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Abstract Given a 2-manifold triangular mesh M ⊂ R
3,

with border, a parameterization of M is a FACE or trimmed
surface F = {S, L0, . . . , Lm}. F is a connected subset or
region of a parametric surface S, bounded by a set of LOOPs
L0, . . . , Lm such that each Li ⊂ S is a closed 1-manifold
having no intersection with the other L j LOOPs. The para-
metric surface S is a statistical fit of the mesh M . L0 is the
outermost LOOP bounding F and Li is the LOOP of the
i-th hole in F (if any). The problem of parameterizing tri-
angular meshes is relevant for reverse engineering, tool path
planning, feature detection, re-design, etc. State-of-art mesh
procedures parameterize a rectangular mesh M . To improve
such procedures, we report here the implementation of an
algorithm which parameterizes meshes M presenting holes
and concavities. We synthesize a parametric surface S ⊂ R

3

which approximates a superset of themeshM . Then,we com-
pute a set of LOOPs trimming S, and therefore completing
the FACE F = {S, L0, . . . , Lm}. Our algorithm gives sat-
isfactory results for M having low Gaussian curvature (i.e.,
M being quasi-developable or developable). This assump-
tion is a reasonable one, since M is the product of manifold
segmentation pre-processing. Our algorithm computes: (1)
a manifold learning mapping φ : M → U ⊂ R

2, (2) an
inverse mapping S : W ⊂ R

2 → R
3, with W being a

rectangular grid containing and surpassing U . To compute
φ we test IsoMap, Laplacian Eigenmaps and Hessian local
linear embedding (best results with HLLE). For the back
mapping (NURBS) S the crucial step is to find a control
polyhedron P , which is an extrapolation of M . We calcu-
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late P by extrapolating radial basis functions that interpolate
points inside φ(M). We successfully test our implemen-
tation with several datasets presenting concavities, holes,
and are extremely non-developable. Ongoing work is being
devoted to manifold segmentation which facilitates mesh
parameterization.

Keywords Triangular mesh parameterization · Trimmed
surface · Manifold learning · NURBS · RBFs

Abbreviations

LOOP Closed (piecewise linear or smooth) curve lying
on a surface, and bounding a connected region
on the surface. In this manuscript, LOOPs are
denoted with � or γ

B-REP Boundary representation
HLLE Hessian locally linear embedding
NURBS Non-uniform rational B-spline
RBF Radial basis function
M Triangular mesh (with boundary), composed by

the set of triangles T = {t1, t2, . . . , tq}with ver-
tex set X = {x1, x2, . . . , xn} (X ⊂ R

3)
∂M Boundary of M , whose connected components

are LOOPs (∂M = {�0, �1, . . . , �k})
φ An homeomorphic map φ : M → R

2, imple-
mented here for dimensional reduction or man-
ifold learning. φI som(), φLapl(), φHLLE(), are
the Isomap, Laplacian Eigenmap and Hessian
locally linear embedding implementations,
respectively. φ() is called forward map in this
manuscript

U U = {u1, u2, . . . , un} is the parametric image
of vertices of M (U = φ(X), U ⊂ R

2)
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∂(φ(M)) Boundary of the parametric image of M . For the
sake of simplicity, we assume that ∂(φ(M)) =
φ(∂(M)))

γi i-th LOOPs of ∂(φ(M))

λi Re-sampling of a LOOP γi
W Rectangular grid in R2 such that U lies in the

convex hull of W
H(W ) Rectangular point set in R2 being the convex hull

of W
P Rectangular grid in R

3 being the control poly-
hedron for the parametric surface f

f Function f : W → R
3 produces P the control

polyhedron of S (P = f (W )) by calculating an
extrapolation of M in R3

S S : R
2 → R

3 is a parametric surface which
approximates and extends M inR3. S() is called
backward map in this manuscript. To simplify
notation, S refers here to both: (1) the paramet-
ric mapping (i.e., S()) and (2) the set of points
product of the mapping S() (i.e., S(H(W )) =
{S(w1, w2)|(w1, w2) ∈ H(W )})

Li Trimming curve in M ⊂ R
3 defined as Li =

S(λi )

F Trimmed surface (FACE) such that F=(S, {L0,

L1, . . .})
∂F Boundary of F approximated by the union of all

Li

1 Introduction

In thismanuscript,M denotes a triangle-basedmesh,which is
a 2-manifold with border.Without loss of generality, we con-
sider M as the result of segmenting a larger triangular mesh.
M presents a low curvature (i.e., M is near-developable).
Therefore, M can also be referred to as a sub-mesh.

Being a 2-manifold, M admits a 2-variable parameteriza-
tion, which is a homeomorphism betweenM and a connected
subset of R2. However, to be usable in reverse engineering,
CAD, CAM, or visualization, the parameterization must be
accompanied by a trimmed FACE, which approximates the
triangularmeshM . A trimmedFACE consists of a parametric
surface S : R2 → R

3 and a set of LOOPs or closed curves
�i ⊂ M , which bound a connected sub-region of M .

Trimmed surfaces are indispensable in boundary represen-
tations and therefore in computer aided geometric design. In
a trimmed surface, S() is usually based on a rectangular con-
trol polyhedron P . Triangular topology for P is very unusual
because it produces undefinition in tangent and normal vec-
tors, rendering S() and FACE F unusable.

M is a connected triangular mesh M = (X, T ), with a
border described by the set of LOOPs {�1, �2, . . . , �m}. The
�i LOOPs are piecewise linear closed 1-manifolds, which

do not intersect each other. Given M , a trimmed parametric
surface F = (S, {L0, L1, . . . , Lm}) is pursued, with S being
a smooth surface that approximates a (conveniently defined)
superset of M . The set of curves {L1, L2, . . . , Lm} of the
trimmed parametric surface F approximates the boundary
∂M on the surface S.

In this article we propose a procedure for computing the
trimmed surface F , as follows: (1) compute a mapping φ :
M ⊂ R

3 → U ⊂ R
2 which describes a 2D parameter space

for M . (2) Compute a back-mapping (NURBS or RBFs) S :
W → R

3, with W being a rectangular region in R
2, s.t.

W is superset of U . (3) Compute via S() a FACE boundary
approximating ∂M .

The remainder of the article is organized as follows:
Sect. 2 discusses the connection between interactive design
and the problem addressed in this article. Section 3 reviews
the relevant literature. Section 4 describes the implemented
methodology. Section 5 presents and discusses some results.
Section 6 concludes the paper and introduces what remains
for future work.

2 Interactive design and mesh parameterization
with trimmed surfaces

There are two basic relations of mesh parameterization using
trimmed surfaces with interactive design andmanufacturing:
(1) mesh parameterization being a pre-condition for down-
stream interactive design or manufacturing processes. (2)
Automated mesh parameterization supporting human inter-
action for design or manufacturing processes. The present
article fits into the second relation (Sect. 2.1). However, a
short list of interactive processes requiring parameterized
surfaces appears in Sect. 2.2.

2.1 Human interaction and mesh parameterization

We consider interactivemesh parameterizationwith trimmed
surfaces a process in which algorithms (as the ones presented
here) support human interaction and decisions to achieve
such parameterizations. Our algorithms, however, do not
close the subject as human interaction is additionally required
to: (1) segment a 2-manifold triangular mesh into smaller
meshes (exampli gratia M above), until the sub-meshes M
are nearly developable. (2) Synthesize an underlying para-
metric surface S() which approximates some MS super-set
of M (M ⊂ MS).

Mesh segmentation [process (1) above] requires a human
expert decision, since this partition includes diverse criteria
(e.g., design, manufacturing, analysis, esthetic). Mesh seg-
mentation governs the topological partition of the boundary
representation B-Rep of the piece and the geometries (car-
rier curves and surfaces) underlying such topologies. The
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Fig. 1 Parameterization of
mesh M with a trimmed surface
(FACE F). a Determination of
homeomorphism φ : M → R

2

and mapping of boundaries of
M (∂M). b Synthesis of control
polyhedron P = f (W ). c
Calculation of carrier surface S.
d Calculation of boundaries of
FACE F , ∂F

(a) (b)

(c) (d)

synthesis of S [process (2) above] implies a very under-
constrainted problem, since a superset MS of M must be
defined, with the condition of MS being approximately a
‘rectangular’ over-extension of M . This process presents a
clear need for an interactive human input to repair degenerate
surfaces, improve the control polyhedron P , etc.

2.2 Interactions enabled by mesh parameterization

Parametric trimmed surfaces are pre-condition for a number
of interactive processes, such as interactive model modifica-
tion in reverse engineering (Ref. [1]), interactive re-meshing
for CAE (Ref. [2]), interactive mesh morphing for visualiza-
tion (Ref. [3]), interactive visualization of complex surfaces
(Ref. [4]), interactive processing of surface—embedded
images (Ref. [5]), rendering textures on a surgery simulator
(Ref. [6]), interactive segmentation and parameterization for
mesh quadrangulation (Ref. [7]), finite element isogeometric
interactive analysis (Refs. [8,9]), and others.

3 Literature review

In most engineering applications, the sole parameterization
of the triangular mesh M does not suffice, and a trimmed
parametric surface (S, {L0, L1, . . .}) approximating M is
required. The first process requires a forward function φ :
R
3 → R

2. The second process requires, in addition, a back-
ward mapping S : R2 → R

3.
When parameterizing triangular meshes, the parameteri-

zation of the individual triangles may be sufficient whenever

no parametric space common to all triangles in the mesh is
required. For example, smooth parametric surfaces fit to sep-
arate triangular control polyhedra give as result C0-, C1-, or
C2-smooth triangular patches [10–16], which do not share a
common parametric space. In contrast, Ref. [17] presents a
geodesic-based Piecewise Linear parameterization common
to the complete triangular mesh M . Although very intuitive,
this approach still presents undesirable intersection of PL
geodesics in surfaces presenting high Gauss—curvature.

3.1 Dimensional reduction φ : R3 ⊃ M −→ R
2

This section discusses the existing algorithms for dimen-
sional reduction φ : M → R

2 (Fig. 1a), which find a
2D underlying parameter space in the 2-manifold triangu-
lar mesh M ⊂ R

3. This parameter space U is the image
of the mesh points X under the map φ (i.e., U = φ(X)).
The algorithms for dimensional reduction may be classified
according to the properties that they preserve, as they syn-
thesize (φ,U ):

1. Angle-preserving algorithms Conformal maps seek to
preserve the angles formed by intersecting curves. The
function φ is devised to minimize angle deformations
[7,18–21]. An angle-preserving φ would not, in general,
preserve areas or lengths, causing a strong warping in the
back-mapping S.

2. Area-preserving algorithms An authalic map φ :→ R
2

would satisfy A(ti ) = A(φ(ti )) for triangle ti ∈ T .
Area distortions areminimized over fixed 2-Dimensional
primitives (e.g., disk or rectangle [22,23]).Authalicmaps
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may result in large angle distortions which in turn would
produce important distortions in the back-mapping S.

3. Distance-preserving algorithmsAn isometric map φ :→
R
2 would preserve distance among points. This means

that dM (p, q) = d(φ(p), φ(q)), for p, q ∈ M , with
dM () being a distance measured on M (Refs. [24–28]).
Isometric maps do not present distortions in the back-
mapping S : R2 → R

3. However, unlike angle- and area-
preserving ones, they requireM to be highly developable
(i.e., with low Gaussian curvature).
Surfaceswhich are strongly non-developablemay be par-
titioned into smaller, more developable ones. The issue
of Manifold Segmentation, however, is outside the scope
of the present manuscript, and is the subject of our future
efforts.

3.2 Parametric surface S : R2 → R
3

Since this article aims to parameterize a mesh M with a
trimmed surface or FACE (in CAD sense), the dimensional
reduction φ : M → R

2 must be followed by the computation
of a parametric surface S : R2 → R

3 and a connected subset
within it, which resembles M (with concavities, holes, etc.).
This goal is illustrated in Fig. 1d.

Reference [5] describes a method in which an isomet-
ric rectangular surface is computed, but requires the input
mesh to be already of this rectangular nature (i.e., a triangular
mesh of a rectangular patch) which strongly constraints the
algorithm.

Reference [8] presents an initial parameterization of φ :
M → U . The Coons back mapping S has domain in a sub-
set of the parametric space U , which cannot present holes
or concavities. As a result, S can only fit a rectangular sub-
set of M , leaving out the possibility of M having holes or
concavities.

3.3 Conclusions of literature review

OurLiteratureReviewhas found several approaches formesh
parameterization. However, they do not address meshes with
concavities and holes. To enable them, it is necessary to com-
plement the sole mesh parameterization with the synthesis of
a trimmed surface, which smoothsM and expresses the holes
and concavities, besides producing a parameterization. Con-
sequently,wepresent here our approach, inwhich a triangular
mesh (with boundary and holes) M ⊂ R

3 is approximated
by a trimmed surface F = (S, {L1, L2, . . . , Lm}). First, a
parameterization U of M is computed using dimensional
reduction (Fig. 1a). Then, a rectangular superset ofU , H(W ),
is mapped back to R

3, via a parametric surface S (Fig. 1b):
H(W ) −→ R

3 which fits a superset of M (Fig. 1c). FACE
boundaries are drawn on S, to trim a FACE,with holes, which
resembles M (Fig. 1d). The calculation of a superset of M

Parameteriza�on of 

LOOPs of 

LOOPs bounding 

Triangular mesh

Isomap

Re-sampling of 

Re-sampling of each 

LOOPs of : 

Laplacian 
Eigenmaps

HLLE

Computa�on of the B-REP of 

Parametric surface 

Set of trimming curves

NURBS 
interpola�on/
extrapola�on

RBFs 
surface

NURBS+RBFs 
representa�on

Construc�on of the rectangular grid

Rectangular grid in 

Fig. 2 Construction of a trimmed parameterization of the triangular
mesh M . R3 → R

2 mapping (up) and R
2 → R

3 back-mapping (down)

in R
3 is, of course, a very sensitive operation, for which we

apply a combination of NURBs and radial basis functions.

4 Methodology

Consider M = (X, T ), a connected 2-manifold in R
3 with

holes and border. The set of all LOOPs bounding M is noted
as ∂M = {�0, �1, . . . , �m}. Our goal is to find a FACE F or
trimmed surface F = (S, {L0, L1, . . . , Lm}), composed by
a parametric surface S : R2 → R

3 and a set of boundaries
on S (∂F = {L0, L1, . . . , Lm} such that ∂M ≈ ∂F).

In order to achieve this goal, we follow the procedure in
Fig. 3, which appears as a data flow in Fig. 2.

1. Computation of the B-REP of M In this pre-processing,
a boundary representation of the triangular mesh M is
computed in order to extract each of the LOOPs �i that
bound M .

2. Computation of the mapping φ : M → R
2 (Fig. 1a) A

manifold learning algorithm is applied in this step in order
to extract the parameterization U that characterizes the
manifold and each LOOP γi in the parameter space. The
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Si+1

w1

R3

Si+2Si Si+3

Wi+1 Wi+2Wi Wi+3

Fig. 3 Stretching of control polyhedron P by iterative extrapolation

procedure was tested using: (1) Isomap, (2) Laplacian
Eigenmaps or (3) HLLE.

3. Construction of the rectangular grid W ⊂ R
2 (Fig. 1b)

A rectangular gridW is built inR2 such thatU lies inside
the convex hull of W (U ⊂ H(W )).

4. Synthesis of a control polyhedron P for S (Fig. 1b) A
control polyhedron P = f (W ) is required for the para-
metric surface S of the Trimmed FACE F . In Fig. 1b,
P is represented as a grid of round-icon and square-icon
vertices. Round-icon vertices f (w1, w2) fall inside M
since (w1, w2) ∈ U . Square-icon vertices fall outside M
since (w1, w2) /∈ U , and therefore f (w1, w2) must be
estimated. A radial basis function f : W −→ R

3 is cre-
ated by using the condition f (U ) = X , since the pairs
(xi , ui ) = (xi , φ(xi )) are known. f (H(W ))is then used
to extrapolate M as needed.

5. Representation of M by a trimmed surface F =
(S, {L0, . . . Lm})Once the control polyhedron P for S is
estimated, the actual calculation of the parametric surface
S proceeds using a NURBs formulation. The boundary
of F , ∂F = {L0, . . . Lm}, is achieved as Li = f (λi ),
where λi is the re-sampling of the straight-edge LOOP
γi .

The algorithms implemented for the above procedure are
briefly discussed below.

4.1 Dimensionality reduction (manifold Learning)

To synthesize F = (S, {L0, L1, . . .}), first a parameteriza-
tion (φ,U ) underlying the mesh M must be found (Fig. 2).
Such parameterization must be a homeomorphism φ :
M −→ R

2, whose existence is guaranteed by the 2-manifold
character of M . In addition, the image U = φ(X) ⊂ R

2 is
itself a manifold. Notice that φ affects the geometry X of M
and not its topology T . To findU , a dimensionality reduction
(manifold learning) algorithm is applied. We implemented
and tested three specific algorithms for φ: (1) Isomap, (2)
Laplacian Eigenmaps and (3) HLLE, as described next.

4.1.1 Isometry-based parameterization

Isometry-based parameterizations assume that geodesic dis-
tances on M between any two vertices xi , x j ∈ X are pre-
served (i.e., distM (xi , x j ) = distR2(φ(xi ), φ(x j ))). Isomap
(Ref. [28]) constructs a graph-based estimator for the geo-
desic distance on M . The geodesic distance (Gi, j ) between
any two mesh vertices xi , x j is approximated by the short-
est path between them in the triangulation graph T . where
distM () and distR2() corresponds to the euclidean distance
measured on M-geodesics and on R2, respectively. The Ref.
[28] then applies classicalmultidimensional scaling (CMDS)
on G for computing U , by solving Eq. (1) using a singular
value decomposition of G:

G = UTU (1)

A weakness of using T -graph connectivity for estimation of
geodesic paths is that in regions with concavities or holes
in M (and therefore absent from T ), disable graph-based
estimation of geodesics. To evidence this disadvantage of
Isomap, we created an M data set (Fig. 9a) with the shape of
an ‘S’ letter drawn onto a Cone surface. Because a cone is a
fully developable surface (Gauss curvature is 0 everywhere),
the geodesics on a cone are very well defined. However, the
‘S’ data set causes the graph-based geodesic estimation to
fail, because vertices very near on the cone appear to be very
distant using paths restricted to the ‘S’ data set. Our inves-
tigation uses the Floyd’s shortest-path algorithm to estimate
the geodesic distances in M .

4.1.2 Laplacian Eigenmaps-based parameterization

Laplacian Eigenmaps (Ref. [20]) is a Dimensionality Reduc-
tion algorithm which runs faster than Isomap, but distance
preservation is not pursued. Laplacian Eigenmaps poses the
optimization problem in Eq. (2).

min
∑

i, j

ai j‖ ui − u j ‖2 (2)

with ai j being the adjacency weight between the vertices
xi and x j in M . D is a diagonal matrix defined as dii =∑

j ai j and L is a symmetric matrix defined as L = D − A.
Then, Eq. (2) can be solved (under adequate constraints) by
computing the following eigenproblem:

LU = �DU (3)

where � is a diagonal matrix containing the eigenvalues of
L . The matrix L is known as the Laplacian of the mesh graph
because it is closely related to the Laplace–Beltrami operator
on manifolds.
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4.1.3 HLLE-based parameterization

Hessian linear local embedding (HLLE, Ref. [29]) assumes
that theHessian of an (unknown) parametric space is the same
as the Hessian defined on the tangent space of the manifold.
Following this idea, HLLE builds the Hessian functional H
on such manifold:

H(ψ) =
∫

M

∥∥Htan
x (ψ)

∥∥2
F (4)

where ψ is a function defined on the manifold M, ‖ · ‖F is
the Frobenius norm and Htan

x (ψ) is the tangent Hessian of
ψ i.e.:

Htan
x (ψ) =

⎡

⎣
∂2ψ

∂ξ21

∂2ψ
∂ξ1ξ2

∂2ψ
∂ξ2ξ1

∂2ψ

∂ξ22

⎤

⎦ (5)

with ξi being the local coordinates of the tangent space at x .
A discretization of the integral in Eq. (4) is then posed:

H(ψ) =
n∑

i=1

∫

Xi

ωi
∥∥Htan

x (ψ)
∥∥2
F ≈ ψψψ ′Kψψψ (6)

with Xi being a portion of the surface containing xi , ωi is
a weighting function, ψψψ = [ψ1, ψ2, . . . , ψn]T is a vector
of the function ψ evaluated at each xi , and K is a positive
semidefinite matrix that approximates H on M .

The matrix K (known also as the Hessian kernel) is
estimated by computing the local tangent plane at each xi
(Ref. [29]). Finally, the kernel of H (i.e., {ψ |H(ψ) = 0})
is spanned by the constant function and a pair of (linearly
independent) linear functions (which the authors choose to
parameterize M). Given that K is just an approximation of
the functional H, a minimization problem is posed in order
to estimate the kernel of H:

minψψψT Kψψψ (7)

By imposing 〈ψψψ,ψψψ〉 = 1, an eigenproblem arises involv-
ing K . Since the eigenvalues of K are the local minima of
Eq. (7) and their corresponding eigenvectors are the func-
tions that achieve such minima, the desired parameterization
is found by setting U equal to the second and third eigen-
vector of K (the first eigenvector corresponds to the constant
function which collapses every vertex to a single point).

4.2 Surface representation

The purpose of this investigation is not only parameter-
ize M . Further, one wishes to find a trimmed surface
(S, {L0, L1, . . .}) which approximates M and its border in
a smooth manner. The surface S is an over-extension of
a smoothing of M . This very loose specification for S is

precisely the difficulty behind finding a trimmed surface to
approximate M .

The surface S : R2 −→ R
3 has the form in Eq. (8).

S = S(w1, w2) =
⎡

⎣
x(w1, w2)

y(w1, w2)

z(w1, w2)

⎤

⎦ (8)

where x(), y(), z() are parametric forms used in CAGD. For
this article, we use NURBs and radial basis functions. The
initial mesh M is smoothly approximated by a subset of S.
S extends beyond the boundaries of M because it must be
well defined also where M does not exist (holes, concavities,
etc.).

To define S, in this manuscript we present three alter-
natives: (1) To use NURBs representation. The full control
polyhedron P is built by starting with a small grid, well
defined in a very reduced rectangular neighborhood of M .
This grid is iteratively enlarged until it covers M and its
holes and concavities, using the information in M to lock P
in the R3 space. (2) To use a radial basis function based on
the known couples (ui , xi ), i = 1, 2, . . . since ui = φ(xi ).
(3) To use a NURBs surface, whose control polyhedron is
calculated with a radial basis function.

A control polyhedron P is required in cases (1) and (3)
above. Let us assume that the parameterization φ(X) = U ⊂
R
2 has been found. To obtain P , we first compute a rectangu-

lar point grid W ⊂ R
2, whose convex hull H(W ) covers U

(Figs. 1b, 4b). A function f () : W −→ R
3 (yet to determine)

will compute the control polyhedron P = f (W ) for the para-
metric surface S. It is easy to determine f (u) for u ∈ φ(M)

since in such a region the function f () basically inverts φ().
However, outer points (u ∈ W, u /∈ φ(M)) do not have an
obvious f (u) image in R

3. The determination of f (), for
the cases (1) NURBs, (2) RBFs and (3) NURBs+RBFs is
described next.

4.2.1 NURBS interpolation/extrapolation

In this approach (Fig. 3), the synthesis a parametric surface
S approximating a superset of M is carried out iteratively. A
parametric space Wi , its control polyhedron Pi and its sur-
face Si are stretched until Wi = W . The control polyhedron
Pi+1 in iteration i + 1 is calculated by extrapolating Si ()
(i.e., calculating Si (w1, w2) with (w1, w2) being beyond the
parametric space Wi ). The first parameter space, W0 is suf-
ficiently small for the control polyhedron P0 to include only
points in M (i.e., no extrapolation of S is needed).

A parametric surface of the NURBs type has the form in
Eq. (9).

S(w1, w2) =
∑

i j

αi (w1) · β j (w2)pi j (9)
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Fig. 4 Mask datasetM and parametric gridW associatedwith Hessian
local linear embedding (φ). a Mask dataset M ⊂ R

3. b Border of
φ(M) ⊂ R2 with φ = HLLE. Border ∂(φ(M)) = {γ0, γ1, γ2} (3
LOOPs). Rectangular parameter grid W covering φ(M)

where (w1, w2) are parameters. αi () and β j () are the weight
functions. P = {pi j } is the control polyhedron. We present
here an iterative extrapolation to obtain P for a S surface of
NURBs type.

1. Locate a subgrid Wi = W0 inside W such that φ−1(W0)

lies inside M .
2. Compute Pi using the barycentric coordinates of Wi .
3. Compute the parametric surface Si from the control poly-

hedron Pi .
4. Extend Wi to obtain an enlarged domain Wi+1.
5. For each new pairw inWi+1 −Wi : if φ−1(w) falls in M ,

the corresponding control point is φ−1(w). Otherwise,
the control point is the extrapolation Si (w) of Si (w is
outside the domain Wi ).

6. Repeat 4–5 until Wi = W .
7. Compute the parametric surface S using the control poly-

hedron P using Eq. (9).

Fig. 5 Parameterization φ of the Mask dataset. Techniques IsoMap,
Laplacian Eigenmap, Hessian locally linear embedding. a Isomap
parameterization. b Laplacian Eigenmaps parameterization. c HLLE
parameterization

4.2.2 Radial basis function surface

A RBFs surface S : R2 −→ R
3 has the form in Eq. (10).

x(w1, w2) =
n∑

i=1

αi xi x (‖ (w1, w2) − ui ‖) + Rix (w1, w2)

y(w1, w2) =
n∑

i=1

αiyiy (‖ (w1, w2) − ui ‖) + Riy(w1, w2)

z(w1, w2) =
n∑

i=1

αi zi z (‖ (w1, w2) − ui ‖) + Riz(w1, w2)

(10)
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Fig. 6 Trimmed surfaces F = {S, L0, L1, L2} of the Mask dataset.
φ() parameterization is HLLE. Trimmings (i) NURBs, (ii) RBFs and
(iii) NURBS+RBFs. a NURBS interpolation/extrapolation. b RBFs
surface. c NURBS+RBFs representation

Dimensional reduction (Sect. 4.1) indicates that each point
ui ∈ R

2 satisfies φ(xi ) = ui . For the particular case of
radial basis functions, f = S and S satisfies S(ui ) = xi . The
functions i∗() are RBFs. The weights αi are estimated by

Fig. 7 Dataset Mask. Trimmed surfaces S using NURBs based on
RBFs control polyhedron P . φ() parameterizations are: a Isomap
trimmed surface. b Laplacian Eigenmaps trimmed surface. c HLLE
trimmed surface

least squares and Ri∗(w) are stabilizing polynomials. Notice
that an RBFworkswith an unordered, non-degenerated set of
conditions S(ui ) = xi and that an RBF is well defined even
outside of the bounds defined by the boundary ∂(φ(M)) in
the parameter space.

Within the RBF alternative, this investigation used S(w)

as defined by Eq. (10). Thin plate splines (r) = r2 ln(r)
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Table 1 Mask dataset (Fig. 4a)

Algorithm stage Figures Comments

Isomap M Parameterization φ() Fig. 5a Nearly isometric mapping

Laplacian Eigenmaps M parameterization φ() Fig. 5b High geometrical distortion specially near the
boundary

Hessian local linear embedding M parameterization φ() Fig. 5c Non-isometric mapping with low shape distortion

Appraisal of dimensionality reduction methods (map φ : M −→ R
2)

were chosen as basis functions for computing the RBFs since
they minimize a bending energy functional E in R2 [30]:

E( f ) =
∫∫

R2

(
∂2 f

∂w2
1

)2

+ 2

(
∂2 f

∂w1∂w2

)
+

(
∂2 f

∂w2
2

)2

d A

(11)

which results in a minimization of curvature on the recon-
structed smooth surface.

4.2.3 NURBs+RBFs representation

In this strategy, a NURBs formulation is implemented for
the surface S, but RBFs are used to construct the control
polyhedron that underlies S. The process is: (1) use an RBF
formulation [similar toEq. (10)] to build a control polyhedron
P . (2) Compute S by fitting a NURBS [Eq. (9)] over the
control polyhedron P . This approach presents advantages
over the previous (NURBs alone, RBFs alone) ones:

1. RBFs are a more natural manner to extrapolate (i.e., to
evaluate the surface beyond the parametric domain used
to create it), when compared to NURBs, splines or other
surfaces who use a rectangular control polyhedron P .

2. RBFs require no particular order in the (ui , xi ) pairs.
NURBs require a spatial grid in the control polyhedron
P .

3. RBF can be fed the information included in M . The
resultingRBF is then able to calculate a control P already
uses the whole information included in M . In contrast,
iteratively growing a NURBs patch until it approximates
the wholeM uses, by definition, only partial information.

4. RBFs are very expensive in terms of data storage and
computation, while NURBs require only the storage of
the control polyhedron P . On the other hand, RBFs for
not require a control polyhedron P (difficult to find as
discussed earlier).

5. Computing a surface point in a NURBS is faster than in
the RBFs formulation.

6. NURBS are a standard in CAD CAM CAE tools for
representing trimmed surfaces. RBFs are less popular

for downstream CAD algorithms (e.g., solid boolean
operations).

4.3 Surface trimming

In order to trim the surface S, a set of LOOPs {L0, L1, . . . ,

Lm} must be laid down on the parametric surface such that
the boundaries of the original mesh are represented by the
LOOPs. The procedure for computing each Li is:

1. Compute the boundary representation (B-REP) of M ,
which produces ∂M = {�0, �1, . . . , } with each piece-
wise linear�i being a closed sequence of triangle EDGEs
xi x j .

2. Map each LOOP �i ∈ M to φ(�i ) = γ ∈ R2.
These piecewise linear LOOPs γi form ∂φ(M) =
{γ0, γ1, . . . , }.

3. Compute λi as a tight re-sample of LOOP γi .
4. Map each λi back to S (near M) by computing Li =

S(λi ), with S as in Sect. 4.2. The trimmed surface
FACE = (S, {L0,Ł1, . . . , }) ≈ M is complete.

5 Results and discussion

Section 5.1 presents an appraisal of the combination of the
available and developed methods for trimmed surface syn-
thesis using one (Mask) dataset. Then, Sect. 5.2 shows results
with additional datasets. In these examples, particular combi-
nations ofmethodswere applied (i.e., no appraisal of possible
combinations was conducted).

5.1 Mask dataset results

Table 1 presents, for the Mask dataset the results of dimen-
sionality reduction (manifold learning or φ() mapping). For
thiswell connectedM dataset, nearly isometric or nearly con-
formal mappings give low distortion. In contrast, Laplacian
Eigenmaps produce large distortions near the border ∂M , as
it only seeks to preserve the M graph neighborhoods.

Table 2 summarizes the results of surface trimming
applied on the set φHLLE(M) ∈ R

2 (φHLLE(M): result of
applying HLLE-type φ() on mesh M). NURBs extrapola-
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Table 2 Mask dataset (Fig. 4a)

Algorithm stage Figures Comments

NURBs extrapolation Fig. 6a Several folds arise in extrapolated zones inducing
high curvatures on such zones

RBFs interpolation Fig. 6b Smoothness along the complete surface is achieved
(even in the extrapolated areas)

RBFs Control polyhedron P+ NURBs parametric S Fig. 6c The surface is a bit smoother than the RBFs one (this
can be evidenced by comparing the boundaries) but
points of the original triangulation may not lay on
the trimmed surface

Appraisal of surface trimming methods applied on φHLLE(M) ∈ R
2. The trimmed surface is F = (S, {L0, L1, L2})

Table 3 Mask dataset (Fig. 4a)

Dimensionality reduction method Figures Comments

Isomap M parameterization φ() Fig. 7a Low curvatures and low distortions

Laplacian Eigenmaps M parameterization φ() Fig. 7b High distortions and self-intersections of the surface
in the eye area. Several folds arise high curvatures
along the surface. Irregular boundary

Hessian local linear embedding M parameterization φ() Fig. 7c Low curvatures and low distortions

Impact of dimensionality reduction algorithms on the resulting trimmed surface F . Constant surface trimming algorithm (hybrid RBF+NURBs).
variate dimensionality reduction algorithms (Isomap, Laplacian Eigenmap, HLLE)

Table 4 Beetle dataset

Parameterization
algorithm

Backmapping
algorithm

Figures Comments

HLLE NURBS extrapolation Fig. 8a High curvatures and high distortions at extrapolated
areas. Misrepresentation of the boundary at several
areas (car windows)

Isomap NURBs+RBFs Fig. 8b Smooth surface, low curvatures and low distortions.

Laplacian
Eigen-
maps

NURBs+RBFs Fig. 8c High curvatures and high distortions. Irregular
boundary

HLLE NURBs+RBFs Fig. 8d Smooth surface, low curvatures and low distortions

Appraisal of results under different combinations of available methods for parameterization and surface trimming

Table 5 S-shape dataset
(Fig. 9a)

Algorithm stage Figures Comments

Isomap parameterization φ() Fig. 9b The boundary and several triangles intersect in the
parameter space (φ is no longer a bijection). The
triangulation does not preserve a consistent
orientation

HLLE parameterization φ() Fig. 9c Adequate representation of the non-convex
parametric domain φ of the S dataset

Isomap-based trimmed surface F Fig. 9d Self intersection of the trimmed surface F .
Additionally, F does not resemble the original
dataset

HLLE-based trimmed surface F Fig. 9e Smooth surface with low distortions. Extrapolated
areas follow consistent geodesic paths despite the
non-convexity of the parametric space

Appraisal of the algorithm applied to a dataset which is highly non-convex in the parametric space
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Table 6 Additional data sets:
Partial-Venus, Teddy,
Half-Glove

Dataset Used parameterization and
Backmapping algorithm

Figures Comments

Partial-Venus (1) Parameterization with Isomap.
(2) Surface trimming with hybrid
NURBs+RBFs

Fig. 10a Smooth surface with low distortion

Teddy (1) Parameterization with Isomap
(2) Surface trimming with hybrid
NURBs+RBFs

Fig. 10b Smooth surface with low
distortion. Small holes do not
affect drastically the
Isomap-based parameterization

Half-Glove (1) Parameterization with HLLE
(2) Surface trimming with hybrid
NURBs+RBFs

Figs. 10c–e Surface with low distortions. High
curvatures and self-intersections
arise at extrapolated areas

Back mapping algorithm is hybrid (RBFs for control polyhedron P and NURBS for parametric surface S())

Fig. 8 Results for the Beetle dataset under several combinations of the
developed methods. a HLLE and NURBS extrapolation. b Isomap and
NURBs+RBFs. cLaplacian Eigenmaps andNURBs+RBFs. dHLLE
and NURBs+RBFs

tion is definitively inadequate for synthesizing the control
polyhedron P , producing folds in the surface S. RBFs pro-
duce a smooth surface but they are extremely expensive to
set up and to use. In addition, they are not popular as a B-Rep
standard in commercial CAD. The third option (using RBFs
to calculate solely the control polyhedron P of S andNURBs
for calculate S itself), produces a NURBs surface as good as

RFBs, in an economic manner, with the advantage of being
fully applicable in commercial CAD software.

Table 3 cites the final results (trimmed surface F =
(S, {L0, L1 . . .})) with the hybrid back-mapping (RBFs to
compute the control polyhedron P plus NURBS to com-
pute the parametric Surface S). This hybrid mapping is fed
with three inputs: φI som(M), φLapl(M) and φHLLE(M). In
this manner, we compare the quality of these three inputs by
keeping S constant. As expected from previous tests, Isomap
and HLLE perform well, while Laplacian Eigenmaps pro-
duces a distorted final trimmed surface.

5.2 Results for other datasets

Table 4 considers the Beetle dataset. The test 1 confirms
the poor performance of a NURBs extrapolation for Surface
Trimming (backmapping). The tests 2, 3 and 4 use the hybrid
back mapping (RBFs for control polyhedron P+ NURBs
for S) and variate the φ() mapping [φI som(M), φLapl(M),
φHLLE(M)]. As discussed before, Isomap andHLLE perform
better than Laplacian Eigenmaps.

Table 5 is devoted to the S-shape dataset. This dataset
(Fig. 9a) violates the fundamental assumption of Isomap, that
geodesic curves on the mesh M = (X, T ) can be approxi-
mated by shortest paths in the graph T . Test 1 confirms the
failure of φI som . As expected, feeding φI som(M) into the
back mapping F produces another failure (test 3) In contrast,
HLLE produces a good quality parameterization φHLLE (test
2). Feeding φHLLE into the back-mapping F produces the
good results in test 4.

Table 6 relates to additional datasets (Partial-Venus,
Teddy, Half-Glove). The concavities and/or holes in the
Partial-Venus and Teddy datasets are small and do not distort
the graph-based estimation of the geodesics on M . There-
fore, the Isomap φI som() parameterization is still stable. In
the Half-Glove case, Isomap is clearly inadequate and there-
fore a HLLE φHLLE() parameterization is used instead, with
good results. However, the hybrid NURBS S : R2 −→ R

3
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Fig. 9 Results of the algorithm
for the S dataset under the
RBF+NURBS approach using
Isomap (left) and HLLE (right).
a S dataset. b Failed Isomap
parameterization φ of the S
dataset. c Successful HLLE
parameterization φ of the S
dataset. d Failed back-mapping
R
2 → R

3 of the Isomap
parameterization. e Successful
back-mapping R

2 → R
3 of the

HLLE parameterization

actual 
geodesic

graph -
approximated
geodesic

xj

xi

(a)

(b) (c)

(d) (e)

with RBFs—computed control polyhedron P , results to be
self-intersecting in the extrapolated neighborhoods.

6 Conclusions

This manuscript presents a method for approximating a
triangle-based mesh M ∈ R

3 with a trimmed surface F =
(S, {L0, L1, . . .}) in which S : R2 −→ R

3 is a parametric
surface and {L0, L1, . . .} = ∂F is a set of LOOPswhich con-
stitute the boundary of F (approximating ∂M , the boundary
of M).

The determination of F includes as main steps: (1) to
devise a forward dimension reduction φ : M −→ R

2 which
finds a parametric space U for M (U = φ(M)). (2) To syn-
thesize a backward parametric surface S : R

2 −→ R
3,

to compute S(φ(M)) = F ≈ M . The previous procedure

implies to map ∂M ∈ R
3, the boundary of M to parametric

spaceR2 and then back toR3 via the parametric surface S().
Three manifold learning algorithms were tested: (1)

Isomap, (2) Laplacian Eigenmaps and (3) HLLE. Isomap
and HLLE presented in general good results for quasi-
developable meshes. Laplacian Eigenmaps presented high
distortions. In addition, we devise a data set that causes
Isomap to fail, when the triangulation graph T fails to esti-
mate the geodesic curves on M . This failure occurs when
M presents significant holes or concavities. In conclusion,
HLLE was found to be most reliable algorithm for the φ()

mapping.
The back-mapping S : R2 → R

3 was computed by fol-
lowing (1) a NURBS interpolation/extrapolation approach,
(2) an RBFs surface approach and (3) a hybrid approach
which includes the calculation of the control polyhedron P
with RBFs and the parametric surface S with a NURBS for-
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Fig. 10 Trimmed surfaces for several datasets using (i) IsoMap
parameterization (up) and (ii) HLLE parameterization (down).
RBF+NURBS were used for the back-mapping S : R

2 → R
3. a

Partial-Venus. Hybrid RBFs+NURBS S() from φI som(M). b Teddy.
Hybrid RBFs+NURBS S() from φI som(M). c Half-Glove dataset.
d Half-Glove. Hybrid RBFs+NURBS S() from φHLLE(M). e Half-
Glove. Self-intersection of Hybrid RBFs+NURBS S() trimmed sur-
face F

mulation. This hybrid approach was found to be the most
robust technique for back mapping.

The chosen combination of mesh parameterization
(φHLLE( )) and parametric surface (NURBS+RBF S( ))
works correctly for the Teddy, Beetle, Partial-Venus, S-
strip and Mask data sets. The Half-Glove data set shows
to challenge our method in that the S surface results being
self-intersecting. However, the trimmed extent of S that
actually constitutes the FACE F = (S, {L0, L1, . . .}) is
not self-intersecting and therefore is is still a 2-manifold.
Nevertheless, our implemented algorithms do not guarantee
2-manifoldness of the trimmed surface F in all cases.

6.1 Ongoing work

The problem ofmeshM approximation by a trimmed surface
is easier to solve ifM is developable or near-developable. An
obvious future research direction is the segmentation of M
into near-developable sub-meshes Mi .

Mesh parameterization with trimmed surfaces requires an
underlying parametric surface S()which approximates some
MS super-set of M (M ⊂ MS). Such a synthesis is highly
under-constrained and requires further work. An opportunity
is present by the fact that, even if a S surface is self inter-
secting far away of the region of interest F , it might not
self—intersect in the region F , which makes S still usable.

Datasets

The datasets were downloaded from the public sites: http://
www.cse.buffalo.edu/~jryde/cse673/04.html, http://gpeyre.
github.io/numerical-tours/matlab/fastmarching_4bis_geode
sic_mesh/ and http://liris.cnrs.fr/meshbenchmark/.

References

1. Zheng, J., Chan, K., Gibson, I.: Constrained deformation of
freeform surfaces using surface features for interactive design. Int.
J. Adv. Manuf. Technol. (2003). doi:10.1007/s00170-002-1442-8

2. Yoshizawa, S., Belyaev, A., Seidel, H.P.: A fast and simple stretch-
minimizing mesh parameterization. In: Proc. Shape Model. Appl.
(2004). doi:10.1109/SMI.2004.1314507

3. Specht,M., Lebrun,R., Zollikofer, C.P.:Visualizing shape transfor-
mation between chimpanzee and human braincases. Vis. Comput.
(2007). doi:10.1007/s00371-007-0156-1

4. Krishnamurthy, A., Khardekar, R., McMains, S.: Optimized GPU
evaluation of arbitrary degree NURBS curves and surfaces.
Comput.-Aided Des. (2009). doi:10.1016/j.cad.2009.06.015

5. Pietroni, N., Massimiliano, C., Cignoni, P., Scopigno, R.: An inter-
active local flattening operator to support digital investigations on
artwork surfaces. IEEE Trans. Vis. Comput. Graph. (2011). doi:10.
1109/TVCG.2011.165

6. Liu, X.M., Wang, S.M., Hao, A.M., Liu, H.: Realistic rendering of
organ for surgery simulator. Comput. Math. Appl. (2012). doi:10.
1016/j.camwa.2011.11.030

7. Tierny, J., Daniels II, J., Nonato, L.G., Pascucci, V., Silva, C.T.:
Interactive quadrangulation with reeb atlases and connectivity
textures. IEEE Trans. Vis. Comput. Graph. (2012). doi:10.1109/
TVCG.2011.270

8. Zhu, X.F., Hu, P., Ma, Z.D., Zhang, X., Li, W., Bao, J., Liu, M.: A
new surface parameterization method based on one-step inverse
forming for isogeometric analysis-suited geometry. Int. J. Adv.
Manuf. Technol. (2013). doi:10.1007/s00170-012-4251-8

9. Zuo,B.Q.,Huang, Z.D.,Wang,Y.W.,Wu, Z.J.: Isogeometric analy-
sis for CSG models. Comput. Methods Appl. Mech. Eng. (2015).
doi:10.1016/j.cma.2014.10.046

10. Li, G., Ren, C., Zhang, J., Ma, W.: Approximation of Loop Sub-
division Surfaces for Fast Rendering. IEEE Trans. Vis. Comput.
Graph. (2011). doi:10.1109/TVCG.2010.83

11. Yang, L., He, D., Zhang, Z.: Construct G1 Smooth surface by using
triangular gregory patches. In: Fifth Int. Conf. ImageGraph—ICIG
’09. (2009). doi:10.1109/ICIG.2009.55

123

http://www.cse.buffalo.edu/~jryde/cse673/04.html
http://www.cse.buffalo.edu/~jryde/cse673/04.html
http://gpeyre.github.io/numerical-tours/matlab/fastmarching_4bis_geodesic_mesh/
http://gpeyre.github.io/numerical-tours/matlab/fastmarching_4bis_geodesic_mesh/
http://gpeyre.github.io/numerical-tours/matlab/fastmarching_4bis_geodesic_mesh/
http://liris.cnrs.fr/meshbenchmark/
http://dx.doi.org/10.1007/s00170-002-1442-8
http://dx.doi.org/10.1109/SMI.2004.1314507
http://dx.doi.org/10.1007/s00371-007-0156-1
http://dx.doi.org/10.1016/j.cad.2009.06.015
http://dx.doi.org/10.1109/TVCG.2011.165
http://dx.doi.org/10.1109/TVCG.2011.165
http://dx.doi.org/10.1016/j.camwa.2011.11.030
http://dx.doi.org/10.1016/j.camwa.2011.11.030
http://dx.doi.org/10.1109/TVCG.2011.270
http://dx.doi.org/10.1109/TVCG.2011.270
http://dx.doi.org/10.1007/s00170-012-4251-8
http://dx.doi.org/10.1016/j.cma.2014.10.046
http://dx.doi.org/10.1109/TVCG.2010.83
http://dx.doi.org/10.1109/ICIG.2009.55


316 Int J Interact Des Manuf (2015) 9:303–316

12. Dyken, C., Reimers, M., Seland, J.: Real-time GPU silhouette
refinement using adaptively blended Bézier patches. Comput.
Graph. Forum 27(1), 1–12 (2008)

13. Zhang, Z., Wang, Z., He, D.: A new bi-cubic triangular gregory
patch. In: Int. Conf. Comput. Sci. Softw. Eng. (2008). doi:10.1109/
CSSE.2008.298

14. Boubekeur, T., Reuter, P., Schlick, C.: Scalar tagged PN trian-
gles. In: Eurographics Short Papers, Eurographics Association and
Blackwell, Dublin, Ireland (2005)

15. Mao, Z., Ma, L., Tan, W.: A modified nielsons side-vertex trian-
gular mesh interpolation scheme. In: Gervasi, O., Gavrilova, M.,
Kumar, V., Laganà, A., Lee, H., Mun, Y., Taniar, D., Tan, C. (eds.)
Computational science and its applications ICCSA 2005, pp. 776–
785. Springer, Berlin (2005)

16. Vlachos, A., Peters, J., Boyd, C., Mitchell, J.L.: Curved PN trian-
gles. In: Proc. 2001 Symp. Interact. 3DGraph (2001). doi:10.1145/
364338.364387

17. Acosta, D.A., Ruiz, O.E., Arroyave, S., Ebratt, R., Cadavid, C.,
Londono, J.J.: Geodesic-based manifold learning for parameteri-
zation of triangular meshes. Int. J. Interact. Des. Manuf. (IJIDeM)
(2014). doi:10.1007/s12008-014-0249-9

18. Yu, H., Lee, T.Y., Yeh, I.C., Yang, X., Li, W., Zhang, J.J.: An RBF-
based reparameterization method for constrained texture mapping.
IEEE Trans. Vis. Comput. Graph. (2012). doi:10.1109/TVCG.
2011.117

19. Guo, Y., Wang, J., Sun, H., Cui, X., Peng, Q.: A novel constrained
texture mapping method based on harmonic map. Comput. Graph.
(2005). doi:10.1016/j.cag.2005.09.013

20. Belkin, M., Niyogi, P.: Laplacian Eigenmaps and spectral tech-
niques for embedding and clustering. In: Neural Inf. Process. Syst.:
Nat. and Synth.—NIPS, MIT Press, Vancouver, Canada (2001)

21. Sheffer, A., de Sturler, E.: Parameterization of faceted surfaces
for meshing using angle-based flattening. Eng. Comput. (2001).
doi:10.1007/PL00013391

22. Zhao, X., Su, Z., Gu, X.D., Kaufman, A., Sun, J., Gao, J., Luo,
F.: Area-preservation mapping using optimal mass transport. IEEE
Trans. Vis. Comput. Graph. (2013). doi:10.1109/TVCG.2013.135

23. Zou, G., Hu, J., Gu, X., Hua, J.: Authalic parameterization of gen-
eral surfaces using lie advection. IEEE Trans. Vis. Comput. Graph.
(2011). doi:10.1109/TVCG.2011.171

24. Pietroni, N., Tarini, M., Cignoni, P.: Almost isometric mesh para-
meterization through abstract domains. IEEE Trans. Vis. Comput.
Graph. (2010). doi:10.1109/TVCG.2009.96

25. Liu, L., Zhang, L., Xu,Y., Gotsman, C., Gortler, S.J.: A local/global
approach tomeshparameterization.Comput.Graph. Forum(2008).
doi:10.1111/j.1467-8659.2008.01290.x

26. Sun, X., Hancock, E.R.: Quasi-isometric parameterization for tex-
ture mapping. Pattern Recogn. (2008). doi:10.1016/j.patcog.2007.
10.027

27. Desbrun, M., Meyer, M., Alliez, P.: Intrinsic parameterizations
of surface meshes. Comput. Graph. Forum (2002). doi:10.1111/
1467-8659.00580

28. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geomet-
ric framework for nonlinear dimensionality reduction. Sci. (NY)
(2000). doi:10.1126/science.290.5500.2319

29. Donoho, D.L., Grimes, C.: Hessian eigenmaps: locally linear
embedding techniques for high-dimensional data. Proc.Natl. Acad.
Sci. (2003). doi:10.1073/pnas.1031596100

30. Bookstein, F.L.: Principal warps: thin-plate splines and the decom-
position of deformations. IEEE Trans. Pattern Anal. Mach. Intell.
(1989). doi:10.1109/34.24792

123

http://dx.doi.org/10.1109/CSSE.2008.298
http://dx.doi.org/10.1109/CSSE.2008.298
http://dx.doi.org/10.1145/364338.364387
http://dx.doi.org/10.1145/364338.364387
http://dx.doi.org/10.1007/s12008-014-0249-9
http://dx.doi.org/10.1109/TVCG.2011.117
http://dx.doi.org/10.1109/TVCG.2011.117
http://dx.doi.org/10.1016/j.cag.2005.09.013
http://dx.doi.org/10.1007/PL00013391
http://dx.doi.org/10.1109/TVCG.2013.135
http://dx.doi.org/10.1109/TVCG.2011.171
http://dx.doi.org/10.1109/TVCG.2009.96
http://dx.doi.org/10.1111/j.1467-8659.2008.01290.x
http://dx.doi.org/10.1016/j.patcog.2007.10.027
http://dx.doi.org/10.1016/j.patcog.2007.10.027
http://dx.doi.org/10.1111/1467-8659.00580
http://dx.doi.org/10.1111/1467-8659.00580
http://dx.doi.org/10.1126/science.290.5500.2319
http://dx.doi.org/10.1073/pnas.1031596100
http://dx.doi.org/10.1109/34.24792

	Triangular mesh parameterization with trimmed surfaces
	Abstract
	1 Introduction
	2 Interactive design and mesh parameterization with trimmed surfaces
	2.1 Human interaction and mesh parameterization
	2.2 Interactions enabled by mesh parameterization

	3 Literature review
	3.1 Dimensional reduction φ: mathbbR3 supsetM -3murightarrowmathbbR2
	3.2 Parametric surface S:mathbbR2 rightarrowmathbbR3
	3.3 Conclusions of literature review

	4 Methodology
	4.1 Dimensionality reduction (manifold Learning)
	4.1.1 Isometry-based parameterization
	4.1.2 Laplacian Eigenmaps-based parameterization
	4.1.3 HLLE-based parameterization

	4.2 Surface representation
	4.2.1 NURBS interpolation/extrapolation
	4.2.2 Radial basis function surface
	4.2.3 NURBs+RBFs representation

	4.3 Surface trimming

	5 Results and discussion
	5.1 Mask dataset results
	5.2 Results for other datasets

	6 Conclusions
	6.1 Ongoing work
	Datasets

	References




