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Introduction

The Navier Stokes equations are ones that describe the behavior of fluids. The

computational solution of these allows for a way of understanding and predict-

ing them while being cost effective. The fundamental equations arise from the

principles of conservation of energy, momentum and mass described in New-

ton’s second law, the first law of thermodynamics and the continuity equation

respectively. The obtained system of equations can be used for different fluid

simulations under different circumstances such as Newtonian, compressible or

isothermal flow fluids. The objectives of this project are to describe the problem

and the origin of the equations; to approximate the solution to the Navier Stokes

system in one dimension through a finite differences discretization scheme used

in numerical analysis to solve PDE; to mathematically analyse the selected ap-

proach in terms of error and convergence; and to present examples using different

boundaries conditions.
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1 Problem description

Navier Stokes equations derive from the mass, momentum and energy conser-

vation principles [3], the first one results in the equation

dρ

dt
+ ρ∇ · ~u = 0 (1)

In the case of mass conservation on an incompressible fluid (constant density

independent of space and time) the continuity equation is

∇ · ~u = 0 (2)

where ~u is the velocity vector. Newton’s second law ensures momentum con-

servation, if ρ denotes the fluids density, ν is the fluids viscosity and p is the

pressure over the fluid related to a stress factor [9], the second equation is

ρ

(
∂~u

∂t
+ ~u∇ · ~u

)
= −∇p+ ν∇2~u+ f (3)

this can be derive from the initial approach in Newton’s second law
∑
F = ma

by analysing the momentum conservation over each of the fluids particles, that

is to say, taking m
v instead of m, we obtain a convection term of the equation

m

v
a = ρ

d~u

dt
= ρ

(
∂~u

∂t
+ ~u · ∇~u

)
(4)

and the sum of forces is defined by pressure gradient ∇p that makes reference

to stress, friction related to viscosity µ∇2~u where µ = ν/ρ is the dynamic

viscosity and it defines the dispersion term and other possible external forces f,

for example, if gravity where taken into account, the previous reasoning would

transform mg into ρg The last equation is given by energy conservation as stated

in the first law of thermodynamics, where e is the specific internal energy, q is

the heat-flux vector.

In the case of isothermal incompressible fluid with constant viscosity and none

external forces, given that the analysis is all on one dimension, the equations

can be expressed as
∂u

∂x
= 0 (5)

∂u

∂t
+ u

∂u

∂x
= −1

ρ

∂p

∂x
+ µ

∂2u

∂x2
(6)

2



1.1 Relevant characteristics of the equations

1.1.1 Reynolds number

The Reynolds number represents the relative importance of the viscous stress,

mathematically, Re = ρ · û · diameter /ν, where û indicates the mean velocity.

The Reynolds number indicates whether the flow is completely governed by

viscous effects (at low Reynolds number) or effectively inviscid (at high Reynolds

number). One of the advantages in using nonlinear equations can be found in

the turbulence analysis. The response of laminar flow to small perturbations is

expected to vary according to the influence of the fluids viscosity, at larger values

of Re, a small perturbation should be amplified. Sufficiently small perturbations

will decay at sufficiently high Reynolds numbers in a linear analysis [4], but

since turbulence can only be studied through large perturbations, only nonlinear

Navier stokes equations can simulate it.

1.1.2 Convection-Dispersion ratio

In equation 6, the second term on the left and the second term on the right are

representations of convection and diffusion parts of the equation respectively.

Their ratio determines the general behavior of the Navier Stokes equation, if

the dispersion term is much larger than the convection term, the equation will

have a parabolic PDE behavior, similar to the heat equation. However if the

convection term is much bigger than the dispersion term, the Navier Stokes

equation will have a first order hyperbolic PDE behavior. Even further, if the

viscous effect is not considered at all, the Navier stokes momentum equation

becomes Euler’s equation which is a hyperbolic equation [5].

2 Finite differences discretization scheme

To reach the final final differences scheme, the equations must be manipulated in

order to include the first one as a constrain where ρ evolves in a way that the rate

of expansion of ~u is zero at all points. This is because there is no obvious way to

couple velocity and pressure in an incompressible fluid, if it where compressible,

a relation between ρ and p would be derived from the continuity equation. First,

partially deriving equation (6)

∂

∂t

(
∂u

∂x

)
+

∂

∂x

(
u
∂u

∂x

)
= −1

ρ

∂2p

∂x2
+ µ

∂2

∂x2

(
∂u

∂x

)
(7)
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an expression for the Laplacian is obtained

∂2p

∂x2
= −ρ ∂

∂t

(
∂u

∂x

)
− ρ ∂

∂x

(
u
∂u

∂x

)
+ ν

∂2

∂x2

(
∂u

∂x

)
(8)

∂2p

∂x2
= −ρ ∂

∂t

(
∂u

∂x

)
− ρ

(
∂u

∂x

)2

− ρu
(
∂2u

∂x2

)
+ ν

∂2

∂x2

(
∂u

∂x

)
(9)

which has the same form as a Poisson equation and gives a relation of pressure

p in terms of the velocity u that can be used to couple the equations

2.1 Deriving an expression for pressure

The momentum conservation given by Eq.(3) semi-discrete scheme using a for-

ward in time approach is

~u n+1 = ~u n + ∆t

[
µ∇2~u n − 1

ρ
∇pn − ~u n∇~u n

]
(10)

Velocity in the temporary step ~u n+1 is calculated using a finite differences

scheme and corrected by imposing a pressure condition that guarantees conti-

nuity. Applying divergence to equation (10) gives:

∇ · ~u n+1 = ∇ · ~u n + ∆t

[
µ∇2(∇~u n)− 1

ρ
∇2pn −∇(~u n∇~u n)

]
(11)

given that ∇~u n+1 and ∇~u n should be zero, the following expression can be

derived

∇2pn = −ρ∇(~u n∇~u n) (12)

where µ = ν/ρ is the dynamic viscosity [6]. AS we can see this is a similar

scheme to the one found by Cebeci et al. [2]. Now, applying a one dimensional

approach
∂2pn

∂x2
= −ρ ∂

∂x

(
un
∂un

∂x

)
(13)

∂2pn

∂x2
= −ρ

(
∂un

∂x

)2

− ρun
(
∂2un

∂x2

)
(14)

A centered differences in space discretization for the second derivative of the

pressure p at a time n is

∂2p2

∂x2
≈
pnj+1 − 2pnj + pnj−1

(∆x)2
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and centered in space of order 2 schemes for ∂un/∂x, ∂2un/∂x2 and ∂3un/∂x3

are
∂un

∂x
≈
unj+1 − unj−1

2∆x

∂2un

∂x2
≈
unj+1 − 2unj + unj−1

(∆x)2

∂3un

∂x3
≈
unj+2 − 2unj+1 + 2unj−1 − unj−2

2(∆x)3

Now the final pressure scheme is

pnj+1 − 2pnj + pnj−1

(∆x)2
= −ρ

(
unj+1 − unj−1

2∆x

)2

−ρunj
(
unj+1 − 2unj + unj−1

(∆x)2

)
(15)

2.2 Final discretized schemes for pressure and velocity

For the velocity scheme in Eq.(6) apply a forward in time discretization in ∂u/∂t,

backward in space for ∂u/∂x and centered differences for ∂p/∂x and ∂2u/∂x2

to obtain

un+1
j − unj

∆t
+unj

(
unj − unj−1

∆x

)
= −1

ρ

pnj+1 − pnj−1

2∆x
+µ

unj+1 − 2unj + unj−1

(∆x)2
(16)

Finally, obtaining the expressions for un+1
j and pnj from equations (15) and (16)

un+1
j = unj +∆t

[
µ
unj+1 − 2unj + unj−1

(∆x)2
− unj

unj − unj−1

∆x
− 1

ρ

pnj+1 − pnj−1

2∆x

]
(17)

pnj =
pnj+1 + pnj−1

2

+
(∆x)2ρ

2

[(
unj+1 − unj−1

2∆x

)2

+ unj

(
unj+1 − 2unj + unj−1

(∆x)2

)]
(18)

5



2.3 Relevant mathematical characteristics: consistency,

stability, convergence

It is clear that our method is consistent since the method used for the dis-

cretization of the derivatives in our problem is proven to be a consistent method.

Therefore all we have to check in order to be sure that our method converges

to the correct answers is if it is stable, whether conditionally or not, or if it is

unstable.

Based on the Von Neumann Analysis made by Konangi et al. in von Neu-

mann stability analysis of first-order accurate discretization schemes for one-

dimensional (1D) and two-dimensional (2D) fluid flow equations, Computers

and Mathematics with Applications[7] the stability analysis starts by defining

the equations in perturbation form, using the definition given by the mentioned

author, the perturbations of each variable are defined as

unj + δunj pnj + δpnj

Now, in order to obtain the perturbation form of both Eq.(17) and Eq.(15), it

is necessary to linearize their convection term. Beginning with the term

unj u
n
j+1 (19)

and replacing the perturbations form of each gives

(unj + δunj )(unj+1 + δunj+1) (20)

now substracting Eq.(19) from Eq.(20) we have:

unj + δunj )(unj+1 + δunj+1)− unj unj+1

unj u
n
j+1 + unj δu

n
j+1 + unj+1δu

n
j + δunj δu

n
j+1 − unj unj+1

unj δu
n
j+1 + unj+1δu

n
j + δunj δu

n
j+1 (21)

and finally, neglecting the second order term leads to:

unj δu
n
j+1 + unj+1δu

n
j (22)

Using the same procedure used for finding Eq.(22) we find the perturbation form

for (unj )2, (unj+1)2, (unj−1)2, unj u
n
j−1 and unj+1u

n
j−1 that will be used in order to
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obtain the complete perturbation form of Eq.(17) and Eq.(15)

Now the momentum perturbation equation found by replacing in Eq.(17) is:

δun+1
j = δunj +

∆tµ

(∆x)2
(δunj+1 − 2δunj + δunj−1)

− ∆t

∆x

(
2unj ∗ δunj − unj−1δu

n
j − unj δunj−i

)
− ∆t

2ρ∆x

(
δpnj+1 − δpnj−1

)
(23)

And the Poisson form of the pressure perturbation equation obtained from

Eq.(15) is:

1

(∆x)2
(δpnj+1 − 2δpnj + δpnj−1) =

− ρ

4(∆x)2

[
2unj+1δu

n
j+1 − 2(unj+1δu

n
j−1 + unj−1δu

n
j+1) + 2unj−1δu

n
j−1

]
− ρ

(∆x)2
(unj δu

n
j+1 + unj+1δu

n
j − 4unj δu

n
j + unj δu

n
j−1 + unj−1δu

n
j ) (24)

The coefficients unx in Equations Eq.(23) and Eq.(24) are frozen to give:

δun+1
j = δunj +

∆tµ

(∆x)2
(δunj+1 − 2δunj + δunj−1)

− ∆t

∆x

(
2U ∗ δunj − Uδunj − Uδunj−i

)
− ∆t

2ρ∆x

(
δpnj+1 − δpnj−1

)

δun+1
j = δunj +

∆tµ

(∆x)2
(δunj+1 − 2δunj + δunj−1)

− U∆t

∆x

(
δunj − δunj−i

)
− ∆t

2ρ∆x

(
δpnj+1 − δpnj−1

)
(25)

7



1

(∆x)2
(δpnj+1 − 2δpnj + δpnj−1) =

− ρ

4(∆x)2

[
2Uδunj+1 − 2Uδunj−1 − 2Uδunj+1 + 2Uδunj−1

]
− ρ

(∆x)2
(Uδunj+1 + Uδunj − 4Uδunj + Uδunj−1 + Uδunj )

1

(∆x)2
(δpnj+1 − 2δpnj + δpnj−1) = − Uρ

(∆x)2
(δunj+1 − 2δunj + δunj−1) (26)

Then the increment notation is dropped for convenience and the equations are

written as:

un+1
j = unj +

∆tµ

(∆x)2
(unj+1 − 2unj + unj−1)

− U∆t

∆x

(
unj − unj−i

)
− ∆t

2ρ∆x

(
pnj+1 − pnj−1

)
(27)

1

(∆x)2
(pnj+1 − 2pnj + pnj−1) = − Uρ

(∆x)2
(unj+1 − 2unj + unj−1) (28)

Now that we have our equations in a much easier way to work with, we proceed to

do the Von Neumann Stability Analysis, where the perturbations are represented

as

unj = ζnu e
iθj pnj = ζnp e

iθj

therefore, substituting these expression for the perturbations into Eq.(27) and

Eq.(28) and dividing by eiθj gives:

ζn+1
u = ζnu

[
1 +

∆tµ

(∆x)2
(eiθ − 2 + e−iθ)− U∆t

∆x

(
1− e−iθ

)]
− ζnp

∆t

2ρ∆x

(
eiθ − e−iθ

)
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ζn+1
u = ζnu

[
1 +

∆tµ

(∆x)2
(2 cos(θ)− 2)− U∆t

∆x
(1− cos(θ) + i sin(θ))

]
− ζnp

∆t

2ρ∆x
2i sin(θ)

ζn+1
u = ζnu

[
1− 4∆tµ

(∆x)2
sin2(θ/2)− U∆t

∆x
(1− cos(θ) + i sin(θ))

]
− ζnp

∆t

ρ∆x
i sin(θ) (29)

ζn+1
p

1

(∆x)2
(eiθ − 2 + e−iθ) + ζn+1

u

Uρ

(∆x)2
(eiθ − 2 + e−iθ) = 0

− ζn+1
p

4

(∆x)2
sin2(θ/2) − ζn+1

u

4Uρ

(∆x)2
sin2(θ/2) = 0 (30)

Now, it is easy to see that both Eq.(29) and Eq.(30) can be combined into the

next system of equations in matrix-vetor form:[
1 0

A B

][
ζn+1
u

ζn+1
p

]
=

[
C D

0 0

][
ζnu

ζnp

]
Where

A = − 4Uρ

(∆x)2
sin2(θ/2)

B = − 4

(∆x)2
sin2(θ/2)

C = 1− 4∆tµ

(∆x)2
sin2(θ/2)− U∆t

∆x
(1− cos(θ) + i sin(θ))

D = − ∆t

ρ∆x
i sin(θ)

This system of Equations gives
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[
ζn+1
u

ζn+1
p

]
=

[
1 0

A B

]−1 [
C D

0 0

][
ζnu

ζnp

]
(31)

then, the amplification matrix is defined as

Z =

[
1 0

A B

]−1 [
C D

0 0

]
(32)

Now, the scheme is stable if all of Z’s eigenvalues remain bounded by unity, or

|λ1,2(Z)| < 1

When calculating the eigenvalues of Z we find:

λ1 = 0

λ2 =
a2 − a2a3k2 − a2ck3 + 4a1a4ck1

a2

where

a1 =
ρ

∆x∆t
a2 =

4

(∆x)2
a3 = 4

∆tµ

(∆x)2
a4 =

∆t

ρ∆x

c =
U∆t

∆x

k1 = i sin(θ) k2 = sin2(θ/2) k3 = 1− cos(θ) + i sin(θ)

Now, replacing and simplifying:

λ1 = 0

λ2 = 1− 4
µ∆t

(∆x)2
sin2(θ/2)− c(1− cos(θ))

λ2 = 1− 2c sin2(θ/2)− 4
µ∆t

(∆x)2
sin2(θ/2)

therefore, as λ1 = 0, it is only necessary to check for which values |λ2| < 1 to

conclude that the scheme is stable

|λ2| < 1

|1− 2c sin2(θ/2)− 4
µ∆t

(∆x)2
sin2(θ/2)| < 1
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−1 < 1− 2c sin2(θ/2)− 4
µ∆t

(∆x)2
sin2(θ/2) < 1

−2 < −2c sin2(θ/2)− 4
µ∆t

(∆x)2
sin2(θ/2) < 0

0 < 2c sin2(θ/2) + 4
µ∆t

(∆x)2
sin2(θ/2) < 2

0 < sin2(θ/2)

(
2c+ 4

µ∆t

(∆x)2

)
< 2

Now since sin2(θ/2) is always between 0 and 1, we just have to check for

sin2(θ/2) = 1

0 < 2c+ 4
µ∆t

(∆x)2
< 2

−2c < 4
µ∆t

(∆x)2
< 2− 2c

− c
2
<

µ∆t

(∆x)2
<

1− c
2

As we know, theoretically 0 < c < 1 and µ∆t
(∆x)2 > 0 from which it is concluded

0 <
µ∆t

(∆x)2
<

1− c
2

Now we have our stability conditions, we can say that, working in this interval,

this scheme will converge to the correct answer.

3 Implementation of the method

This implementation was programmed in MATLAB, and it follows the flowchart

in Figure 1
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Figure 1: Flowchart implementation

To clarify, the parameters the implementation receives, in addition to initial

and boundary conditions, are µ, ρ, L, Nx and c, being L the maximum distance

considered in the problem, Nx the number of intervals in which our spatial

domain is divided and c is an arbitrary constant between 0 and 1 that will act

as the Courant number. The rest can be calculated as

∆x =
L

Nx
ν = µρ U =

cµ

∆x(0.9− c)/2
∆t = c

∆x

U
(33)

in order to guarantee stability.

Next, the results of using our implementation for solving three different problems

with different types of boundary conditions were not possible to compare to

results from previous implementations since the majority of research made for

this field and literature with applications is based in two and three dimensional

problems.
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3.1 Example 1: Dirichlet Boundary Conditions

For these example the problem is defined as

solve ∂u
∂x = 0 [x, t] ∈ [0, 5]× R+

∂u
∂t + u∂u∂x = − 1

ρ
∂p
∂x + µ∂

2u
∂x2 [x, t] ∈ [0, 5]× R+

subject to 
u(0, t) = u(5, t) = 2 t ∈ R+

p(0, t) = p(5, t) = 0 t ∈ R+

u(x, 0) = sin
(

2πx
5

)
+ 2 x ∈ [0, 5]

with ρ = 1 and µ = 1 In the discrete scheme, it was decided to bound time to

the interval [0, 2]. Now, figures 2 to 6 are the graphics of the solutions given

multiples ∆x values

(a) û(x, t) (b) p̂(x, t)

Figure 2: û(x, t) and p̂(x, t) for ∆x = 1
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(a) û(x, t) (b) p̂(x, t)

Figure 3: û(x, t) and p̂(x, t) for ∆x = 0.5

(a) û(x, t) (b) p̂(x, t)

Figure 4: û(x, t) and p̂(x, t) for ∆x = 0.25

(a) û(x, t) (b) p̂(x, t)

Figure 5: û(x, t) and p̂(x, t) for ∆x = 0.125
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(a) û(x, t) (b) p̂(x, t)

Figure 6: û(x, t) and p̂(x, t) for ∆x = 0.0625

It is seen that the fluid has the expected behaviour, because, as the time passes,

velocity and pressure tend to flatten

3.2 Example 2: Mixed Boundary Conditions

For these example the problem is defined as

solve ∂u
∂x = 0 [x, t] ∈ [0, 5]× R+

∂u
∂t + u∂u∂x = − 1

ρ
∂p
∂x + µ∂

2u
∂x2 [x, t] ∈ [0, 5]× R+

subject to 
ut(0, t) = ut(5, t) = t sin(t) t ∈ R+

p(0, t) = p(5, t) = 0 t ∈ R+

u(x, 0) = sin
(
πx
5

)
+ 1 x ∈ [0, 5]

with ρ = 1 and µ = 1 In the discrete scheme, time is bounded to the interval

[0, 2]. Now, figures 7 to 11 present the graphical solutions given multiples ∆x

values

15



(a) û(x, t) (b) p̂(x, t)

Figure 7: û(x, t) and p̂(x, t) for ∆x = 1

(a) û(x, t) (b) p̂(x, t)

Figure 8: û(x, t) and p̂(x, t) for ∆x = 0.5

(a) û(x, t) (b) p̂(x, t)

Figure 9: û(x, t) and p̂(x, t) for ∆x = 0.25
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(a) û(x, t) (b) p̂(x, t)

Figure 10: û(x, t) and p̂(x, t) for ∆x = 0.125

(a) û(x, t) (b) p̂(x, t)

Figure 11: û(x, t) and p̂(x, t) for ∆x = 0.0625

3.3 Example 3: Robin Boundary Conditions

For these example the problem is defined as

solve ∂u
∂x = 0 [x, t] ∈ [0, 5]× R+

∂u
∂t + u∂u∂x = − 1

ρ
∂p
∂x + µ∂

2u
∂x2 [x, t] ∈ [0, 5]× R+

subject to

17





ut(0, t) = 1 t ∈ R+

0.5u(5, t) + 0.5ut(5, t) = 1 + t2 sin(t) t ∈ R+

p(0, t) = p(5, t) = 0 t ∈ R+

u(x, 0) = log
(
x
Le+ 1

)
+ 1 x ∈ [0, 5]

with ρ = 1 and µ = 1 In the discrete scheme, time is bounded to the interval

[0, 2]. Now, figures to present the graphical solutions, given multiples ∆x values

(a) û(x, t) (b) p̂(x, t)

Figure 12: û(x, t) and p̂(x, t) for ∆x = 1

(a) û(x, t) (b) p̂(x, t)

Figure 13: û(x, t) and p̂(x, t) for ∆x = 0.5

18



(a) û(x, t) (b) p̂(x, t)

Figure 14: û(x, t) and p̂(x, t) for ∆x = 0.25

(a) û(x, t) (b) p̂(x, t)

Figure 15: û(x, t) and p̂(x, t) for ∆x = 0.125

(a) û(x, t) (b) p̂(x, t)

Figure 16: û(x, t) and p̂(x, t) for ∆x = 0.0625

19



Conclusions

Proving there is a smooth and unique solution to the Navier Stokes equations is

one of the seven millennium problems listed by the Clay Mathematics Institute,

and it is definitely not an easy task. As it could be seen in this work, even for a

one dimensional reduction of the equations it is hard to find a suitable method

for solving and approximating the numerical solution, it makes sense that for a

3 dimensional approach, there has to be a very rigorous work in order to solve

them.

These equations have, as seen at the beginning of this work, a theoretical basis in

physics that undertakes many possible types of fluids, therefore they are widely

used in the fluids dynamics to simulate different types of fluid flow through

different computationally efficient numerical solutions. This solutions have ap-

plications in many areas such as aircraft design, weather forecast, vascular net-

works and arterial flow, oil and gas pipelines design and, as expected, it is easy

to find multiple and different methods in the literature [9] [8] [1].
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