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Abstract Reverse Engineering (RE) requires representing
with free forms (NURBS, Spline, Bézier) a real surface So
which has been point-sampled. To serve this purpose, we
have implemented an algorithm that minimizes the accumu-
lated distance between the free form and the (noisy) point
sample. We use a dual-distance calculation point to / from
surfaces, which discourages the forming of outliers and arti-
facts. This algorithm seeks a minimum in a function f that
represents the fitting error, by using as tuning variable the
control polyhedron for the free form. The topology (rows,
columns) and geometry of the control polyhedron are deter-
mined by alternative geodesic-based dimensionality reduc-
tion methods: (a) graph-approximated geodesics (Isomap),
or (b) PL orthogonal geodesic grids. We assume the exis-
tence of a triangular mesh of the point sample (a reasonable
expectation in current RE). A bijective composition map-
ping Sy € R?® «— R? allows to estimate a size of the
control polyhedrons favorable to uniform-speed parameteri-
zations. Our results show that orthogonal geodesic grids is a
direct and intuitive parameterization method, which requires
more exploration for irregular triangle meshes. Isomap gives
ausable initial parameterization whenever the graph approxi-
mation of geodesics on Sy be faithful. These initial guesses, in
turn, produce efficient free form optimization processes with
minimal errors. Future work is required in further exploiting
the usual triangular mesh underlying the point sample for
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(a) enhancing the segmentation of the point set into faces,
and (b) using a more accurate approximation of the geodesic
distances within Sp, which would benefit its dimensionality
reduction.
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Abbreviations
PL Piecewise linear
B Solid object in R3. B C R3 is the closure of a

bounded and connected open set, whose border
0B is a 2-dimensional manifold.

So Freeform parametric surface on which a Face of
d B is mounted

P {po, p1, ...} Unordered point sample of Sy

S(u, v) Parametric surface, which fits the set P,so S ~
So

u,v Surface parameters

Ni,p, Nj4 B-spline base functions R — R,

n,m Number of control points of S in u, v directions
respectively

Cp Control polyhedron for S

k Norm  degree. [(x1, X2, ooy Xp) |k =
v it il

f Function minimized when fitting S to P

d; Minimum distance between the i-th point p; of
Pand S

LM Levenberg-Marquardt

RE Reverse engineering

Gr Regular, axis-aligned vertex grid in R?

G Graph (P, E) with vertex set P and edge set E,

nearly embedded in Sy
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D Square matrix in which D(i, j) = dist(p;,
pj), with dist() approaching the geodesic dis-
tance on Sy between sample points p; and p;

T {t1, t2, ...} Triangular mesh of triangles #; with
vertices in P

Byy Parametric rectangular connected subset of R?

cG PL geodesic curve on T

1 Introduction

In this article, we address the following problem: Given a
point set P = {p1, p2, ..., pn} , randomly sampled on a local
surface Sp of a physical part B, the Goal is to find a para-
metric free form S(u, w) (approximating Sp) by minimizing
the distance between S and P.

The point sample P is supposed to be tight enough to cap-
ture the smallest geometrical detail in which the designer is
interested. Such a point sample is called Nyquist-compliant.
In it, the point sampling interval must be at most half times
the smallest geometrical detail to be pursued [1,2].

Reverse engineering (RE) is the process of converting
(partitions of) P into a topologically and geometrically cor-
rect CAD model [3]. RE is widely employed in many applica-
tions, such as CAD design, data visualization, virtual reality,
medical imaging, movie industries, cultural heritage preser-
vation, etc.

Curve and surface reconstruction are central to RE, in
which a material piece B is available for digitization or scan-
ning, while a suitable CAD model for the piece is yet to be
found. The most common CAD solid modeling schemes are:
(1) Boundary Representation, (2) Constructive Solid Geom-
etry, (3) Enumerations, and (4) Constraint-based Models. It
is not evident which scheme should be used for a particular
point set. However, the mathematical difficulty of fitting CSG
or Constraint-based models is prohibitive, which leaves only
Boundary Representations and Enumerations for practical
applications. Enumerations (voXels, octrees, etc.) are a nat-
ural choice when the sampled set is the interior of the object
(e.g. a scalar field). In these cases, it is usual to sample in
grid patterns, as occurs in Computer Tomograms, Magnetic
Resonance, etc.

Given a body B, the representation of its boundary 0 B
is called the Boundary Representation (B-Rep) of B. B-Rep
is the obvious choice for surface sampling, since the sur-
face sampled is precisely the boundary of the object, in the
topological sense. However, even if the scheme chosen to
model the solid is a B-Rep, there are plenty of modeling
decisions which influence the goodness of the model. A cen-
tral decision is the partition (segmentation) of the Shell (a 2-
manifold without border), which bounds the solid, into Faces
(connected 2-manifolds with possibly disconnected border).
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When the CAD model precedes the object, the CAD software
usually avoids defining a Face which is mounted in more than
one underlying parametric surface. That implies that, as an
example, a Face will not contain a subset of a cylinder and
other subset of a sphere. When the physical model precedes
the CAD model (as in RE), there is no obvious manner to
determine that a subset of the sampled points represents one
Face of the solid model [4,5]. This occurs because, precisely,
the parametric surface carrying the Face is unknown and it
needs, in turn, to be found based on the chosen point set. To
break this circular argument, a human user first partitions the
point set, with the support of statistical and graphical tools
applied to the point sample. These tools, for example, diag-
nose whether an analytical form (e.g. a cylinder) fits well a
particular subset of the point sample. In negative case, other
analytical form, or other partition of the point sample are
tried.

1.1 Interactivity in mesh parameterization and segmentation

By principle, Computer Aided Geometric Design intends to
reduce the need for human interaction. However, the current
state of the art requires the human input to decide which
computer-generated options are best suited for the applica-
tion at hand. Manifold Parameterization is not an exception.
However, the user interaction present when manifold para-
meterization fails (which is frequently the case) is invested
in the complementary process of further segmenting or re-
segmenting the Manifold and not directly in re-making of
the parameterization. Manifold Segmentation (see survey
in [6]) partitions the main triangular mesh in sub-meshes.
Partition criteria are: (1) tangent plane discontinuities (dihe-
dral angle), (2) weakness in the triangulation graph, among
others. In this article, a desirable segmentation goal is the
quasi-developability of the sub-meshes, therefore facilitating
their parameterization. The Spectrum of the mesh connec-
tivity graph (Graph Laplacian methods [7]) tends to split the
mesh in weakly connected components, therefore isolating
the limbs, head, tail, etc. (e.g. for an animal shape). How-
ever, the classification of which eigenvalues of the Graph
Laplacian contain the information for the partition is still
an open problem, and definitely requires human interaction.
Several Refs. [6,8,9] present mesh segmentation software,
which allows an intuitive interaction from the user, for the
purpose of Mesh Segmentation for easy parameterization
(among other criteria). The material present in this article
corresponds to Fig. 1. Our RE system receives a triangulation
T to segment and parameterize [10]. Direct user interaction
or heuristics (Box 1) are used for either Geometry-driven seg-
mentation (e.g. Dihedral Angle, Box 2) or Topology-driven
(e.g. Laplacian of Graph, Box 3) Segmentation to produce
an initial hint of the set of sub-meshes 7; (i = 1, 2, ..). The
sub-meshes 7; are parameterized (e.g. Geodesics, Box 4, this
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Fig. 1 Interactive workflow for segmentation, learning and parameter-
ization of manifolds

article). The user or numerical criteria approve or reject the
Segmentation and Parameterization (Box 5). In the second
case, user or automatic heuristics are added, and the cycle is
repeated.

As a primary precondition for Manifold Parameterization,
Manifold Segmentation requires an interactive set-up. Figure
13 shows the segmentation of the Frog data set (i.e. input)
fed to our geodesic-based Manifold Parameterization algo-
rithms, as well as the Manifold Parameterizations (i.e. out-

put).

2 Literature review
2.1 Data input

The physical process that samples B has direct influence on
the geometric reconstruction algorithms applied to the col-
lected data: (1) Medical Imaging produces VoXel data, which
can be either directly processed in 3D to produce Exhaustive
Enumerations and Octrees, or sliced by cross cuts to pro-
duce 2D contours, which can be lofted to produce triangular
meshes [11,12]. This sampled reaches internal cavities in nat-

ural manner. (2) Optical Scanning produces point sets in R3,
sampled on the visible part of the object surfaces [13]. The
3D points are usually equipped with triangle connectivity.
(3) Coordinate Measuring Machines (CMMs) produce point
sets or sequences sampled by direct contact on the reachable
surfaces of B. This data is structured in polylines or con-
tours in the case of point sequences. If randomly sampled,
the natural structure added to the points is a triangular mesh.

Although there are hundreds of variations, the subdivision
above covers the basic taxonomy of 3D scanning methods. It
must be noticed that all methods imply a level of stochastic
noise. Therefore, unless said otherwise, we assume the point
sample as noisy and random. Likewise, we assume that the
point sample is Nyquist/Shannon-compliant, so the Level of
Detail to record is consistent with the sample interval and the
level of noise admissible.

LSM (Least Squares) or non-iterative methods seek to
solve the surface fitting problem in one iteration, by solving
an over-sampled Ax = B system. They need a base surface
for projecting the data points and to assign for each data
an initial parameter value (u, v). This process is also called
parametrization [14].

Given a set of points Q sampled on the surface of an object,
and a freeform weight system expressed by matrix R, the goal
of Least Square Minimization methods (e.g [15]) is to find
the control polyhedron P, which satisfies the form R- P = Q
and minimizes f (Glossary). The Least Square solution P for
R-P = Qsatisfiesalso RT - R- P = RT . O, with the basis
R matrix including terms related to the knot vector, weight
degree, parameter values, etc. [15] reports that the solution
of this problem has time complexity O (N2.M) (N: number
of control points, M : number of sampled points) and storage
complexity O (M.N + N?). By exploiting sparsity in the R” -
R matrix, the storage complexity may be lowered to O (N).
The LSM methods encompass a large set of individual tasks,
such as: knot insertion, minimizes distance between control
polyhedron and surface, penalize the displacement of control
points and, in general, require considerable approximations
tosolve RT-R-P = RT. 0 (Gauss-Seidel, Cholesky, etc.). In
general, LSM methods require computing effort larger than
iterative methods. The later ones minimize the f functional
by iteratively approaching the optimal tuning variables, and
are faster than the LSM ones.

Zhang et al. [16] uses a recursive decomposition in which
large patches are built based on a recursive construction of
smaller ones. At the actual patch reconstruction, the algo-
rithm assumes to have available curves, contained in the
sought surface, which express the vectors which are normal
to the four curve segments which limit the patch. With this
information, the four curve segments are found by indirect
integration of such normal vectors. In our work, we do not
count with the normal curve information. Instead, we start
with the basic point sample.
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Louhichi et al. [17] presents Computer-aided design
(CAD) model modification based on the deformation results
of Finite Element Analysis (FEA) methods. In this context,
itis necessary to fit parametric surfaces to triangular meshes,
already segmented. The fitting is focused on surfaces which
are slight deformations of planes. The bending-energy is used
to calculate the parametric surfaces and small features are
temporarily ignored to accelerate the FEA calculations. In
our work, by contrast, we address surfaces which cannot
be bijectively projected onto a plane. We use dimensional
reduction (Manifold Learning) to get a rough approximation
of such complex surfaces.

Zhou et al. [18] proposes the use of the Isomap method
(isometric feature mapping) to find a set of points in a low-
dimensional space that conserves similar distances to the
given set of points in a high-dimensional space and provide
an initial parameterization of the surface. The strech from
the paremeterization is minimized by an iterative method. If
the user specified strech criterion is not fulfilled, a spectral
clustering is performed in order to partition the surface into
charts and meet the criterion. We use the Isomap method to
estimate the control polyhedrons for the parametrization but
we do not focus on any mesh partitions as done in Zhou et
al. [18]’s work.

Azariadis et al. [19] discusses the fitting of a paramet-
ric surface to a surface point sample, whenever the four
parametric curves which bound the surface are known. The
algorithm also assumes that the point cloud can be always
projected onto the Dynamic Base Surface (DBS) formed
by the four mentioned curves. This basically is the same
assumption of Louhichi et al. [17]. Kineri et al. [20] uses
DBS enhanced with mirror and other symmetries to eco-
nomically fit surfaces to symmetric point sets. Our algo-
rithm requires that the surface S be quasi-developable, but
it does not require S to allow a 1-1 projection onto some
plane.

Park et al. [21] reports a spatial recursive octree subdivi-
sion in a 3D point set sampled on a smooth closed (manifold)
surface. Each octant of the octree is subdivided if the surface
fit to the points inside it does not fulfill a minimal value for
a functional. This functional expresses the accumulated dis-
tance of the point set to the (radial basis) surface fit inside
the octant. The method uses level sets methods and there-
fore, the synthesized function solves a differential equation
in the given domain. This Ref. addresses the issue of point
set segmentation and does not address the fitting of free form
parametric surfaces.

In the domain of curve reconstruction, Ruiz et al. [22]
reports the usage of Principal component analysis (PCA) in
local neighborhoods to construct an initial approximation of
the sought curve. Notice that the point sample of a curve
admits a total order, in which it is clear if a point precedes
or follows another sample point. In a surface, a fotal order is
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not natural, augmenting the difficulty of surface parameteri-
zation. On the positive side, a triangulation T of the surface
point sample provides the neighborhood information, which
is a necessary step in parameterizing S. In our work, triangu-
lar information is central in finding a starting parameteriza-
tion of S (i.e. an initial estimation of the control polyhedron
Cp).

The usage of whole of the data points as the control poly-
gon of the initial curve is presented in Xiong et al. [23]. It
could be useful only when the sample frequency is high and
when the data points are noiseless.

Leal et al. [24] presents an evolutionary strategy that uses
Isomap for mapping P onto R?, and adds vertices to the point
sample wherever the point sample is sparse. In our strategy,
we do not affect the original point sample, since we take
advantage of the triangular mesh 7', which frequently under-
lies the point sample P.

Galvez et al. [25] reports the implementation of a genetic
algorithm to fit b-spline surfaces to noisy point samples of
surfaces. The algorithm first constructs a parameterization of
the point sample. Then, other parameters such as knots and
control points are tuned, to obtain an accurate approxima-
tion (low error) of S for the point set P. Although the authors
claim that the method handles all type of surface topologies,
it must be remembered that, simply, not every surface permits
a connected parameterization. The examples shown indeed
correspond to surfaces which are mappings of a rectangular
connected parameterization in R?. Galvez et al. [26] presents
a similar strategy to the one in Galvez et al. [25], but replac-
ing the genetic algorithms with Particle Swarm Optimization
(PSO). In PSO, each particle is equipped with memory, close
and far communications with other particles, velocity, and
any other required attribute needed to evolve to an optima
state, according to a social measure of goodness. Likewise,
the surfaces fit by using PSO in Galvez et al. [26] are map-
pings of a rectangular connected subset Byy C R?. Because
these surfaces are self-intersecting, they give the appearance
of higher complexity. Should the non-manifold condition be
corrected, it would be impossible to express them as the map-
ping of such By y set. On the other hand, it must be remarked
that swarm strategies considerably increase the overhead of
computational expense, since large amounts of additional
data are required per particle.

Ren et al. [27] reports surface fitting to a point sample
in the context of ultra-precision engineering. To solve the
fundamental issue of an initial parameterization, a bidirec-
tional sampling extracts a rough control polyhedron from the
point sample. Then, an optimization algorithms proceeds,
to balance the accuracy following the point samples in the
strictest possible manner vs. the smoothness of the surface.
This requirement makes sense, obviously, when the point
sample itself has an extraordinary precision quality. Our work
does not address such samples, and therefore they do not
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impose a condition of local point vs. surface adherence, but
instead a global one.

2.2 Literature review conclusions and contribution of this
article

The reviewed literature indicates that the control polyhedron
Cp is central in optimizing the fit of a freeform paramet-
ric surface to a triangle mesh or point cloud. We assume
throughout that the order and the knot vector of the B-spline
surfaces are fixed so they are not subject to optimization.
The impact of Cp overweights the impact of knots, freeform
degree, norm degree, etc. In particular, finding optimal Cp
crucially depends on the quality of the initial guess for the
control polyhedron Cp.

Because of this reason, this manuscript will explore two
methods for determination of initial guesses for Cp: (1)
Orthogonal Geodesic Grids, and (2) Geodesic based man-
ifold Learning (Iso-map). These two approaches differ in
that Isomap assumes that the geodesic distances on Sy can
be approximated by the proximity graph of the point sample
P. Orthogonal Geodesic Grids explicitly seeks orthogonal
PL geodesics on the triangular mesh 7' and uses them for
dimensional reduction.

Dimensional Reduction with Isomap and with Orthogo-
nal Geodesic Grids are facilitated in developable manifolds.
Because of this reason, it is advisable to avoid large extents of
triangular surfaces to parameterize. Smaller meshes are more
appropriate for dimensionality reduction and parameteriza-
tion. Likewise, an excessive number of control points (large
Cp) tends to create instability and artifacts in the surface.

3 Methodology

Consider a Nyquist-compliant [1,2] noisy unordered point
set P = {p1, p2, ..., pn}, sampled on the surface B of a
solid B embedded in 3D.

3.1 Minimization problem

Let S(u, v) be the best (in the statistical sense) surface fit-
ting the point set P. Given p; € P, the point S(u;, v;) is
the closest one to p;, belonging to S. We define d; =
dist(pi, S, v;))) = d(p;,S) and f = > _, d” as the
accumulated distances between P and S. We call f as the
residual and w as the order of the residual. Wang et al. [28]
uses w = 2. Notice that d; must satisfy the properties of
a distance function. A possible estimation for d; would be:
d; = ||S(u;, v;) — pillk, the k-norm with k € RT and k
being the norm degree). This article minimizes f by tun-
ing the n x m points in Cp, the control polyhedron of the
Parametric Freeform.

3.2 Parametric freeform

This article addresses B-spline as the parametric freeform
surface S to be fit to the point set P. The parametric freeform
has the form S : [0, 1] x [0, 1] —> R3 [29] in Eq. (1). The
tuning variables are the vertices P; ; of the control polyhe-
dron.

S, v) =D > Nip)N;4v)Pi @

i=0 j=0

where N; ,(u), Nj4,(v) is the b-splines basis functions
defined by the knot vectors U, V in Egs. (2) and (3). P; ;
is the control point in ith row and jth column, n, m is the
number of control points in u, v directions respectively, p, g
is the surface degree in # and v direction respectively. Typi-
cally, degrees are p = g = 3.

U=@,....0,ups1,..c.tp—p_1,1,..., 1) 2
N—— ——
p+1 p+l1
V=0@,..0v41, .., 5—g-1, L, ..., 1) 3)
N —’ e —
q+1 q+1

With: r =n+p+1,ands =m+q + 1.

In this article we will consider the control polyhedron
Cp as the set of variables to minimize f. The degrees for
the base functions (p, ¢q), the knots vectors (U, V) and the
norm degree (k) will be considered as parameters of the min-
imization, and therefore fixed. For more information on the
sensitivity of f to those parameters, see [22].

3.3 Levenberg—Marquardt (LM) minimization

We use here the Gauss—Newton iterative method for solving
non-linear optimization problems, which approximates the
Hessian H by using the Jacobian J (i.e., H = J * JT). Let
us define x as the decision (or tuning) variables vector. x in
iteration k 4 1 is a function of x in iteration k, as per Eq. (6)
where ry is the residuals vector at iteration k.

Xkl =xk— H V% J 4
H~JxJ" )
= et A2 = )" @) T+ T e (6)
If f is not strictly convex, J might be singular at some
iterations, causing the algorithm to diverge. This problem can

be solved by using the Levenberg—Marquardt (LM) Method
[30,31]:

X1 =x6— (T )T % T )y« D 5 T ()T 5 (7)

where (k) > 0 is the LM (damping) parameter and [/ is the
identity matrix.
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Fig. 2 Geodesic Grid vs. IsoMap-based initial guess for control poly-
hedron Cp

3.4 Initial estimation of control polyhedron

The optimization process described in Sect. 3.1 requires an
initial guess of the control polyhedron Cp. As with any opti-
mization process, the quality of the initial guess is critical
for the convergence to an optimal point. For the estimation
of Cp, we require a bijective mapping Sy <> R3. For this pur-
pose, we will present two alternatives (Fig. 2): (a) creation
of an 2D geodesic grid on 7, (b) dimensionality reduction
from 7 C R3 to R.

3.4.1 Orthogonal geodesic grids for initial guess of control
polyhedron Cp

Orthogonal PL Geodesics In a fully developable surface S,
parallel geodesic curves [c1(u), c2(u), ...] remain always at
the same geodesic distance (on S) from each other (Fig. 3).
Likewise, parallel geodesic curves [c1(w), c2(w), ...] per-
pendicular to the ¢;(#) ones will remain perpendicular to
them in all the surface S. Figure 4 shows that the intersec-
tions between the c; (1) and the c;(w) geodesic curve fam-
ilies form a vertex grid. For developable surfaces (Fig. 3),
this geodesic grid provides an exact procedure for an iso-
metric flattening of the surface and it is a high quality Con-
trol Polyhedron for the free form smoothing of 7. In this
article, we consider quasi - developable surfaces. They are
not strictly developable, but they allow us to build a geodesic
grid in which the ¢; (u) (and the c;(w)) geodesics will not
cross among themselves. Figure 3a shows the c;(u) (blue)
and c;(w) (red) geodesics on a cone.

To parameterize T, we seek a flattening function f : T —
R? as follows: f(p) = (u, w) with (u, w) being the coor-
dinates of p € T under a grid of geodesic curves c;(#) and
cj(w)on T (Fig. 4). We seek that the geodesic curves ¢; ()

@ Springer

Fig. 3 Grid of orthogonal geodesic curves on a developable surface
(cone). a Partial grid, b full grid (color figure online)

C;(w)
C,(w)

C,(u)

Ci(u)

Cy(u)

Ciov) C,(u)

Fig. 4 Origin of a geodesic curve grid on a triangular 2-manifold 7

and c¢;(w) be orthogonal to each other on T', and the curves
c¢i(u) be parallel to each other on T (likewise for c¢;(w)
curves). The c¢;(u) should not cross each other, and each
¢;(u) should intersect each c;(w) in perpendicular manner.
T being developable is a precondition for this ideal situation.
However, we aim to quasi-developable T'. This expectation
(also present in ML) is a reasonable one in RE by applying
Manifold Segmentation. By using this mapping f, a family
of (u, w) parameterizations of T is reachable, which allows
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Fig. 5 Geodesic

continuation between
a Upstream view of geodesic flow, b downstream view of geodesic
flow

neighboring triangles.

us to develop a trimmed surface representing 7' (an important
landmark in RE).

Geodesics on triangular meshes Figure 5 displays our
approximation of a PL geodesic curve ¢ embedded in a
triangular mesh 7. The World Coordinate System is S, =
[Xw, Yw, Zy, Oyl. A geodesic curve ¢ on a surface Sp has
a second derivative with respect to its curve length s (accel-
eration 3%c¢/ds2) which is always normal to the surface Sp.
Equation (8) describe the transition of a PL geodesic curve
cg whose velocity is vp at triangle #; = [a, b, c], to a neigh-
boring triangle #» = [b, d, c] that hosts the next geodesic
segment of ¢, with a new velocity v,. The geodesic cg inter-

sects edge bc (common to triangles ¢ and 12) at O,,. Triangles
t1 = [a, b,c] and r, = [b, d, c] have normal vectors n; and
ny, respectively. The normal vector fi at the point of transition
O, is approximated as the average of n; and n,. The acceler-
ation vector of the geodesic ¢ at O,, € be s Vgee = V2 — V1
and it must be parallel to n for a geodesic curve. An orthogo-
nal, right handed [i.e. Special Orthogonal S O (3)] coordinate
system is defined at O, as S, = [vsg, Vsry, B, O, ], With v
and n being tangent and perpendicular to the geodesic cg
at Oy, respectively. The transverse vector vy, is coincident
with the edge be and Urg X Uy = n. The entry vector v
solved in the S, system has coordinates [«, §, ], while the
exit vector vy will have coordinates [, — 8, y]in S,,. Finding
vy enables to track the geodesic curve to the next triangle 73
(not shown), incident in this example to edge bd.

n = (n1 +ny)/||n1 + nal|

Vg = (n2 —ny)/|ln2 — ny|

Uiy = 0 X Urg

o =] e Uy

ﬁ:vloﬁ

Y = V1@ Vyy

V) =k Vg — BN+ Y %k Vg

Vace = (V2 —v1) =k*h

nev, =0 ®)

Converging geodesics in non-developable surfaces When
surface Sp (or in the discrete case, triangular mesh 7) is
not developable, initially parallel geodesics c; (u) will even-
tually intersect each other (Fig. 6a). In mild cases (quasi-
developable surfaces) we break the intersecting curves (at the
intersection, Fig. 6b) and swap the pieces, therefore produc-
ing non-intersecting curves that lose the geodesic property
only at a finite number of points.

3.4.2 Manifold learning for initial guess of control
polyhedron Cp

Manifold Learning, also called nonlinear dimensional reduc-
tion [32,33], pursuits the goal of mapping data originally
lying on (or nearly on) an unknown manifold embedded in
a high dimensional euclidean space, into a low dimensional
euclidean space, while preserving some desired character-
istics. The Manifold Learning community has developed
a variety of methods that suit different situations. IsoMap,
Locally Linear Embedding, Laplacian Eigenmaps, Semidefi-
nite Embedding are among the more prominent ones. Isomap,
the oldest of all, assumes that the data lie on (or nearly on)
the image under an unknown isometric embedding of an
unknown region in d-dimensional euclidean space. Roughly
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Fig. 6 Defect and repair of geodesic grid on quasi-developable 7.
a Defective geodesic grid, b correction for defective (crossing) geo-
desics

speaking, the idea of the method is to first compute the dis-
tance matrix D between any two data points as the length of
a shortest polygonal path, within Sp, connecting them. This
path has only data points in P as vertices. Using the matrix
D one produces a set of points in d-dimensional euclidean
space whose mutual euclidean distances are also given by D.

Here is a very broad view of how the method discussed in
the present article proceeds:

@ e i
(©)

\/grdph-based
e geodesic

approximation
& &

1. A point set P sampled on a manifold of dimension 2 (i.e.
a surface) Sy embedded in R3 is given.

2. So is assumed to be developable, i.e. there exists a
bounded, connected open set A C R? and a one to one C'!
isometric function g; : A — R3 such that Sy = g1(A).
The fact that g; is isometric means that the length of
21(C) is the same as that of C for each curve C in A.

3. A and a g as in the previous step are found [32,33].

4. A is transformed by an appropriate rigid motion g :
R? — R? which achieves a minimal 2D bounding box
for A’ = g2(A).

5. Ann x m regular grid Gr in R? approximately enclosing
A’, is created.

6. g/ ! (g, ! (Gr)) is taken as an initial guess for the control
polyhedron Cp of S (the approximation of Sp).

Figure 7 presents our approach of using of Manifold

Learning for the synthesis of an initial guess for Cp, the
control polyhedron for the sough surface S.

The process is as follows:

1. Start with the point set P sampled on Sy C R? (Fig. 7a).

2. Build a graph G = (P, E) representing neighborhood
information within P (Fig. 7b). There are two alterna-
tives:

a. Build the edge set E with the nodes satisfying the
k-nearest criterium within P: the edge p;, p; € E if
pi is one of the k points of P nearest to p;.

b. Use T = {t1, t2, ...} the available triangular mesh of
P. The edge p;, p; € E if atriangle in T contains p;
and p;.

3. Interpret each e € E as a chord of Sy (which is true if the
sample P is Nyquist-compliant for Sp).

®

initial guess control
polyhedron Cp in R3
glogr

u u

-~
u (Umaxs Vmax )

/
( Umax s Vimax )

e (Wi, wy)

Fig. 7 Manifold learning applied to initially guessing the control polyhedron Cp. a Point sample P, b proximity graph in P, ¢ isometries to/from

RZ
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4. Approximate the geodesic curve between any two ver-
tices p; and p; in P as the shortest path formed with
edges e of G, joining p; and p; (Fig. 7c).

5. Form the square matrix D whose entry D(i, j) is the
geodesic distance on Sy between vertices p; and p; in P.

6. Calculate, by using D, a bijective isometric map gi
P — R? (Fig. 7c).

7. Rotate and translate (within R?) the set g; (P) C R? by
using a rigid transformation g which minimizes the 2D
bounding box Byy containing the set g2(g1 (P)).

8. Sample the bounding box By y with aregular, equispaced
grid Gr, of size n x m.

9. Map Gr C R? back to R? by using h = 81_1 o gz_l.

10. 2(Gr) is an initial guess for the control polyhedron Cp
of S.

As we devised this application of Manifold Learning to our
problem, we initially tried alternative 2-a above. However,
this alternative produced a poor initial guess for Cp, which in
turn produced a poor S approximating Sy (Fig. 8c). Because
of this reason, we replaced the k-nearest citerium for forming
E by the connectivity of the triangle mesh 7" (alternative 2-b
above) which is reasonably available in RE). We have not
found such alternative formulated in the relevant literature.
Figure 8e displays the improved result for the initial guess
CP by using alternative 2-b.

The go()R? — R? rigid rotation function helps to define
a U-V parameterization such that the initial guess #(Gr) for
the control polyhedron Cp is approximately aligned with the
surface S. Figure 9a, c show that the iso-parametric lines are
slanted when only g1 () is used. When function g»() is used,
the iso-parametrics are aligned as in Fig. 9b, d. Figure 10a,
c display the initial guesses of the control polyhedron Cp,
calculated with the help of g2 (). Figure 10b, d show the final
control polyhedra and surfaces found with the optimization
process.

Notice that almost all surfaces are not developable. How-
ever, d B can be segmented into small parts (Faces, mounted
on surfaces Sp) which are close to be developable, because
d B is 2-manifold.

4 Results
4.1 Initial guess with geodesic grids

Figure 3 shows early and finished status of the geodesic grid
for a developable surface (e.g. cone), where an orthogonal
geodesic mesh is possible. Figure 6a shows a defective grid,
resulting from a non-developable manifold. In this case, geo-
desic curves ¢; (1) (or curves ¢ (w)) intersect. In such a case,
we use a heuristic remedy to force the separation of the ¢; ()
and ¢ (w) by re-defining them as per Fig. 6b.

embedding araph)

(d)

Fig. 8 Optimized surface fitting by using initial guess of the con-
trol polyhedron Cp found with triangle-mesh based manifold learning.
a Forearm point sample P, b k-neighbor connectivity graph in P, ¢ final
surface with initial guess from basic manifold learning, d triangular-
mesh connectivity graph in P, e final surface with initial guess from
triangle mesh—enhanced manifold learning

@ Springer



426

Int J Interact Des Manuf (2016) 10:417-430

Fig. 9 Iso-parametric curves without and with the use of a minimized
bounding box in R2. a Back data. Iso-parametrics without rotation in
R2. b Back data. Iso-parametrics with rotation g () in R2. ¢ Nostril data.
Iso-parametrics without rotation in R?, d Nostril data. Iso-parametrics
with rotation g () in R?

@ Springer

Fig. 10 Initial guess and final status of control polyhedron Cp. a Back
data. Initial guess of Cp. b Back data. Final position of Cp. ¢ Nostril
data. Initial guess of Cp. d Nostril data. Final position of Cp
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(a)

A
)

~ =7
I 77
ST

Fig. 11 Highly non-developable (Cat) data set. a Grid on parametric
space. b Geodesic grid on cat triangulation

Figure 11 shows an attempt for parameterization of mesh
T (Cat data set) with orhtogonal geodesic grids. It is evident
that Orthogonal Geodesics cannot attack the problem of non-
developable data sets.

Fig. 12 Defective geodesic grid. a Defective geodesic grid on tape
data set. b Defective geodesic grid on trimmed tape data set. ¢ Defective
geodesic grid on trimmed tape data set

Figure 12a illustrates that the Tape data set causes the
c;(u) (or the ¢;j(w)) geodesic curves to intersect each other.
This local inconvenience can be corrected by disentangling
the curves as per Fig. 6b. The run for Tape data set also
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presents the need to rotate either (a) the geodesic grid on
T c R? or (b) the lower dimension set on R? by using a
rigid transformation g, : R> — R? (Fig. 7c).

In contrast, when the T Tape data set is trimmed (Fig. 12b,
c) the geodesic grid becomes insufficient to ensure a consis-
tent back mapping gl_l 0g, l'R2 > R3 (Fig. 7c) , therefore
producing erratic portions of the control polyhedron Cp.

4.2 Initial guess with manifold learning

Figure 10 presents two examples (back and nostril) of surface
S fit to the point sample P by using and initial guess of the
control polyhedron Cp which is found using our variation
Manifold Learning (k-nearest graph replaced by the graph
derived from the triangular mesh underlying the point set P),
plus an additional rotation of Cp (via g2() in Fig. 9b, d) to
avoid the problems shown in Fig. 9a, c.

Figure 8a shows an example in which the point data is
sampled on a surface Sy which is similar to a cylinder. In
this case, an initial guess for its control polyhedron Cp obvi-
ously cannot be produced with PCA. We use instead Man-
ifold Learning as discussed in Sect. 3.4.2 to find an initial
approximation for Cp. The k-nearest graph based on P is
displayed in Fig. 8b as per alternative 2-a in Sect. 3.4.2 In
such a case, the initial guess for #(Gr) =~ Cp in step 10
appears in Fig. 8c. In contrast, alternative 2-b in Sect. 3.4.2
produces the connectivity graph G in Fig. 8d. In this alterna-
tive, the triangular mesh connectivity replaces the k-nearest
one (step 2-b in Sect. 3.4.2), with evident advantage. The
initial guess for the control polyhedron Cp is approximated
by h(Gr) in step 10. Because in the optimization the quality
of the starting point is critical in non-convex scenarios, this
approximation for Cp enables the minimization process in
such cases.

Figure 13a presents the Frog data point sample. The seg-
mentation of this general set in smaller point samples P was
carried out by a human user, as the scope of our article does
not include point set segmentation. Figure 13b shows the
several results S of the optimized surface fitting for those P
sets, emphasizing the iso-parametric lines. The eye data sets
were treated with another surface optimization algorithm,
specific for analytic surfaces (in this case, ellipsoids [34]).
Figure 13c shows the results of the surface fitting algorithm
in upper view. We do not attempt, at this time, the blending
among the surfaces.

5 Conclusions
This article presented the implementation of an algorithm for
optimized fitting of a free form surface S to a point sample

P of the original material surface Sp, so S = Sp. The sur-
face S minimizes the functional f = Zi:l d”, which is

@ Springer

Fig. 13 Results in the ‘Frog’ data set. a Frog data set. Point sample.
b Iso-parametric curves in fit surface. ¢ Iso-parametric curves in fit
surface. Upper view

the summation of distances d; between p; € P and S. The
implemented algorithm uses both, the distance from p; to S
and the distance from S to p; (they differ since S is finite).
In this work, the functional f is minimized by choosing the
control polyhedron Cp of the free form S. The size m x n of
Cp and the initial guess of Cp are determined by using a bijec-
tive map g3 o g1 : P — R2, which is quasi-isometrical. g1 is
implemented using Dimensionality Reduction by either: (1)
generating a geodesic grid on 7" and using the intersections
among ¢; (1) and c;(w) geodesic curve families as tentative
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vertices of the control polyhedron Cp, or (2) approximating
the geodesics on Sy by using the graph implicit in triangu-
lation 7 and using Isomap to find a parameterization in R
The function g is a rotation within R2, which minimizes the
bounding box of g2(g1(P)) C R2.

Although the direct calculation of a geodesic grid [curve
families ¢; (u) vs. cj(w)] on T is intuitively appealing, it
must be perfected for the cases of an irregular or pierced tri-
angular mesh 7. Because of this reason, we presently prefer
Isomap for the calculation of an initial guess for the control
polyhedron Cp.

Isomap normally calculates an approximation (based on
the k-neighbor graph) of the geodesic distance ds, (p;, p;),
within Sp, between points p; and p; of the sample P. In our
algorithm, the geodesic distance is based on the triangular-
mesh graph among points p; € P, typical from a RE 3D point
scanning process. In our algorithm, these two Dimensional-
ity Reduction methods are alternatively used to find an initial
guess for the control polyhedron Cp (minimization tuning
variables).Our algorithm chooses a dimensionality reduction
function which builds an initial parameterization (hence Cp)
that agrees with the aspect ratio of the point sample. There-
fore, we correct slanted parameterizations such as the ones
shown in Fig. 9a, c.

6 Future work

Additional work is needed in these aspects: (1) With geodesic
grids, it is necessary to handle their interruptions when there
are holes or concavities in the mesh 7. (2) To use the quality
of the Dimensionality Reduction to guide the segmentation of
the point set, by clustering in one face those triangles which
represent quasi-developable portions of T'.
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