection of the relevant causative factors is a fundamental step in the landslide susceptibility 

analysis because improve the prediction accuracy (Costanzo et al., 2012; Kavzoglu et al., 2015; Lee 

and Telebi, 2005; van Westen et al., 2000). In general, they must have a certain affinity with the 

dependent variable, must be fairly represented all over the study area, have to be measurable and 

non-redundant (Ayalew & Yamagishi, 2005). In this study, based on data availability and 

topographic, hydrological and geological catchment conditions, a total of 5 landslide predictor 

variables were initially used. They were divided into morphometric and environmental factors. 

 

Morphometric factors. The available topographic maps (1:25.000 and 1:10.000 scales) only cover 

about 25% of the eastern-most part of the study area. To obtain the topographic features, a free 

access Digital Elevation Model (DEM) was obtained from the Alaska Satellite Facility program 

(ASF-DAAC, 2015) with a spatial resolution of 12,5 m. This DEM was used to derive aspect, 

curvature, slope gradient, and topographic wetness index (TWI) using ArcGIS 10.2 software (Fig. 

3). All these factors are related to landslides to a different degree. The relationship between aspect 

and landslide occurrence has been widely studied (Ayalew, Yamagishi, Marui, & Kanno, 2005; Bai 

et al., 2010; Pourghasemi, Mohammady, & Pradhan, 2012). Slope aspect is related to sunlight 

exposure and soil moisture condition of hillslopes (Greco et al., 2007) (Fig 4a). Down-slope and 

across-slope curvature values were calculated and crossed to obtain total curvature according to 

Ayalew & Yamagishi (2002) (Fig 4b). Profile curvature influences the driving and resisting stresses 

within a landslide in the direction of motion and controls the change of velocity of landslide flowing 

down the slope, whereas the plan curvature controls the convergence of landslide material and 

water in the direction of the landslide motion. Slope angle is usually defined as the crucial 

landslide-conditioning factor because it controls the shear forces acting on hillslopes. However, its 

relationship is not always proportional, the maximum relative frequency of landslides usually 

corresponds to medium slope angles (Fig. 4c) (Greco et al., 2007). Finally, Topographical Wetness 

Index (TWI) is an hydrological factor frequently used in landslide studies (Moore, Grayson, & 

Ladson, 1991; Pawluszek & Borkowski, 2016; Pourghasemi et al., 2012) (Fig. 4d). It is a function 

of the slope and the upstream contributing area per unit width orthogonal to the flow direction. 
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Environmental factors. In a tropical landslide-dominated zone such as the La Liboriana River 

Basin, land use is normally found to be associated with landslide occurrence (Pawluszek & 

Borkowski, 2016; Tazik, Jahantab, Bakhtiari, Rezaei, & Alavipanah, 2014). The available data on 

land use was only a 1:100.000 map, very large-scale for the purposes of this study. So the used data 

was obtained mainly using Google Earth imagery and supported by the 2010-2012 orthophoto to 

make a detailed map. The resulting layer in the GIS includes six categorical values (Fig. 4e): 

agricultural land, bare land, forest, grassland, urban area and water body. 

 

Although lithology is one of the essential conditioning factors in most of the landslide susceptibility 

analysis, in the La Liboriana catchment about 90% of the total area correspond to plutonic igneous 

rocks (Calle et al., 1980; Calle & Salinas, 1984). This geological homogeneity indicates that 

lithology does not explain the landslide distribution and spatial location. 
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Fig. 4 Liboriana River basin land cover and morphological settings. Each map is one of the five 

factors included in the LR model. (a) aspect, (b) curvature, (c) slope and (d) TWI, were obtained as 

derivate variables of the high resolution DEM; and (e) land cover, using mainly Google Earth 

imagery. 

 

5 Results 

Pre-event landslide inventory was divided into landslide group and non-landslide group for each 

terrain and classed into intervals to plot the frequency distributions for the different causative 
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factors (Fig. 5). It could be seen that slope, aspect and land cover are the factors that have a tighter 

relationship with landslide occurrence, since there is a most significant difference between landslide 

and non-landslide curves. 

 

 
Fig. 5 Frequency distribution of landslide and non-landslide groups in each variable. Topographical 

Wetness Index (TWI). 

 

According to the slope aspect the frequency of landslides increase on east-facing and north-facing 

slopes. The correlation analysis between slope angle and landslide occurrence has a normal 

distribution. Gentle slopes have a low landslide frequency, increasing up to reach at maximum 

value around 40°, and followed by a decrease of landslide frequency. Steep natural slopes resulting 

from outcropping bedrock usually are not susceptible to shallow landslides. Regarding the land 

cover, the results show the majority of landslides falls into the category of forest and grassland 

cover areas. 

For the Topographical Wetness Index (TWI) and curvature, it is not noted a difference between 

landslide and non-landslide groups. For the case of curvature landslide usually occurred in 

horizontal and vertical concave or convex slopes. Ad for the TWI factor, landslide frequency 

normally occurred around values of 8. 
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LR was applied for the five susceptibility models shown in Table 1. The regression coefficients of 

the predictor were used to create the landslide susceptibility map for the five susceptibility models. 

Quantitative validation was conducted by comparing the five susceptibility maps with the landslide 

spatial distribution inventory, the landslide inventory group 1 and 2. The training dataset was used 

for the success rate and the spatial validation dataset for the prediction rate. The results were plotted 

in the ROC space along with the ROC plots (Fig. 6). The ROC curves reveal similar success and 

predictive capabilities for all susceptibility models, only the model 2 shows a value slightly lower. 

 

The distance to perfect classification (𝑟) was obtained for every model with the TPR and FPR 

values.  

 
Fig. 6 Distance to perfect classification (𝑟) and ROC success and prediction rate curves for each 

model. The dotted line shows the shortest r-value, which corresponds to M5. 

 

In Table 2 are defined the statistic used in this study. The AUROC-values for all the models 

indicate an acceptable ability to distinguish between susceptible and non-susceptible areas. The hit 

rate, also referred as sensitivity or positive accuracy, expresses the proportion of positive cases 

correctly predicted. The False Alarm Rate, also called negative error, is the ratio between false 

positive and the total actual negatives. The odds ratio makes use of all the values in the confusion 

matrix because shows the ratio between correctly and incorrectly classified observations. 
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Table 2 Results of the different validation methods. Model AUC ROC values for the success and 

prediction rate, distance to perfect classification (𝑟), and ROC metrics hit rate and false alarm rate. 

Models 
AUC ROC 
success rate (%) 

AUC Prediction 
rate (%) 

Distance to 
perfect 
classification (r) 

Hit rate (TPR) 
(%) 

False alarm 
rate (FPR) (%) Odds ratio (OR) 

M1 68,1 67,3 0,521 0,619 0,356 2,94 
M2 65,0 64,9 0,574 0,554 0,361 2,19 
M3 68,2 67,3 0,518 0,611 0,342 3,02 
M4 68,8 69,5 0,520 0,606 0,339 2,99 
M5 68,7 69,4 0,517 0,613 0,343 3,03 

 

According to the results obtained both M4 and M5 have a good and similar trend as the success and 

prediction rate. M4 is slightly better on ROC plot (68,8% AUC) against 68,7% of the M5. However 

M5 shows a lower distance to perfect classification (0,517), and a slightly higher values in hit rate, 

false alarm rate, and the frequency distribution curves (Fig. 5). Hence, it is observed that using three 

factors give higher accuracy than that of using all the five factors. 

 

Table 3 shows the LR coefficients of the susceptibility model M5 that correlate each factor to 

landslide occurrence (Table 3). LR gives a coefficient for every non-categorical variable and a 

coefficient for every class of the categorical variables.  

 

Table 3 Coefficient values of logistic regression for each model. 
Model Factor Class Pixel      

percentage (%) 
Percentage of 
pixels showing 
landslide 
occurrence (%) 

Coefficient of 
logistic 
regression 

M5 Aspect (AS) 0-360 degree 100 100 0,004 
Land cover Agricultural land (AL) 20,8 8,6 -0,226 
 Bare land (BL) 0,7 0,3 0,933 
 Forest (F) 54,8 66,3 0,000 
 Grassland (GL) 22,7 24,8 0,456 
 Urban area (UA) 0,7 0 -20,141 
 Water body (WB) 0,3 0 -19,306 
Slope (SL) 0-78,5 degree  100 100 0,040 
Intercept    -2,075 

 

The probability of landslide occurrence was calculated applying Eq. 1 and Eq. 2, which use the LR 

coefficient data in Table 3 and each variable raster. Then, it was necessary to produce a binary 

raster for every class of the categorical variables, in which 1 was the presence of the class (i.e. 

grassland) and 0 any other values. 

 

Eq. 8 shows how Eq. 2 was formulated to the model M5. 
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𝑧 = −2,075 + 0,004×𝐴𝑆 + −0,226×𝐴𝐿 + 0,933×𝐵𝐿 + 0,456×𝐺𝐿 + −20,141×𝑈𝐴

+ −19,306×𝑊𝐵 + 0,040×𝑆𝐿  

 (8) 

After building the model and obtained by equation 2 a continuous response variable expressing the 

degree of susceptibility a decision threshold (cutoff value) of P(y) = 50% was selected to divide the 

continuous response depend variable into landslide or non.-landslide. This value corresponds to the 

same inflexion point of the ROC plot and the point to the distance to the perfect classification. The 

confusion matrix was performed by comparing this prediction with the observations in the 

validation landslide inventory dataset. The results, presented in Table 4, shows the number of 

correctly and incorrectly predicted observations, for both positive and negatives cases. The false 

positives, or error type I, corresponds to 34.3 %; on the other hand, 38,7 % represent the false 

negatives, or error type II. 

 

Table 4 Confusion matrix for M5; inventory positives are cells with landslides, negatives 

otherwise. These values are compared with P(y) (probability estimated by LR). Total correct and 

incorrect predicted cells are shown on the right. 
Model probability Inventory positives Inventory negatives  Total 
  n % n %  n % 
M5   	
   	
   	
   	
    	
   	
   
P(y)>50% Yes 511 61.3 127914 34.3 Correct 245299 65.7 
P(y)<50% No 323 38.7 244788 65.7 Incorrect 128237 34.3 
Total (Σ)   834 100.0 372702 100.0  373691 100.0 

 

Figure 7 shows the main graphical output and results obtained thought the validation phase for M5 

model. It includes ROC plot success and prediction rates with the AUC value, and a fourfold 

representation of the confusion matrix. The susceptibility map is presented in Figure 8. The 

probability histogram was divided into the three susceptibility classes (Table 5). The upper limit of 

the medium class is the inflexion point of the ROC curve that is the same point of the distance to the 

perfect classification (0,5). And the lower limit of the medium class is a subtle change of slope there 

is in 0,3 value. 
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Fig. 7 Graphical output summary for model M5. (a) Fourfold plot summarizing the percentage 

value of true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN); (b) 

landslide susceptibility classes classification; (c) ROC curve; (d) prediction rate curve. 
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Fig. 8 Landslide susceptibility map for the study area produced by logistic regression and M5 

variable combination (aspect, land cover and slope). 

 

According to the landslide susceptibility map acquired from LR (Fig. 8), 34,4% (20,1 km2) of the 

entire area was classified as being highly susceptible, while about 48,4% (28,3 km2) was found to 

be on medium landslide susceptibility zones. Low susceptible zones showed 17,2% (10,0 km2) of 

the entire area. 

 

High susceptibility zones have a landslide density of 25,7 landslides/km2, while 64,7% of the 

landslides triggered on May 18th, 2015 were on this susceptibility class. On medium susceptibility 

zones, 35,3% of May 18th, 2015 occurred. And on low susceptibility zones there are  

4,9 landslides/km2 and none of them is associated with May 18th, 2015 event. 

 

Table 5 Landslide susceptibility classes description. 

Probability 
range 

Susceptibility 
class name 

Area covered 
(km2) 

Area covered 
(%) 

Landslide area 
(m2) 

Landslide area 
(%) 

Landslide 
density 
(landslides/km2) 

0,0-0,3 Low 10,0 17,2 7056 5,8 4,9 
0,3-0,5 Medium 28,3 48,4 42656 32,6 9,7 
0,5-1,0 High 20,1 34,4 80625 61,6 25,7 
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Temporal validation with the event of May 18th, 2015 

The landslide susceptibility map is validated using the landslide inventory of the event occurred on 

May 18, 2015. A comparison of the susceptibility map and event-based landslide inventory was 

carried out in an area of 8,6 km2, 14,7% of the total area of study, which corresponds to the upper 

zone of the basin in which all the MORLE-type landslide event occurred. For this area the 

prediction rate was calculated with an AUC value of 0,55. The degree of fit of the three 

susceptibility are shown in Figure 9. Both show a relation between landslide occurrence of the May 

18, 2017 event and high susceptibility areas. 

 

 
Fig. 9 Degree of fit of susceptibility classes. 

 

6 Discussion 

Landslide susceptibility mapping in tropical mountainous areas is usually difficult because of 

complex terrains, dense vegetation, weather conditions, and data scarcity. A huge region of the 

Colombian complex and tropical Andes terrains show these conditions, where landslide disasters 

are very common. This is the case of the La Liboriana catchment and Salgar disaster in May 18th, 

2015.  

Free and open remote sensing tools, such as Google Earth and Alaska Satellite Facility program, 

could be used to landslide susceptibility assessment in scarce-data zones. They are not only useful 

for the elaboration of the inventory map, but to obtain morphometric factors associated to landslide 

occurrence or to complete the missing data of environmental causative factors, such as land cover. 

They can be supported and complemented by traditional tools like aerial photography and satellite 

imagery.  

 

Based on availability and accessibility of information the causative factors used for the analysis 

correspond to the most common predictor variables for landslide occurrence: aspect, land use, 
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curvature, slope gradient and TWI. Many other DEM derived variables can be obtained and could 

be included into the analysis, however correlation among variables increase reducing the prediction 

capacity of the model. Several studies have demonstrated there is no a number or standard landslide 

causative factors (Lee et al., 2008). In this study the spatial validation process using the 

multitemporal landslide inventory was used to select the most effective causative factors for La 

Liboriana catchment: aspect, land cover and slope gradient. Curvature and TWI were considered to 

be less effective factors, since both were not included in the final model.  

However the most effective variables vary from one case study to another, so it should be always a 

matter of study which ones to include in the models. Lithology, which was relevant in different case 

studies (Atkinson & Massari, 1998; Ayalew & Yamagishi, 2005; Kavzoglu et al., 2015; Shahabi & 

Hashim, 2015) turned out to be absolutely irrelevant and it is excluded from the analysis. The 

results indicate that a large number of causative factors does not necessarily produce a better 

landslide susceptibility assessment. It could be associated to a high correlation between factors or a 

low correlation between the factors and the landslide occurrence. 

Although the simulations carried out in this study did not incorporate local lithology or field 

mapping variables, the results show good success and prediction rates for unstable sites in tropical 

mountainous terrain. This suggests that landslide susceptibility in such environments are driven by 

topographic, DEM-derived variables. This also indicates that using free access tools to obtain data, 

a GIS-based analysis and multivariate statistical methods it is possible to simulate landslide 

susceptibility. 

 

Although the success and prediction rate obtained for the model using the pre-event landslide 

inventory provide satisfactory results, the prediction rate of the model for the May 18th, 2015 event 

was just over the random prediction (AUC=0,55). The lower prediction rate is inferred to be a result 

to the accuracy of the landslide inventory map, related especially to the completeness of the map. 

Guzzetti et al (2012) defines the completeness of a landslide inventory map as the proportion of 

landslides shown in the inventory compared to the real number of landslides in the study area. It is 

related to the size of the landslides. Landslide scarps associated to small and shallow landslides, 

such as the May 15th, 2015 event, do not conserve discernible morphological signs. This type of 

scars and deposits are difficult to identify in tropical environments because weathering and 

vegetation cover or erase any physical evidence. The vegetation growth in the area is accelerated 

because it is a tropical forest area, and there are great morphological changes that make it difficult 

to identify them through photo-interpretation and other remote sensing tools. The distribution of the 

past landslides that was used in the calibration process is not adequate to predict landslides such as 
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the event on May 18th, 2015. Having some inventoried that may have occurred previously to May 

18th, 2015 could improve the prediction capability of the model. The pre-event landslides 

incorporated into the landslide inventory correspond to recent or depth-seated landslides. 

Considering this scenario, the LR method was also applied using the whole landslide inventory 

(pre-event landslides and May 18th, 2015 landslides included). The cross validation in this case was 

made splitting the data into two groups of 75% and 25%, for training and validation each one. The 

ROC analysis success rate obtained was 0,65 and the prediction rate of 0,67 (Fig 10). The results 

show the final success and prediction rate does not improve, indicating that multitemporal landslide 

inventory are more suitable to train and calibrate landslide susceptibility assessment models, and 

MORLE type events should be used carefully. 

 

 
Fig. 10 ROC plot and prediction rate curves comparison for the models. May 18th, 2015 and  

pre-event landslides included (black); only pre-event landslides included (grey). 

 

Another important outcome of this work is the … 

The expansion of settlements in interandean valleys during the last century contributed to increase 

the risk for human lives and infrastructures. To identify the risk caused by debris and flash floods to 

human settlements, it is of primary importance to detect the areas susceptible to landslide 

occurrence. 

 

False positives can be either certainly error in the model, or else real susceptibility-prone areas that 

have not yet developed landslides. 
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7 Conclusions  

In this work, we propose a very helpful approach to assess landslide susceptibility to be used in 

similar zones worldwide; which may also have data scarcity due to difficult conditions and 

accessibility. Data availability is a challenge for many researchers especially in developing 

countries where many catchments remain remote and difficult to access. The La Liboriana 

catchment is a tropical and complex terrain region that is affected periodically by landslides 

triggered by rainfall, but it lacks essential data for landslide susceptibility and hazard analysis. The 

porpose approach is based on freely available DEM data and Google Earth image satellite to 

provide landslide inventory and predictors variables. The data obtained was used as input for a 

multivariate statistical logistic regression analysis. The results obtained show that the aim of this 

work has been essentially achieved. 

 

It is important to continue studying past landslides triggered by rainstorm in forested areas, because 

in most of the cases they caused a major disaster. It may help to develop early warning systems for 

the community, and reduce economical and human annual losses. 
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