
INTERACTIVE PARALLEL FLUID SOLVER USING THE LATTICE-BOLTZMANN
METHOD AND CUDA

Jorge Mario G. Mazo

EAFIT UNIVERSITY
School of Engineering

Department of Informatics and Systems
MEDELLÍN

2010

INTERACTIVE PARALLEL FLUID SOLVER USING THE LATTICE-BOLTZMANN
METHOD AND CUDA

Graduation project for the degree of:
Computer Scientist

Assessor
Prof. Dr. Manuel Julio Garcı́a

EAFIT UNIVERSITY
School of Engineering

Department of Mechanical Engineering
MEDELLÍN

2010

“Well, it’s 1 a.m. Better go home and spend some quality time with the kids.”
Homer Simpson

To my mother for all her support and patience
during all these years. Also to my brother, my
master and best friend. And to my sister, that
although she is away, she has been closer than
anyone else. They know that without them, this
journey could not have been completed.

i

Abstract

Particle methods have been gaining momentum in the Computational Fluid Dynam-
ics world, for their computational simplicity and inherent parallelism. This has lead
the field to jump to new hardware technologies that exploit the parallelism in a whole
new way.
This project is an interactive parallel implementation of the Lattice Boltzmann Method
that runs on a hyper parallel architecture as a modern GPU and uses CUDA tech-
nology for its implementation. First the mathematical concepts of the method are
introduced, then the implementation is done using the SIMD paradigm, to later on
attack the visualization and interactivity simple way.

ii

Acknowledgements

There were many people involved on the development of this project and I would
like to thank the following people: my advisor, Prof. Manuel J. Garcia, for returning
me the faith in my degree. Also the fine crew of the Applied Mechanics Research
Laboratory, Juan (abuelo) Duque, Santiago (kid) Orrego, Santiago (muerzo) Giraldo
and Doriam for making the lab a fun place to work and learn. My friends Andres
(chapa) Chaparro y Gustavo (tavo) Betancur, the university would have been such a
boring place without those two guys.
Last but not least to my girlfriend Luisa (snake) Machado, grandma, all my aunts, my
cousins and my nephew Juan Manuel, thank you all for your constant support.

iii

Contents

1 Introduction 1
1.1 Mechanics of Fluids . 1

1.1.1 Historical review . 1
1.1.2 Navier–Stokes and the fluid motion 2

1.2 Numerical methods . 3
1.3 Computational Fluid Dynamics . 8

1.3.1 How does CFD works? . 8
1.3.2 Problem solving with CFD . 9

1.4 Numerical methods for CFD . 9
1.4.1 Finite difference method (FD) 10
1.4.2 Finite elements method (FEM) 10
1.4.3 Spectral method (SM) . 10
1.4.4 Finite volume method . 10

1.5 Particle methods “the new trend” . 11
1.5.1 Document structure . 13

2 Lattice gas automata 14
2.1 Background . 14
2.2 Lattice gas automata . 14
2.3 The HPP model . 15

2.3.1 Advantages and disadvantages 17
2.4 The FHP model . 17

2.4.1 Advantages and disadvantages 19

3 Lattice Boltzmann Method 20
3.1 Boltzmann equation . 21

iv

3.2 LBM framework . 22
3.2.1 Macroscopic variables . 23
3.2.2 The equilibrium distribution function 25
3.2.3 The BGK model . 25
3.2.4 Streaming . 26
3.2.5 Numerical kinematic viscosity 26

3.3 Boundary conditions . 26
3.3.1 Periodic . 27
3.3.2 Bounce–back . 28
3.3.3 Von Neumann . 29
3.3.4 Dirichlet . 32
3.3.5 Corner nodes . 32
3.3.6 Moving boundary . 33

3.4 Units conversion . 34
3.4.1 Direct conversion . 35
3.4.2 Dimensionless conversion . 36

3.5 Algorithm summary . 37

4 CUDA implementation 38
4.1 Introduction . 38
4.2 GPUs as super computers . 39
4.3 Architecture of a GPU . 41
4.4 The need for speed . 41
4.5 CUDA . 42

4.5.1 Programming model . 42
4.5.2 Threads . 42
4.5.3 Memory layout . 44

4.6 LBM on the GPU . 46

5 Visualization and interactivity 49
5.1 Basic concepts . 49

5.1.1 Visualization . 49
5.1.2 Interactivity . 49
5.1.3 OpenGL . 50

5.2 Interactive tool . 52

v

5.2.1 Example . 52
5.2.2 Color scale . 53
5.2.3 Commands . 54

6 Numerical Experiments 56
6.1 Numerical results . 56

6.1.1 2–D Poiseuille flow . 56
6.1.2 Other common flows . 57

6.2 Computational results . 57

7 Conclusions 61
7.1 Future Work . 61

Bibliography 65

A Units Example 66
A.1 Channel case . 66

A.1.1 Initial approach . 67
A.1.2 Calculating τ . 68
A.1.3 Different approach to calculate δt 68
A.1.4 Calculating Nx . 68

B Fast 2D point in polygon 70

vi

List of Tables

1.1 Examples of correlation of properties with functionality and efficiency
of technical systems . 3

6.1 Poiseuille flow error committed by the solver 58
6.2 Speed in MLUPs achieved by the GPU and CPU 58
6.3 Speed in MLUPs achieved by different block sizes 59

vii

List of Figures

1.1 Numerical simulation procedure of engineering problems (Schäfer). . 6
1.2 Mesh of an F–22 airplane(NASA). 7
1.3 Requirements and interdependences for the numerical simulation of

practical engineering problems(Schäfer). 11
1.4 GPU performance improvements over CPU(RAMA HOETZLEIN). . . . 13

2.1 HPP lattice scheme . 15
2.2 HPP collision rules . 16
2.3 FHP hexagonal grid . 17
2.4 FHP collision probability . 18
2.5 FHP three particle head on collision rule 19

3.1 LBM cartesian grid and vectors of the D2Q9 lattice. 23
3.2 Two common lattice schemes for the Lattice Boltzmann Method 24
3.3 Vectors of the D2Q9 lattice. 24
3.4 LBM streaming step . 26
3.5 Stream step for a periodic boundary 27
3.6 Pre–Stream step for a bounce–back boundary for a time t 28
3.7 Post–Stream step for a bounce–back boundary for a time t 29
3.8 Bounce–back of direction–specific densities 29
3.9 Post–Stream step for a bounce–back boundary for a time t+ dt 30
3.10 Post–Stream boundary node showing unknown direction–specific den-

sities . 30
3.11 Corner node problem of boundary condition 33
3.12 Post–Stream boundary node showing bounced direction–specific den-

sities . 34

4.1 Performance gap between GPUs and CPUs, taken from [NVI10] . . . 39

viii

4.2 Design difference between GPUs and CPUs, taken from [NVI10] . . . 40
4.3 Memory bandwidth for the CPU and GPU, taken from [NVI10] 40
4.4 Modern GPU architecture, taken from [KmWH10] 41
4.5 Heterogenous programming model, taken from [NVI10] 43
4.6 CUDA thread organization, taken from [NVI10] 44
4.7 Transparent thread scalability, taken from [NVI10] 45
4.8 CUDA memory hierarchy, taken from [KmWH10] 46
4.9 LBM runs the same algorithm over each node of grid 47
4.10 CUDA implementation in this work . 48

5.1 Simplified version of the Graphics Pipeline Process, taken from [wik10e] 51
5.2 Von Karman street . 52
5.3 Color saturation of a cavity flow, at the same time t 53
5.4 Cavity flow pressure field . 54
5.5 MLUPS displayed . 54

6.1 Predicted velocity profile of Poiseuille flow 57
6.2 Acceleration gained using GPU . 59

A.1 Sample Channel . 67

B.1 Point in polygon . 71

ix

List of Algorithms

1 Lattice Boltzmann Algorithm . 37
2 Point inside the polygon . 71

x

Chapter 1

Introduction

The mankind nature to try to understand what it is around, has driven humans to
study the environment we are immersed in... fluids. We are surrounded by fluids,
water and air, and until recently we knew little about the behavior of those and the
impact they have in our lives.

1.1 Mechanics of Fluids

Fluid mechanics is a filed that study the substances that continually flow under an
applied shear stress and the forces on them. It can be divided into fluid statics,
the study of fluids at rest, and fluid dynamics, the study of fluids in motion [wik10c].
Fluid dynamics, is an active field of research with many unsolved or partly solved
problems. This makes the field, an interesting subject, to get involved in the scientific
world.

1.1.1 Historical review

With only a rudimentary knowledge of fluid flow humans built wells, channels, pump-
ing devices etc. With the exception of the works of Archimedes (287 – 212 B. C) on
the principles of buoyancy, little knowledge of the ancient times is present on modern
fluid mechanics. After the fall of the Roman Empire there is no record of advances
in fluid mechanics until Leonardo da Vinci (1425–1519). He unleashed a new era in
hydraulic engineering, he studied the flow of turbulent currents, the flight of the birds
and the forces involved, although his work was impressive it was more artistic than

1

1.1. MECHANICS OF FLUIDS CHAPTER 1. INTRODUCTION

science.
After da Vinci hydraulics gained momentum with great scientific contributions from
Galileo, Torriceli, Marioti, Pascal, Bernoulli, Euler and d’Alembert. All their works
were magnificent but there was always discrepancies between the theory and the
practice, this discrepancy lead to the born of two schools of thought that still ex-
ist today, the mathematica field of fluid mechanics know as hydrodynamics and the
practical filed known as hydraulics.
Near the middle of the 1800s Navier and Stokes succeeded modifying the general
equations for ideal fluid motion to fit in the viscous fluid, narrowing breach between
hydraulics and hydrodynamics. Towards the end of that century four advances were
crucial to the development of the fluid mechanics science, and there were: (1)The-
oretical and experimental work by Reynolds, (2)Dimensional analysis by Rayleigh,
(3)Use of model by Froude, Reynolds et. al and (4)Experimental and theoretical
progress in aeronautics by Lanchester, Lilienthal, kutta, Joukwsky, Betz and Prandtl.
The most important contribution was made by Prandtl in 1904 when he introduced
the boundary layer, linking the ideal and real fluid motion for fluids with small viscosity
[SWV96]. This contribution by Prandtl laid the ground of modern fluid mechanics.

1.1.2 Navier–Stokes and the fluid motion

Fluid motion can be seen in many different forms, from simple flows such as laminar
flows in a pipe, to very complex flows including high degrees of turbulence. Many
flows have been analyzed experimentally, however nowadays for more complex fluid
flows is more convenient to develop a numerical approach capable of simulating
many different flows, not yet analyzed experimentally.

In the following sections of this chapter a review of the equation of fluid motion
will be presented. A set of classical numerical methods, to solve such equation will
be presented, to later on move to small introduction to the relatively new particle
methods and its implementation in new parallel hardware architectures.

Fluid motion of an incompressible fluid is governed by the continuity equation

∇ · u = 0 (1.1)

2

1.2. NUMERICAL METHODS CHAPTER 1. INTRODUCTION

and the Navier–Stokes equation.

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ µ∇2u + f (1.2)

where ρ is density, u is velocity, p is pressure and µ is the kinematic viscosity. The
Navier–Stokes equation is a non–linear second order partial differential equation with
not known analytical solution except for a small number of simplified cases.
With the advent of computer technology there has been attempts to approximate
the solution of the Navier–Stokes equation using numerical analysis to simulate fluid
flows.

1.2 Numerical methods

The functionality or efficiency of a technical system is always determined by some
properties. A deep knowledge of these properties is needed in order to properly
modify or optimize these technical system. In engineering and particular to fluid
mechanics, some of these properties are:

• flow velocities.

• temperature.

• pressure

• drag or lift forces

A list with few examples of these properties related to fluid mechanics is given in
Table 1.1.

Property Functionality
Aerodynamics of vehicles Fuel consumption

Pressure drop in vacuum cleaners Sucking performance
Pollutants in exhaust Environmental burden

Table 1.1: Examples of correlation of properties with functionality and efficiency of
technical systems

3

1.2. NUMERICAL METHODS CHAPTER 1. INTRODUCTION

For engineering, the study of these properties are important for the redevelop-
ment and enhancement of products or processes. The knowledge gained from the
study of important variables of fluid motion can help engineers to:

• improve efficiency

• improve of durability

• reduce pollution

• save raw material

• have a better understanding of a process

In the industrial world cost reduction might be the key term related to the list men-
tioned above but for scientists some times is more important to have a better under-
standing of the process subject of study.

The importance of numerical methods arises from checking the available meth-
ods to gain knowledge on the properties of complex systems. The list of these meth-
ods is very limited and be expressed as follows:

• Theoretical methods.

• Experimental investigations.

• Numerical simulations.

Theoretical methods: analytical consideration of the equations of complex problem
is not usually viable, the equations governing realistic physical phenomena are
so complex (usually non–linear partial differential equations) that they are not
solvable analytically for most of realistic applications.

Experimental investigations: aim to to obtain the required system information by
the experimental tests. In many cases this can be rather problematic: the
measures of the object are too big or too small making difficult to measure
variables, the process elapses for a very small fraction of time to takes very
long time to end, object of study cannot be accessed (a galaxy), the experiment
is too risky, and the most important aspect for the industry is that experiments
are time consuming and expensive.

4

1.2. NUMERICAL METHODS CHAPTER 1. INTRODUCTION

Numerical simulations: in–between theoretical methods and experimentation, in
recent years numerical simulation has become a well established scientific and
industrial discipline. Here physical phenomena is studied by means of numeri-
cal methods on computers. The advantages of these compared to experimen-
tation are:

• Faster results at lower costs.

• Parameter variations on the computer are usually easy.

• More comprehensive information about variables of the system.

An important prerequisite for exploiting the usefulness of numerical simulations
are of course computers. The booming in the computer industry has for sure helped
the take–off of the numerical simulations, but numerical simulations are not and will
never be a full replacement for experimental investigations and in general experi-
mental validation should be accomplished to verify the accuracy of the numerical
simulation.

The development of numerical methods is nothing new, Gauß and Euler where
already working on numerical methods but due to the large number of computations
required to approximate an equation no real benefit was extracted until the computer
era. All the advances in computers like faster processors each year, better memory
schemes, etc. have helped the mankind to really exploit the numerical simulations,
however it was not just only the development in computers that helped the field to
succeed but mayor improvements in numerical algorithms and better measurement
tools. One can see that improvements in numerical simulation in the future are going
to be fantastic, emerging new technologies like hyper–parallel processors (GPUs just
to mention one), and new fast adaptive numerical methods will allow us to simulate
more complex systems than ever before.
Based on this assumption one can presume that the demand for specialist in numer-
ical simulation will be increasing in the near future, therefore the need to train and
research on these topics.

Many aspects are involved during a numerical simulation. One mayor problem
that arises in numerical modeling is the continuous analysis – usually engineering
problems are differential or integral equations derived from continuum mechanics
– continuum solutions are not viable due the fact the computational resources are

5

1.2. NUMERICAL METHODS CHAPTER 1. INTRODUCTION

Engineering
Problem

Experimental
data

Math Models

Differential equations
Boundary conditions

Algebraic
equation systems

Problem
solution

Grid
generation

Discretization

Algorithms
Computers

Verification
Validation

Algebraic
equation systems

Visualization
Evaluation

Visual information
Derived quantities

Analysis
Interpretation

?

Figure 1.1: Numerical simulation procedure of engineering problems (Schäfer).

limited and a discrete approach has to be taken. The unknown quantities have to ex-
pressed by a finite number of values, this process is know as discretization [Sch06]
and it has two main tasks:

• Discretization of the problem domain.

• Discretization of the equations.

The discretization of a continuous problem consists in the division of the continuous
domain in space and time into smaller sub–domains know as elements. The descrip-
tion of a topology discretized by elements is know as mesh. Figure 1.2 shows the
computer generated mesh of a war airplane.
The discretization of the equations is a core aspect of the numerical methods, this

6

1.2. NUMERICAL METHODS CHAPTER 1. INTRODUCTION

is because problems modeled with differential equations are expressed in terms of
continuum variables in space and time.

There are several numerical techniques, to approximate the differential equations,
and these are continuously improving due to the larger research in the area. Some
of these techniques would be briefly reviewed in Section 1.4.

An overview of setting up a numerical simulation can be seen on in Figure 1.1.
Starting with an engineering problem that is described either by experimental data
or differential equations and boundary conditions. This model is discretized into
a set of algebraic equations suitable for solving with computers. The solution is
accomplished by different techniques and the data is analyzed to obtain the problem
solution.

Figure 1.2: Mesh of an F–22 airplane(NASA).

7

1.3. COMPUTATIONAL FLUID DYNAMICS CHAPTER 1. INTRODUCTION

1.3 Computational Fluid Dynamics

Computational Fluid Dynamics or CFD is the analysis of systems involving fluid flow,
heat transfer and associated phenomena such as chemical reactions by means of
computer–based simulations[VM95]. The technique is very powerful and has a lot of
industrial and scientific applications such as:

• aerodynamics

• hydrodynamics

• turbo–machinery

• chemical process

• meteorology

• biomedical engineering

Since the 1960s the aerospace industry has been leading the way in the CFD
arena integrating the methodology to the all its manufacturing chain. The CFD has
lagged behind other numerical simulation techniques due to the tremendous com-
plexity of the fluid flows. But the introduction of cheap high–performance computing
solutions and easier programming models, leaded CFD to enter the industrial com-
munity in the 1990s.

1.3.1 How does CFD works?

Pre–Processor

The pre–processor consist of the input of data parameters of a flow problem to a
CFD program, this input is described in a form that the solver can understand. The
activities at this stage include: meshing, setting fluid properties, choosing the solver
and specifying boundary conditions.

Solver

The solver is where the numerical methods kick–in. After you have a model of a
physical system, it’s necessary to compute the solution. Usually, the model is so

8

1.4. NUMERICAL METHODS FOR CFD CHAPTER 1. INTRODUCTION

large and complex that numerical methods are needed to approximate the solution,
rather than attempting to get an “exact” solution.
Numerical solvers have a basic characteristics, and these have to efficient not just
numerically but also computationally.
Many streams of numerical methods for CFD exist today, the classic approach using
elements and the new trends using particles.

Post–processor

After the problem has been solved, the results are usually sets of data that cannot
be easily interpreted by humans. The post–processor is a visualization tool that
presents the output of the solver in such a way that can be easily interpreted and
analyzed by people. Some of the possibilities that post–processors give, are: vector
plots, particle tracers, viewing manipulations, etc. Also post–processing offers the
possibility to operate the solver data into new variables of interest such as energy,
vorticity, etc.

1.3.2 Problem solving with CFD

When solving fluid flow problems, we have to be aware that the physics are complex
and that the solution is going to be at best as good as the physics and at worst as
its operator. The user of CFD must have skills in a number of areas prior to set-
ting up, running, and evaluating a solution. On CFD many assumptions have to be
made according to the physics of the problem, and importation decisions regarding
the modeling of the problem have to be taken. These decisions can determine the
result of the problem, sometimes yielding improper results.
Also a good understanding about the numerical method is also crucial, key math-
ematical concepts such as convergence, consistency and stability have to be
always present for the CFD operator.

1.4 Numerical methods for CFD

Many methods have being created to study the fluid flows. The classical ones, the
ones that have received more research and the trust of the industry are: the fi-
nite difference method, finite elements method, spectral method and finite volume

9

1.4. NUMERICAL METHODS FOR CFD CHAPTER 1. INTRODUCTION

method. These methods will be explained in more detail below. Although they differ,
the basic requirements for numerical simulations are the same for all methods, and
these(requirements) are shown on Figure 1.3.

1.4.1 Finite difference method (FD)

The FD methods describe the unknown function at the points of grid co–ordinate
lines. Truncated Taylor series expansions are often used to generate finite difference
approximations of the derivatives of the unknown functions in terms of point samples
of the functions at each grid point and its immediate neighbors.

1.4.2 Finite elements method (FEM)

The FEM approximate solutions of partial differential equations (PDE) as well as of
integral equations. The solution approach is based either on eliminating the dif-
ferential equation completely (steady state problems), or rendering the PDE into
an approximating system of ordinary differential equations, which are then numer-
ically integrated using standard techniques such as Euler’s method, Runge-Kutta,
etc[wik10b].

1.4.3 Spectral method (SM)

The SM approximate the unknowns by means of truncated Fourier series or series of
Chebyshev polynomials. Unlike finite element method or the finite difference method
the approximations are not local but valid throughout the entire computational do-
main. The weighted residuals concept is also used to minimize the error similar to
the finite element method.

1.4.4 Finite volume method

The FVM was originally developed as a special finite difference formulation. The
method consists in three steps: the formal integration of governing equations over all
the elements, converting the integral equations into a system of algebraic equations
and then solving those system via an iterative method. The first step distinguishes
the FVM from the other techniques because the resulting statements express the

10

1.5. PARTICLE METHODS “THE NEW TREND” CHAPTER 1. INTRODUCTION

exact conservation of relevant properties for each element[VM95].

In general all these methods involve the solution of large systems of linear equa-
tions, making parallel computing practically a must for realistic applications.

Mathematical
theory

Detailed
models

Experimental
investigation

Efficient
algorithms

Efficient
implementation

Application to practical problems

Figure 1.3: Requirements and interdependences for the numerical simulation of
practical engineering problems(Schäfer).

1.5 Particle methods “the new trend”

During the last few decades a new trend has been gaining popularity among the
CFD community. This trend know as particle methods. Particle methods have be-
come one of the most useful and widespread tools for approximating solutions of
partial differential equations in a variety of fields. In these methods, a solution of a
given equation is represented by a collection of particles, located in points xi and
carrying masses wi. Equations of evolution in time are then written to describe the
dynamics of the location of the particles and their weights.
Many particle methods exist, for example Smoothed Particle Hydrodynamics a mesh–
free method, Molecular Dynamics, Lattice–Boltzmann, etc.
These “new” methods rely on the simulation of the motion of interacting particles

11

1.5. PARTICLE METHODS “THE NEW TREND” CHAPTER 1. INTRODUCTION

carrying physical information [eth10], this approach is deceivingly simple, yet power-
ful and natural, method for exploring physical systems as diverse as planetary dark
matter and proteins, unsteady separated flows, and plasmas.

One big advantage of the Particle Methods is the inherent parallelism. This is
due that in most cases each particle or packet of particles can be computed inde-
pendently. This makes convenient the use of massively parallel architectures such
as Graphic Processing Units (GPUs) to implement these numerical methods. The
speed–up achieved but such architectures can be impressive in most application as
shown in the Figure 1.4. The figure shows how the raw power of GPUs has helped
to get dramatical improvements in performance, but it also shows how the efficiency,
has been dropping which means that hardware architectures are not been exploited
to their fullest.

The Lattice Boltzmann Method was chosen for this work, because its highly par-
allel capabilities, also the method uses a rectangular fixed grid, and Fix Grid FEM is
a mayor area of research in the laboratory where this work is being done. This will
allow future ideas of coupling between the two methods for the analysis of complex
fluid–structure interactions.

This work presents a novel approach to interactive fluid simulations. A reliable
and parallel–friendly method was necessary to achieve speeds fast enough to allow
the user to interact with the simulation. The user would be able to move objects
inside a fluid domain and it will get physically accurate feed back of different fluid
variables as pressure, speeds and vorticity in almost real time, without the need of a
post processing tool.
To get near real time speed a fast computing architecture is also needed, and most
NVIDIA GPUs provide enough power, to supply the demanding needs of interactive
simulations.

Finally, it has to be noted, that the arena of the parallel architectures is changing
fast. The cell architecture (the one used by the Sony Play Station 3) is becoming
every day more appealing for the implementation of scientific applications because
of its high powered parallel processors and its low cost [KPP06].

12

1.5. PARTICLE METHODS “THE NEW TREND” CHAPTER 1. INTRODUCTION

Figure 1.4: GPU performance improvements over CPU(RAMA HOETZLEIN).

1.5.1 Document structure

The first part of the document is an introduction and theoretical view of the method
subject of study. This first chapter was an introduction and presentation of the work
realized in this project. Then on chapter 2, a review of the cellular automata is made
as an introduction to the Lattice Boltzmann Method. Chapter 3 is a description of the
Lattice Boltzmann Method and some others aspects particular to this project and the
method itself.
The second part of the document consist in the computational aspects of the work,
which are GPU computing and implementation of the method covered in chapter 4,
and visualization and interactivity covered in chapter 5.
Finally the numerical results and benchmarks are described in chapter 6, and con-
clusions and future work on chapter 7.

13

Chapter 2

Lattice gas automata

2.1 Background

A cellular automaton (CA) is a discrete model studied in mathematics, physics, mi-
crostructure modeling and other sciences. It consists of a regular grid of finite cells,
each one has a finite number of states, such as 1 and 0. For each cell, a set of cells
(usually including the cell itself), known as neighborhood is defined relative to the
specified cell.
An initial state t = 0 is selected by assigning a state for each cell. A new generation
is created after setting t = t + δt, according to some fixed rule, usually, a mathe-
matical function [wik10a]. This determines the new state of each cell in terms of the
current state of the cell and the states of the cells in its neighborhood.

2.2 Lattice gas automata

The lattice gas automata (LGA) also know as the lattice gas cellular automata (LGCA)
is a cellular automata known as the precursor of the Lattice Boltzmann Method
[Suc01]. Here with the purpose of introducing the Lattice Boltzmann Method is pre-
sented a small review of the LGA methods.

The purpose of LGAs is to simulate the behavior and interaction of many single
particles in an ideal gas [Vig09]. Unfortunately these are based on boolean mathe-
matics which are unfamiliar for most people.

14

2.3. THE HPP MODEL CHAPTER 2. LATTICE GAS AUTOMATA

A cellular automata consist of a lattice geometry where the intersection points
can take a finite number states. The model evolves in discrete time steps. The state
of each corner is determined by its own state and the state of its neighbors at the
previous time step. A gas is modeled as set of spheres that travel over the lattice. The
collision between spheres is modeled by a set of elastic collision rules that ensure
conservation of mass m and momentum ~p. The LGA, as molecular dynamics, works
on a microscopic (lattice) level, but macroscopic quantities as density ρ and velocity u
can be recovered from this level making possible the study of fluids at a macroscopic
level.

2.3 The HPP model

The HPP model was proposed by Hardy, Pomeau, and de Pazzisin in two landmark
publications in 1973 [HPdP73a, HPdP73b]. In the HPP model the lattice is squared
so each node has four neighbors. The particles can have four possible velocities
determined by ei = sin[π

2
(i− 1)]i+ cos[π

2
(i− 1)]j with i = 1..4 as seen on figure 2.1.

e2

e1e3

e4

Figure 2.1: HPP lattice scheme

Each time step the particles are moved towards the ei direction. When two or
more particles arrive to the same node during a time step a collision occurs. To meet
the conservation of mass and momentum principles, the number of particles and the
total velocity must be the same before and after the collision. When two particles
collide they bounce into a direction perpendicular to their original direction as seen
on figure 2.2. This preserves momentum as the sum of the velocities of the two
particles is zero in both configurations. When three of four particles arrive to a same

15

2.3. THE HPP MODEL CHAPTER 2. LATTICE GAS AUTOMATA

Post− collisionPre− collision

Figure 2.2: HPP collision rules

node the only configuration that guarantees conservation of mass and momentum is
the same configuration before the collision therefore the state is not changed (and
cannot be changed). As a result in the method behaves as there was no collision.
The collisions are deterministic, so each collision has one and only one possible re-
sult. For this reason, this model has a property called time reversal invariance, that
means that the model can be run in reverse to recover any earlier state.

The numerical density can be easily calculated, as the sum of all particle on a
node at any given time.

ρ =
∑
i

ni (2.1)

Where ni is the boolean occupation number (0 or 1) expressing the number of parti-
cles at a node with velocity ei. In this same way the velocity u can be easily calcu-
lated.

u =

∑
i eini
ρ

(2.2)

From Equation 2.2 the total momentum at each node can be deduced using ~p = ρu.

16

2.4. THE FHP MODEL CHAPTER 2. LATTICE GAS AUTOMATA

2.3.1 Advantages and disadvantages

The HPP has some notable advantages and weakness. One big advantage is the
boolean nature of the model, which makes its implementation using short ints ex-
tremely fast.

Another advantage is the inherit parallel nature of the model, as each node can
be computed independently only using the information of the particles.
The time reversal invariance feature is one of the greatest advantages as not many
CFD models let you “travel” back in time.

Although this good advantages the HPP has one mayor flaw: it fails to achieve
rotational invariance. This means that vortices using the method would look squared
[Bui97], because of this the method was abandoned for simulation of fluid flows.
Many other advantages and weaknesses exist in the method, but they are out of the
scope of this review.

2.4 The FHP model

In 1986 Frisch, Hasslacher and Pomeau introduced the FHP model, moving from a
square lattice to a hexagonal lattice, this added rotational invariance to the model
which leads to the proper recovery of the Navier–Stokes equations[FHP86].

e6

e1

e2e3

e4

e5

Figure 2.3: FHP hexagonal grid

The lattice velocity vectors are defined by ei = cos[π
3
− π

6
]i+ sin[π

3
− π

6
]j as shown

in figure 2.3. The hexagonal grid allows that for a heads–on collision there is two

17

2.4. THE FHP MODEL CHAPTER 2. LATTICE GAS AUTOMATA

probable paths random chosen for the bounce as seen on figure 2.4, this conserves
mass and momentum in the same way as expressed in section 2.3, but the introduc-
tion of a probability makes the model stochastic, this fact makes impossible the time
reversal invariance.

Post− Collision

P (B) = 1/2

P (B) = 1/2

Pre− collision

Figure 2.4: FHP collision probability

The FHP model also has a resolution for a three–particle collision this means
that collision bounces back each particle back the way it came. This is shown in
Figure 2.5, for all other collisions of four or more particles, no change should be
computed[FHP86]. There are too many collisions allowed by this model, and the
way to calculate can be found in [Bui97].

Many variations to the FHP model exist, these introduce new collision rules and
resting particles. Interested readers should check into [Bui97] for a greater coverage
of the different models of cellular automata.

18

2.4. THE FHP MODEL CHAPTER 2. LATTICE GAS AUTOMATA

Pre− collision Post− Collision

Figure 2.5: FHP three particle head on collision rule

2.4.1 Advantages and disadvantages

The FHP model is essentially the HPP model with a change of the lattice geometry
and extended collision rules set, therefore in inherits most of the advantages that
HPP has.
Due to the stochastic nature of the model the time reversal invariance is lost.
One big advantage over HPP is the introduction of the rotational invariance that per-
mits to recover the incompressible Navier–Stokes equations.
One mayor disadvantage is the hexagonal mesh, such mesh elements are very
computer–unfriendly[ST05], and hexagonal meshers are scarce, reason why the
model did not take–off in the CFD world.

19

Chapter 3

Lattice Boltzmann Method

In 1998 McNamara and Zanetti proposed a fix to boolean nature of the Lattice Gas
Automata[MZ88]. They removed the Boolean occupation number ni with an ensem-
ble average

fi = 〈ni〉

so fi is a number between 0 and 1. With this modification the evolution equation of a
lattice gas automata became the lattice boltzmann evolution equation.

f(~x+ ~e, t+ 1)− f(~x, t) = Ω(~x, t) (3.1)

McNamara and Zanetti proposed a way to simulate the ensemble average di-
rectly in the numerical method instead of it being a theoretical quantity in an analytic
derivation to prove the method’s conformance to the Navier–Stokes equation. The
Equation 3.1 represents the main equation of study for the Lattice Boltzmann Meth-
ods.

Since the method is no longer keeping track of single particles, it is are not longer
in the microscopic scale. It has moved to a mesoscopic scale, which means that one
is now tracking averaged packets of particles.

It is mentioned here that from now on, vectors ~x, ~p and ~e are going to be just
x, v, e, for the sake of notation clarity.

20

3.1. BOLTZMANN EQUATION CHAPTER 3. LATTICE BOLTZMANN METHOD

3.1 Boltzmann equation

A familiar equation in the world of statistical mechanics the Boltzmann equation rep-
resents the particle density in the position range x + dx and the momentum range
p+ dp1 at time t

f(x, p, t)dxdp

If there are no collisions, then at time t + dt the position of particles starting at x
is going to be x + dx and the new momentum is going to be p + dp. This allows to
calculate the momenta and positions of particles for t + dt if we know these values
at time t:

f(x+ dx, p+ dp, t+ dt)dxdp = f(x, p, t)dxdp (3.2)

The Equation 3.2 is know in the Lattice Boltzmann Method world as the streaming
step.

However there are collisions that result in particles at (x, p) not arriving at (x +

dx, p+dp) and particles that arriving at (x+dx, p+dp) but did not come from (x, p). It
is set Γ−dxdpdt equal to the number of molecules that do not arrive to the expected
phase space due to collisions during time dt. In the same way Γ+dxdpdt is set to the
number of particles that start somewhere different to (x, p) and end at (x+dx, p+dp).
If this notion is added to equation 3.2 the following term is obtained:

f(x+ dx, p+ dp, t+ dt)dxdp = f(x, p, t)dxdp+ [Γ+ − Γ−]dxdpdt (3.3)

The first order terms of a Taylor series expansion of the left hand side of the Equation
3.3 give the Boltzmann equation:

u · ∇xf + F · ∇pf +
∂f

∂t
= Γ+ − Γ− (3.4)

Where ∇x is (∂
∂x
, ∂
∂xβ

, ...), ∇x is (∂
∂p
, ∂
∂pβ

, ...), F is an external force and f is the dis-
tribution function. It is to note that although Equation 3.4 was derived using an ideal
gas as reference it can be derived for an arbitrary chemical component [ST05].

In its complete form Equation 3.4 is a nonlinear integral differential equation and
1In statistical mechanics, (~x, ~p) are said to be coordinates in phase space [Vig09]

21

3.2. LBM FRAMEWORK CHAPTER 3. LATTICE BOLTZMANN METHOD

it is particularly complicated to solve. With the Lattice Botlzmann methods an ap-
proximation to the Equation 3.3 is found with the particle perspective. This solution
contains the collide and stream notions, central to the Lattice Boltzmann Method and
avoid one to solve the rather complicated Equation 3.4.

3.2 LBM framework

The lattice Boltzmann models simplify Boltzmann’s original concept by reducing the
number of possible particle spatial positions and momenta from a continuum to a few
possible results, and similarly the time is discretized to time steps. Particle positions
are now confined to the nodes on the lattice, variations of momenta are reduced to 8

directions and 3 magnitudes, mass is reduced to a single particle mass. Figure 3.1
shows the cartesian lattice and velocities ei where a = 0, ..., 8, e0 represents particles
at rest.

Not every lattice is appropriate for the Lattice Boltzmann Method. There are
several conditions that have to be met to give the lattice sufficient isotropic behavior
and allow a full recovery of the Navier–Stokes Equation [Suc01]. Some schemes
have gained popularity due to easy implementation, some of these are shown in
Figure 3.2 for the 2D and 3D cases.

Figure 3.3 shows the model known as the D2Q9. It is 2 dimensional (D2) and
contains 9 velocities (Q9). This model has became the defacto standard for 2D do-
mains. Since this work comprehends a 2D domain the D2Q9 lattice was selected
and it is used throughout this document. From now on when referring to a lattice, it
is understood as the model mentioned above.

To comply with the isotropy condition, the 2DQ9 model must have the magnitude
of the vector ei and set of weights ωi for each velocity. The velocity magnitude is
given by

ei =


0 for i = 0

1 for i = 1, 2, 3, 4
√

2 for i = 5, 6, 7, 8

22

3.2. LBM FRAMEWORK CHAPTER 3. LATTICE BOLTZMANN METHOD

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

e0 e1

e2

e3

e4

e5e6

e7 e8

{Lattice Unit, lu

Figure 3.1: LBM cartesian grid and vectors of the D2Q9 lattice.

and the weights corresponding to the model implemented in this work are

ωi =


4/9 for i = 0

1/9 for i = 1, 2, 3, 4

1/36 for i = 5, 6, 7, 8

3.2.1 Macroscopic variables

Since the method uses statistical mechanics which is a great mathematical tool for
dealing with large populations, of particles in this case, the frequencies can be con-
sidered as direction specific fluid densities [ST05]. This the fluid density can be

23

3.2. LBM FRAMEWORK CHAPTER 3. LATTICE BOLTZMANN METHOD

(a) D2Q7 hexagonal lattice

28 Chapter 4 The lattice Boltzmann method

Table 4.2: Lattice vector bases and their weights for the D1Q3 and D3Q15 lattices.
The complete set of vectors is all spatial permutations of the vectors given here.

(a) D1Q3 lattice

Vector Weighting

(0) t0 = 2/3
(±1) ts = 1/6

(b) D3Q15 lattice

Vector Weighting

(0, 0, 0) t0 = 2/9
(±1, 0, 0) ts = 1/9

(±1,±1,±1) tl = 1/72

Figure 4.2: The vectors of the D1Q3 lattice.

Figure 4.3: The vectors of the D3Q15 lattice.

(b) D3Q15 lattice

Figure 3.2: Two common lattice schemes for the Lattice Boltzmann Method

e0 e1

e2

e3

e4

e5e6

e7 e8

Figure 3.3: Vectors of the D2Q9 lattice.

calculated using the following relationship:

ρ =
8∑
i=0

fi (3.5)

and the macroscopic velocity u, is an average of the discrete velocities ei, weighted
by the directional densities:

u =
1

ρ

8∑
i=0

fiei (3.6)

These two simple equation allows us to jump from the discrete microscopic velocities
of the method to a continuum of macroscopic velocities that represent the fluid’s
motion.

24

3.2. LBM FRAMEWORK CHAPTER 3. LATTICE BOLTZMANN METHOD

3.2.2 The equilibrium distribution function

The equilibrium distribution is used to simulate the collision between fluid particles.
It can be derived from the Maxwell–Boltzmann velocity distribution from statistical
mechanics:

f eqi (x) = ωiρ(x)

[
1 + 3

ei · u
c2

+
9(ei · u)2

2c4
− 3u2

2c2

]
(3.7)

It is proven that the equilibrium distribution of Equation 3.7 conserves mass and
momentum [Vig09]. Equation 3.7 is not the only equilibrium function available. This
function can be modified to simulate different fluids like plasmas, non–newtonian
fluids, etc.

3.2.3 The BGK model

So far the collision operator Ω has not been discussed. The collision operator was
proposed by Qian, d’Humieres, and Lallemand as a simplified collision operator sim-
ilar to the one proposed for the Boltzmann equation by Bhatnagar, Gross, and Krook
in 1954 [Vig09]. The BGK collision operator is given by

Ωi = −1

τ
[fi − f eqi] (3.8)

where τ is a free parameter known as the relaxation time, and f eqi is the equilib-
rium distribution function of particles. The collision operator represents the relaxation
time of the distribution function fi towards the equilibrium f eqi . It is proven that this
collision operator conserves mass and momentum [Suc01].
If we replace the BGK collision operator in Equation 3.1 the Lattice Boltzmann BGK
model is obtained

fi(x+ ei, t+ 1) =

(
1− 1

τ

)
fi(x, t) +

1

τ
f eqi (x, t) (3.9)

It has to be mentioned that the value of τ , – the time relaxation parameter –, cannot
be chosen arbitrary because as τ → 0.5 numerical instabilities arise in the method
[ST05].

25

3.3. BOUNDARY CONDITIONS CHAPTER 3. LATTICE BOLTZMANN METHOD

· · · ·

· · · · · ·

· · · · · ·

· · ·

· · · · · · ·

·

·

· · · · · · ·

· · · · · · ·

· · · · · · ·
(a) Discrete direction–specific densities
for time t

· · · ·

· · · · · ·

· · · · · ·

· · ·

· · · · · · ·

·

·

· · · · · · ·

· · · · · · ·

· · · · · · ·
(b) Discrete direction–specific densities for
time t+ dt

Figure 3.4: LBM streaming step

3.2.4 Streaming

In the streaming step, the direction–specific densities are moved one grid–node away
in the direction they are pointing. This process can be seen on figure 3.4.

3.2.5 Numerical kinematic viscosity

For the BGK D2Q9 model the numerical viscosity, which is not related to the physical
viscosity, but to the relaxation parameter, is given by:

νlb =
1

3

(
τ − 1

2

)
(3.10)

Note that as mentioned on section 3.2.3 numerical instabilities arise when τ ap-
proaches 1/2. A value of τ = 1 is the safest [ST05] to keep the method numerical
stable.

3.3 Boundary conditions

The Lattice Boltzmann Method has a rich set of boundary conditions, for many dif-
ferent situations. All these boundary conditions vary in stability and convergence.

26

3.3. BOUNDARY CONDITIONS CHAPTER 3. LATTICE BOLTZMANN METHOD

In this work we are going to use periodic boundaries, bounce–back, and Zou/He for
the flux and pressure boundary conditions. These boundary schemes are simple to
implement and they are stable [LCM+08] in the range of the work comprehended
here.

3.3.1 Periodic

With the periodic boundary conditions the system is closed by the edges and they
are treated as they are attached to the the opposite edges of the domain. These
boundaries as useful to simulate infinite domains, or finite repetitive (periodic) do-
mains.
The boundary is easy implemented, the direction–specific densities pointing to out-
side of the domain are streamed to the corresponding directions in the other side of
the domain as seen on Figure 3.5.

· · · ·

· · · · · ·

· · · · · ·

· · ·

· · · · · · ·

·

·

· · · · · · ·

· · · · · · ·

· · · · · · ·
Figure 3.5: Stream step for a periodic boundary

27

3.3. BOUNDARY CONDITIONS CHAPTER 3. LATTICE BOLTZMANN METHOD

3.3.2 Bounce–back

As mentioned above the bounce–back boundaries are particularly simple and they
have played a mayor role in making the Lattice Boltzmann Method popular for mod-
eling complex geometries. The easiness of this boundary is that you just have to
set a particular node as a solid boundary and nothing else has to be done. For ex-
ample the a node marked with a 1 means that is a fluid and a node marked with a
0 is considered a solid boundary. No special treatment is necessary direction–wise
or whatsoever. This makes the programming rather simple and makes the method
suitable to complex geometries such as the found in porous media.
Here it is mentioned that many bounce–back schemes exists, but we are going to
concentrate in the mid–plane full bounce–back. In this mode the solid wall (dark
colored on the image) is between two lattice nodes as seen Figure 3.6.

· · · ·

· · · · · ·

· · · · · ·

· · ·

· · · · · · ·

·

·

· · · · · · ·

· · · · · · ·

· · · · · · ·
Figure 3.6: Pre–Stream step for a bounce–back boundary for a time t

After the direction–specific densities are streamed they are “absorbed” by they
solid temporarily as outlined on Figure 3.7. Then the direction–specific densities are
reflected to the opposite direction. This process is shown in Figure 3.8. Finally in
the next time step the direction–specific densities are streamed back into the fluid
domain as seen in Figure 3.9.

28

3.3. BOUNDARY CONDITIONS CHAPTER 3. LATTICE BOLTZMANN METHOD

· · · ·

· · · · · ·

· · · · · ·

· · ·

· · · · · · ·

·

·

· · · · · · ·

· · · · · · ·

· · · · · · ·
Figure 3.7: Post–Stream step for a bounce–back boundary for a time t

· · · ·

· · · · · ·

· · · · · ·

· · ·

· · · · · · ·

·

·

· · · · · · ·

· · · · · · ·

· · · · · · ·
Figure 3.8: Bounce–back of direction–specific densities

3.3.3 Von Neumann

Von Neumann or flux boundary conditions set the flow speed at a boundaries. A
velocity vector (both components) are specified at the node from which density/pres-
sure is computed.

Not just the density/pressure has to be computed, also unknown direction–specific
densities appear at the boundaries and these have to be calculated properly to con-
serve mass and momentum. Lets consider the inlet of a channel, at the first node
on the east side, after the streaming step, some direction–specific densities are un-

29

3.3. BOUNDARY CONDITIONS CHAPTER 3. LATTICE BOLTZMANN METHOD

· · · ·

· · · · · ·

· · · · · ·

· · ·

· · · · · · ·

·

·

· · · · · · ·

· · · · · · ·

· · · · · · ·
Figure 3.9: Post–Stream step for a bounce–back boundary for a time t+ dt

known (shown dashed) as seen on Figure 3.10.

· · · ·

· · · · · ·

· · · · · ·

· · ·

· · · · · · ·

·

·

· · · · · · ·

· · · · · · ·

· · · · · · ·
Figure 3.10: Post–Stream boundary node showing unknown direction–specific den-
sities

Using the know velocity set at the boundary and using Equations 3.5, 3.6 and 3.7
and assuming that direction–specific densities parallel to the boundary are equal to

30

3.3. BOUNDARY CONDITIONS CHAPTER 3. LATTICE BOLTZMANN METHOD

0, one can find the unknown direction–specific densities.

Let’s suppose that one want set a von Neumann boundary condition on the North
lid. According to Figure 3.3, the direction–specific densities that have to be solved
are f7, f4 and f8. The condition is a vertical velocity towards the south

u0 = [0, v0] (3.11)

Using Equation 3.6, one gets two equations, one for each component of the ve-
locity vector

0 = f1 − f3 + f5 − f6 − f7 + f8 (3.12)

and
ρv0 = f2 − f4 + f5 + f6 − f7 − f8 (3.13)

As proposed by [ZH97], one can assume that the bounce–back is preserved in the
direction normal to the boundary, so

f2 − f eq2 = f4 − f eq4 (3.14)

This is a system of four equations and four unknowns, and it can be solved as follows.
Equations 3.5 and 3.13 have the unknown direction–specific densities f7, f4 and f8,
so they can be rewritten with those variables on the left hand side.

f4 + f7 + f8 = ρ− f0 − f1 − f2 − f3 − f5 − f6 (3.15)

f4 + f7 + f8 = f2 + f5 + f6 − ρv0 (3.16)

They the right hand sides are equated

ρ− f0 − f1 − f2 − f3 − f4 − f5 − f6 = f2 + f5 + f6 − ρv0 (3.17)

and solve for ρ

ρ =
f0 + f1 + f3 + 2(f2 + f5 + f6)

1 + v0
(3.18)

Now, from Equation 3.14 one can solve for f4. As this equation contains the equi-
librium terms. Direction–specific densities of Equation 3.14 have to be substituted

31

3.3. BOUNDARY CONDITIONS CHAPTER 3. LATTICE BOLTZMANN METHOD

on Equation 3.7, yielding

f4 = f2 −
2

3
ρv0 (3.19)

Substituting Equations 3.12 and 3.19 into the Equation 3.13 it can be solved for f7.
Equation 3.19 is used to replace f4 and Equation 3.12 is used to replace f8.

f7 = f5 +
1

2
(f1 − f3)−

1

6
ρv0 (3.20)

to solve for f8, the last step can be repeated, except that Equation 3.12 is nows used
to substitute for f7

f8 = f6 −
1

2
(f1 − f3)−

1

6
ρv0 (3.21)

Now all the direction–specific densities are known, and the system configured
properly to start a simulation.

3.3.4 Dirichlet

These boundary conditions constrain the pressure/density at the boundaries of the
domain. The solution of these boundaries is very similar to the von Neumann ones.
A density is specified at the node and with this information the speed is computed,
and the remaining unknown direction–specific densities. Note that specifying density
is equivalent to specifying pressure because they are related via an Equation of State
of an ideal gas [Suc01]. For the D2Q9 the relationship is given by

p =
ρ

3
(3.22)

The computation of the pressure boundary conditions, is very similar to the flux
ones. Now instead of having a velocity, a density is specified at the node and the ve-
locity vector is unknown. With this known density, the same process can be followed
to solve for the unknown velocity and unknown direction–specific densities.

3.3.5 Corner nodes

With the model presented on Sections 3.3.4 and 3.3.3 serious problems arise at the
corner nodes.
Let’s take for example the North–West node of a 2D channel. After streaming only 3

32

3.3. BOUNDARY CONDITIONS CHAPTER 3. LATTICE BOLTZMANN METHOD

· · · ·

· · · · · ·

· · · · · ·

· · ·

· · · · · · ·

·

·

· · · · · · ·

· · · · · · ·

· · · · · · ·
(a) Pre–streaming of direction–specific
densities

· · · ·

· · · · · ·

· · · · · ·

· · ·

· · · · · · ·

·

·

· · · · · · ·

· · · · · · ·

· · · · · · ·
(b) Post–streaming of direction–specific
densities

Figure 3.11: Corner node problem of boundary condition

direction–specific densities are known as seen on Figure 5.3(b), and we don’t have
enough data to use Equations 3.5, 3.6 and 3.7 to solve for the unknown densities.

Zou and He proposed a solution for this situation using the off–equilibrium den-
sities. The idea is to bounce the know densities as seen on Figure 5.4. After the
stream two densities are still unknown (show dashed), but now Equations 3.5, 3.6
and 3.7 can be used to find the two missing densities[ZH97].
It is quite obvious that these two densities after the streaming step do not aport any-
thing to the fluid (they both are pointing towards outside the domain) but their value
is needed to properly calculate ρ, and this is going to be needed if we want o satisfy
the conservation of mass.

This approach is different for velocity and pressure boundary conditions. It is fully
developed for the pressure boundary conditions, for the velocity boundaries, some
assumptions have to be made in order to retrieve all the values, this assumption
introduces “noise”, that make the boundary prone to instabilities [ZH97].

3.3.6 Moving boundary

One of the novelty of this work is the ability to move objects inside the fluid inter-
actively. Moving objects inside the fluid is a complex task since is prone to break
the continuity of the model, this problem is solved by computing the new direction–

33

3.4. UNITS CONVERSION CHAPTER 3. LATTICE BOLTZMANN METHOD

· · · ·

· · · · · ·

· · · · · ·

· · ·

· · · · · · ·

·

·

· · · · · · ·

· · · · · · ·

· · · · · · ·
Figure 3.12: Post–Stream boundary node showing bounced direction–specific den-
sities

specific densities each time the object is moved. Also a new moment has to be
computed, because the movement of the object adds a momentum to the particles
towards the direction it is moved [Lad94].

f ′i = fi − 2ρ
wi(~ci · ~u)

c2s
(3.23)

Where f ′i are the bounced direction–specific densities fi, and ~u is the velocity of
the moving obstacle inside the fluid. One key issue emerges of “when” to move
the obstacle. In this work, the motion of the object is done based on the speed of
the object. With this speed, it can be calculated the number of iterations needed to
achieve one dx, and since this is a discrete system, the object will not be moved until
all the iterations needed to move the object one dx have been calculated.

3.4 Units conversion

Lattice Boltzmann Method simulations represent the physics of actual macroscopic
systems, but the method works at a microscopic level. This introduces the need to

34

3.4. UNITS CONVERSION CHAPTER 3. LATTICE BOLTZMANN METHOD

convert physical macroscopic units to microscopic units or lattice units.

There are two approaches to this conversion: the first one consist in converting
from physical units straight to lattice units, and a more popular one that uses and
intermediate dimensionless system to do the conversion.
There are several reasons why taking a intermediate step is preferred. Discrete vari-
ables chosen, using this path, are directly related to important numerical parameters
of the method, which have an impact on the accuracy and the stability of a simulation
of the system [Lat08]. Also one may be in a situation in which there is no physical
system to refer, like when you are benchmarking an article.

For these reasons more attention is going to be put into the second approach and
a full developed example is shown in Appendix A.

3.4.1 Direct conversion

In this method the lattice units are related to physical units through the time step ∆t

and the node spacing ∆x. The subscript is used to identify physical units is p and

lb to identify Lattice Boltzmann Method units. The methodology described here is
presented in Sukop and Thorne’s book [ST05].

The time step is given by the equation

∆t =
νp

c2s,p(τ − 1/2)
(3.24)

Where ν is the kinematic viscosity, cs,p is the speed of the sound, and τ the only free
parameter is the relaxation time.
In the same way the space step is given by the equation:

∆x =
νp

cs,lbcs,p(τ − 1/2)
(3.25)

The only missing parameter is cs,lb which can be found with the relation

cs,p = cs,lb
∆x

∆t
(3.26)

35

3.4. UNITS CONVERSION CHAPTER 3. LATTICE BOLTZMANN METHOD

The Equation 3.26 can be used to convert any desired speed from physical units to
lattice units.

Similary for the pressure the resulting equation is

pp = p0,p
ρlb
ρ0,lb

(3.27)

Where p0 is the reference pressure and ρ0,lb is the reference density. One can use
the Equation 3.22 to relate the density and pressure to find the unknown parameters
of this equation.

3.4.2 Dimensionless conversion

The dimensionless approach is described by Lätt [Lat08]. In this approach a physical
system is converted to a dimensionless system denoted by the subscript d, and then
converted lattice system. Taking dimensionless path is required for instance when
analyzing lattice Boltzmann accuracy [Vig09].

For example one can use characteristic length l0 and time t0 and use them as a
base, to convert units to a dimensionless system. Take the physical time tp. This is
given in a dimensionless notation by

td =
tp
t0,p

(3.28)

and a length l can be described as

ld =
lp
l0,p

(3.29)

In the same way, a unit conversion is introduced for other variables, based on a
dimensional analysis. Take for example the physical velocity up:

up =
l0,p
t0,p

ud (3.30)

In the dimensionless system, the characteristic length and time of the system
are both normalized to 1. Then the dimensionless system is discretized into a grid

36

3.5. ALGORITHM SUMMARY CHAPTER 3. LATTICE BOLTZMANN METHOD

with Nx nodes used to resolve its characteristic length. Niter time steps are used
to resolve the system’s characteristic time. Space and time are then divided into
intervals δx and δt respectively.

δx =
1

Nx
(3.31)

δt =
1

Niter
(3.32)

And with this simple definition other variables, such as velocity and viscosity, are eas-
ily converted between dimensionless system and lattice system through dimensional
analysis:

ud =
δx

δt
ulb (3.33)

νd =
δx2

δt
νlb (3.34)

Although this a process looks complicated, it will be clarified by the example
described on Appendix A.

3.5 Algorithm summary

A summary of the algorithm implemented in this work is presented here. One can
notice the simplicity of the algorithm, which is one of the advantages of the method.
Also it is noticeable, that for each time step the same algorithm is applied to each
lattice node what makes the method fully data parallel and therefore convenient to a
GPU implementation.

Algorithm 1 Lattice Boltzmann Algorithm
while (TRUE) do

Calculate macroscopic variables: → ρ =
∑8

i=0 fi and u = 1
ρ

∑8
i=0 fiei

Stream: → f(~x+ ~e, t+ 1)− f(~x, t) = Ω(~x, t)
Move obstacle: → f ′i = fi − 2ρwi(~ci · ~v)/c2s
Apply boundary conditions
Collide: → f eqi (x) = ωiρ(x)

[
1 + 3(ei·u)

c2
+ 9(ei·u)2

2c4
− 3u2

2c2

]
end while

37

Chapter 4

CUDA implementation

4.1 Introduction

Computers based on a single central processing unit (CPU), saw rapid performance
increases and cost reductions for more than two decades. During this performance
drive, software developers relied on advances on hardware technology to increase
the speed of their applications. This trend, however, has slowed down since 2003,
due to the power consumption and overheating issues of CPU cores[KmWH10].
Since then almost all CPUs have switched to multi–core models, where multiple pro-
cessing units are placed onto a single chip to increase performance keeping power
consumption and heat at a lower levels. This switch had a big impact on the soft-
ware developer community due to the fact, that optimizations on performance where
no longer handled by hardware, and had to be addressed by programmers during
the coding of the software.

Traditionally software applications where written as sequential programs, these
programs will only run on one of the processing cores, and will not achieve perfor-
mance increases on modern multi–core CPUs. Now programs have to be written
as parallel programs. Programs in which multiple threads of execution cooperate to
achieve the functionality faster.

The parallel programming is nothing new. The scientific community has been
developing parallel programs for decades. These programs run on large scale ex-
pensive computers (clusters). Due to cost only few applications where allowed to run

38

4.2. GPUS AS SUPER COMPUTERS CHAPTER 4. CUDA IMPLEMENTATION

on those computers, making parallel software development rare and scarce.

4.2 GPUs as super computers

Since 2003 a kind of multi–core processors called Graphics Processing Units (GPU),
have lead the race for computing performance. This performance gap is shown in
Figure 4.1

!"#$%&'()*(+,%'-./0%1-,!

!

!

2((!345(6'-7'#881,7(9/1.&(:&';1-,(<*=!
!

!
!

>17/'&()?)*(>@-#%1,7?6-1,%(A$&'#%1-,;($&'(B&0-,.(#,.(
C&8-'D(E#,.F1.%"(G-'(%"&(!63(#,.(963(

!

"#$!%$&'()!*$#+),!-#$!,+'.%$/&).0!+)!12(&-+)34/(+)-!.&/&*+2+-0!*$-5$$)!-#$!678!&),!
-#$!978!+'!-#&-!-#$!978!+'!'/$.+&2+:$,!1(%!.(;/<-$4+)-$)'+=$>!#+3#20!/&%&22$2!
.(;/<-&-+()! !$?&.-20!5#&-!3%&/#+.'!%$),$%+)3!+'!&*(<-! !&),!-#$%$1(%$!,$'+3)$,!
'<.#!-#&-!;(%$!-%&)'+'-(%'!&%$!,$=(-$,!-(!,&-&!/%(.$''+)3!%&-#$%!-#&)!,&-&!.&.#+)3!
&),!12(5!.()-%(2>!&'!'.#$;&-+.&220!+22<'-%&-$,!*0!@+3<%$!A4BC!

!"#$%

&'(%

)$$#%

&*(% +,-%

)$$.%)$$/%)$$0%)$$1%)$$2%

!"#/% !".$%
30$%

304%

32$%

35)%

36)$$%

&*(% !78%9'-% 9':% &*(%

9H2==(I(9&>-'0&(9HJ(2K=(

9L2(I(9&>-'0&(LK==(9HJ!

9K=!I!9&>-'0&!KK==!9HJ(

9M)!I!9&>-'0&!ML==!9HJ!

9M=!I!9&>-'0&!MK==!9HJ!

N:O=!I!9&>-'0&!PK==!3@%'#!

N:<Q!I!9&>-'0&!>J!QLQ=!3@%'#!

N:<=!I!9&>-'0&!>J!QK==!

#;$%3<=%
>7-?)%@*7%

#;)%3<=%
<'-,?-A7B(%

!"#$%

!".$%

304%

32$%

32$%
CDA-'%

32$%
CDA-'%

!7-AEB77F%
G-?HI7AA%JJ%

K77FI-?HA%

<'-,?-A7B(%

Figure 4.1: Performance gap between GPUs and CPUs, taken from [NVI10]

Such a large performance gap has motivated developers to move the computa-
tionally intensive parts of a program to GPU for execution. These computationally
intensive parts of the program is where the parallel programming focuses, because
where more work is done, there is more chances of performance increases due to
parallelization techniques.

The reason for such a large performance difference between the GPU and CPU,
is that the GPU is specialized for compute–intensive, highly–parallel computations,
exactly what graphics rendering is about, and therefore designed in such a way that
more transistors are devoted to computing. In the other hand, CPUs are optimized
for sequential code and I/O. For these reasons CPUs need more advanced control
logic, and cache. This difference can be see on Figure 4.2.

Not only the amounts in transistors makes a difference, memory bandwidth is also
an important issue. GPUs have been operating at approximately 10x the bandwidth

39

4.2. GPUS AS SUPER COMPUTERS CHAPTER 4. CUDA IMPLEMENTATION
! !"#$%&'()*(+,%'-./0%1-,!

!

!

!234(5'-6'#771,6(8/1.&(9&':1-,(;*<! ! ;!
!

!

!

=16/'&()>?*(@"&(852(3&A-%&:(B-'&(@'#,:1:%-':(%-(3#%#(
5'-0&::1,6(

!

"#$%!&'%()*)(+,,-.!/0%!123!)&!%&'%()+,,-!4%,,5&6)/%7!/#!+77$%&&!'$#8,%9&!/0+/!(+:!8%!
%;'$%&&%7!+&!7+/+5'+$+,,%,!(#9'6/+/)#:&! !/0%!&+9%!'$#<$+9!)&!%;%(6/%7!#:!9+:-!
7+/+!%,%9%:/&!):!'+$+,,%,! !4)/0!0)<0!+$)/09%/)(!):/%:&)/-! !/0%!$+/)#!#*!+$)/09%/)(!
#'%$+/)#:&!/#!9%9#$-!#'%$+/)#:&=!>%(+6&%!/0%!&+9%!'$#<$+9!)&!%;%(6/%7!*#$!%+(0!
7+/+!%,%9%:/.!/0%$%!)&!+!,#4%$!$%?6)$%9%:/!*#$!&#'0)&/)(+/%7!*,#4!(#:/$#,.!+:7!
8%(+6&%!)/!)&!%;%(6/%7!#:!9+:-!7+/+!%,%9%:/&!+:7!0+&!0)<0!+$)/09%/)(!):/%:&)/-.!/0%!
9%9#$-!+((%&&!,+/%:(-!(+:!8%!0)77%:!4)/0!(+,(6,+/)#:&!):&/%+7!#*!8)<!7+/+!(+(0%&=!

@+/+5'+$+,,%,!'$#(%&&):<!9+'&!7+/+!%,%9%:/&!/#!'+$+,,%,!'$#(%&&):<!/0$%+7&=!"+:-!
+'',)(+/)#:&!/0+/!'$#(%&&!,+$<%!7+/+!&%/&!(+:!6&%!+!7+/+5'+$+,,%,!'$#<$+99):<!9#7%,!
/#!&'%%7!6'!/0%!(#9'6/+/)#:&=!A:!B@!$%:7%$):<.!,+$<%!&%/&!#*!');%,&!+:7!C%$/)(%&!+$%!
9+''%7!/#!'+$+,,%,!/0$%+7&=!D)9),+$,-.!)9+<%!+:7!9%7)+!'$#(%&&):<!+'',)(+/)#:&!&6(0!
+&!'#&/5'$#(%&&):<!#*!$%:7%$%7!)9+<%&.!C)7%#!%:(#7):<!+:7!7%(#7):<.!)9+<%!&(+,):<.!
&/%$%#!C)&)#:.!+:7!'+//%$:!$%(#<:)/)#:!(+:!9+'!)9+<%!8,#(E&!+:7!');%,&!/#!'+$+,,%,!
'$#(%&&):<!/0$%+7&=!A:!*+(/.!9+:-!+,<#$)/09&!#6/&)7%!/0%!*)%,7!#*!)9+<%!$%:7%$):<!
+:7!'$#(%&&):<!+$%!+((%,%$+/%7!8-!7+/+5'+$+,,%,!'$#(%&&):<.!*$#9!<%:%$+,!&)<:+,!
'$#(%&&):<!#$!'0-&)(&!&)96,+/)#:!/#!(#9'6/+/)#:+,!*):+:(%!#$!(#9'6/+/)#:+,!8)#,#<-=!

)*? !234 C(#(8&,&'#D>5/'$-:&(5#'#DD&D(
!-7$/%1,6(4'0"1%&0%/'&(
A:!F#C%98%$!GHHI.!FJA@AK!):/$#76(%7!L3@K +!<%:%$+,!'6$'#&%!'+$+,,%,!
(#9'6/):<!+$(0)/%(/6$%! !4)/0!+!:%4!'+$+,,%,!'$#<$+99):<!9#7%,!+:7!):&/$6(/)#:!
&%/!+$(0)/%(/6$%! !/0+/!,%C%$+<%&!/0%!'+$+,,%,!(#9'6/%!%:<):%!):!FJA@AK!123&!/#!
&#,C%!9+:-!(#9',%;!(#9'6/+/)#:+,!'$#8,%9&!):!+!9#$%!%**)()%:/!4+-!/0+:!#:!+!
L23=!

L3@K!(#9%&!4)/0!+!&#*/4+$%!%:C)$#:9%:/!/0+/!+,,#4&!7%C%,#'%$&!/#!6&%!L!+&!+!
0)<05,%C%,!'$#<$+99):<!,+:<6+<%=!K&!),,6&/$+/%7!8-!M)<6$%!N5B.!#/0%$!,+:<6+<%&!#$!
+'',)(+/)#:!'$#<$+99):<!):/%$*+(%&!+$%!&6''#$/%7.!&6(0!+&!L3@K!MOPQPKF.!
O'%:LR.!+:7!@)$%(/L#9'6/%=!

"#$%&!

'()!"*+,-*.!

'()!

'()!

'()!

/0'1!

"2)!

/0'1!

!! !
!! !
!! !
!! !
!! !
!! !
!! !
!! !

32)!

Figure 4.2: Design difference between GPUs and CPUs, taken from [NVI10]

of contemporaneously available CPUs. Recent GPUs chips can achieve speeds of
100GB/s compared to the 20GB/s of modern CPU as seen on Figure 4.3.

!"#$%&'()*(+,%'-./0%1-,!

!

!

2((!345(6'-7'#881,7(9/1.&(:&';1-,(<*=!
!

!
!

>17/'&()?)*(>@-#%1,7?6-1,%(A$&'#%1-,;($&'(B&0-,.(#,.(
C&8-'D(E#,.F1.%"(G-'(%"&(!63(#,.(963(

!

"#$!%$&'()!*$#+),!-#$!,+'.%$/&).0!+)!12(&-+)34/(+)-!.&/&*+2+-0!*$-5$$)!-#$!678!&),!
-#$!978!+'!-#&-!-#$!978!+'!'/$.+&2+:$,!1(%!.(;/<-$4+)-$)'+=$>!#+3#20!/&%&22$2!
.(;/<-&-+()! !$?&.-20!5#&-!3%&/#+.'!%$),$%+)3!+'!&*(<-! !&),!-#$%$1(%$!,$'+3)$,!
'<.#!-#&-!;(%$!-%&)'+'-(%'!&%$!,$=(-$,!-(!,&-&!/%(.$''+)3!%&-#$%!-#&)!,&-&!.&.#+)3!
&),!12(5!.()-%(2>!&'!'.#$;&-+.&220!+22<'-%&-$,!*0!@+3<%$!A4BC!

!"#$%

&'(%

)$$#%

&*(% +,-%

)$$.%)$$/%)$$0%)$$1%)$$2%

!"#/% !".$%
30$%

304%

32$%

35)%

36)$$%

&*(% !78%9'-% 9':% &*(%

9H2==(I(9&>-'0&(9HJ(2K=(

9L2(I(9&>-'0&(LK==(9HJ!

9K=!I!9&>-'0&!KK==!9HJ(

9M)!I!9&>-'0&!ML==!9HJ!

9M=!I!9&>-'0&!MK==!9HJ!

N:O=!I!9&>-'0&!PK==!3@%'#!

N:<Q!I!9&>-'0&!>J!QLQ=!3@%'#!

N:<=!I!9&>-'0&!>J!QK==!

#;$%3<=%
>7-?)%@*7%

#;)%3<=%
<'-,?-A7B(%

!"#$%

!".$%

304%

32$%

32$%
CDA-'%

32$%
CDA-'%

!7-AEB77F%
G-?HI7AA%JJ%

K77FI-?HA%

<'-,?-A7B(%

Figure 4.3: Memory bandwidth for the CPU and GPU, taken from [NVI10]

The design philosophy of the GPU is forced by the ever growing video game
industry, and its need of to perform a massive number of calculations per video
frame in advanced video games.

40

4.3. ARCHITECTURE OF A GPU CHAPTER 4. CUDA IMPLEMENTATION

4.3 Architecture of a GPU

Modern GPUs are organized into sets of highly threaded Streaming Multiprocessors
(SMs). A pair of SMs form a building block as seen in Figure 4.4. Each SM has
8 Streaming Processors (SPs). Each SP has a multiply–add (MAD) unit, and an
additional multiply (MUL) unit.

© David Kirk/NVIDIA and Wen-mei Hwu, 2006-2008 6

gigahertz (GHz). If you do the math, that’s almost 367 gigaflops for the MADs and a total
of over 500 gigaflops if you include the MULs as well. In addition, special function units
perform floating point functions such as SQRT and RCP SQRT as well as transcendental
functions. Each GPU currently comes with 1.5 megabytes of DRAM. These DRAMs
differ from the system memory DIMM DRAMs on the motherboard in that they are
essentially the frame buffer memory that is used for graphics. For graphics applications,
they hold high-definition video images, and texture information for 3D rendering as in
games. But for computing, they function like very high bandwidth off-chip cache, though
with somewhat more latency regular cache or system memory. If the chip is programmed
properly, the high bandwidth makes up for the large latency.

The processor has 86.4 GB/S of memory bandwidth, plus 4 gigabytes of bandwidth each
way across the PCI-express bus – a total of 8 GB/s for communication with the CPU. You
can transfer data from the system memory at 4 GB/S, and you can upload data back to the
system memory at 4 GB/S. Altogether, there is a combined total of 8 gigabytes/second, but
for practical purposes, you’ll likely work one way or the other at a time unless you are
overlapping data transfers before and after a sequence of computations. This may seem
like a limitation, but the PCI-E bandwidth is comparable to the system memory and CPU
front-side bus bandwidth, so it’s really not the limitation it would seem at first.

Some important characteristics: peak performance is about 10 times better than the current
highest end microprocessors. One of my students, John Stone, forwarded an ion placement
application, a forced calculation application, onto this machine, and got 265 gigaflops
sustained performance for his application. This is about 100 times the speed that he had
achieved on the CPU before. His impressive results are part of the benchmark suite
developed in the courses.

Load/store

Global Memory

Thread Execution Manager

Input Assembler

Host

Texture Texture Texture Texture Texture Texture Texture TextureTexture

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Load/store Load/store Load/store Load/store Load/store

Figure 1.3. Architecture of a CUDA-capable GPU
Figure 4.4: Modern GPU architecture, taken from [KmWH10]

This kind of architecture design, comes attached with a programming paradigm.
The programming model used by NVIDIA is named SIMT (Single Instruction Multiple
Thread) which is akin to the more standard SIMD (Single Instruction Multiple Data).
An important difference is that SIMD vector organizations expose the SIMD width to
the software, where SIMT instructions specify the execution logic of a single thread.
This way, SIMT enables programmers to write thread–level parallel code for indepen-
dent, scalar threads, as well as data parallel code for cooperative threads.

4.4 The need for speed

One may ask. Why is it needed more speed?. There a many typical applications that
run fast enough on single or dual core CPUs. But the world of scientific computing
can always benefit from more computing power. This enable user to run larger and
more complex simulations, more variables could be studied at the same time, results
for medical exams can be immediately available, etc.

41

4.5. CUDA CHAPTER 4. CUDA IMPLEMENTATION

Also technologies like HDTV or 3DTV will see improvements in definition and fea-
tures thanks to parallel computer architectures and software. Also the mobil arena,
now becoming ubiquitous, it is starting to be powered by parallel architectures, putting
parallel applications in the hand of billions people. For this reasons and much more,
is needed the careful study of parallel programming and development of parallel ap-
plication.

4.5 CUDA

NVIDIA’s Compute Unified Device Architecture is a parallel computing architecture
developed to allow developer to exploit the full processing power of the modern GPUs
created by the company. CUDA gives developers access to the native instruction set
and memory of the parallel computational elements in CUDA capable GPUs. This
provides tools to program GPUs, that resemble the tools for programming CPUs, like
compilers, programming languages, debugging tools, etc.

4.5.1 Programming model

To a CUDA programmer the system consists of two main components, the host or
the CPU and one or more devices or the GPUs. In scientific applications there
are sections a rich amount of data parallelism, a property where many arithmetic
operations can be performed on data structures in simultaneous way.
For these reason CUDA provides a heterogenous architecture, where the serial parts
of a program can be run on the host, and the parallel parts can be moved to the
device to improve performance as show in Figure 4.4.
Parallel parts of the code are known are kernels in CUDA terms. A kernel consists
of a grid of threads, that match the SIMT paradigm, that NVIDIA adopted to permit
the full usage of data parallelism.

4.5.2 Threads

As seen in Section 4.5.1, launching a CUDA kernel creates a grid threads that all
execute the kernel function. This way each, individual thread executes the kernel
function when this is launched. Since all threads in grid execute the same kernel

42

4.5. CUDA CHAPTER 4. CUDA IMPLEMENTATION
! !"#$%&'()*(+',-'#../0-(1,2&3!

!

!

!456(+',-'#../0-(78/2&(9&':/,0(;<=! ! >;!
!

(

?&'/#3(@,2&(&A&@8%&:(,0(%"&(",:%(B"/3&($#'#33&3(@,2&(&A&@8%&:(,0(%"&(2&C/@&<(

D/-8'&()E;<(F&%&',-&0&,8:(+',-'#../0-(

"#$%&#!

'(%)!*!

+,-&.!/01!23!+,-&.!/21!23!+,-&.!/*1!23!

+,-&.!/01!*3!+,-&.!/21!*3!+,-&.!/*1!*3!

4-56!

7!8(-9(:;!
<#=>#?6%:,!
@A#&>6%-?!

!
!"#$%&'!()*#!
!
!!
!+&$&''#'!,#$-#'!
!.#$-#'/00011123!
!
!
!
!
!
!
!
!
!"#$%&'!()*#!
!
!
!
!
!+&$&''#'!,#$-#'!
!.#$-#'400011123!
!
!
!

4-56!

"#$%&#!

'(%)!2!

+,-&.!/21!23!

+,-&.!/21!*3!

+,-&.!/21!03!

+,-&.!/*1!23!

+,-&.!/*1!*3!

+,-&.!/*1!03!

Figure 4.5: Heterogenous programming model, taken from [NVI10]

function, they need an effective way to distinguish from each other. For this reason,
NVIDIA has create a unique set of coordinates to solve this problem. The threads
are organized in a two–level hierarchy using unique coordinates called blockId and
threadId, assigned to them by the CUDA runtime system, as it is shown in Figure
4.6.

The grid size can be any number between 1 and 65536, organized as a one–
dimensional or a two–dimensional array1. The block size can be between 1 and 512,
organized as a one–dimensional, two–dimensional or three–dimensional array. This
is organization is intended to match common programming styles and to facilitate a
mapping to a 3D physical world.

One big advantage of the Grid–Block–Thread organization, is the transparent
1The just released NVIDIA fermi architecture supports three–dimensional grids.

43

4.5. CUDA CHAPTER 4. CUDA IMPLEMENTATION

© David Kirk/NVIDIA and Wen-mei Hwu, 2006-2008 2

Figure 3.1 shows a small grid that consists of four blocks organized into a 2X2 array. Each
block in the array is labeled with (blockId.x, blockId.y). For example, Block(1,0) has its
blockId.x=1 and blockId.y=0. It should be clear to the reader that the grid was generated
by launching the kernel with both grdiDim.x and gridDim.y set to 2. We will show the
code that does so momentarily.

Host

Kernel
1

Kernel
2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(0, 1)

Block
(1, 1)

Grid 2

Courtesy: NDVIA

Figure 3.2. An Example of CUDA Thread Organization.

Block (1, 1)

Thread
(0,1,0)

Thread
(1,1,0)

Thread
(2,1,0)

Thread
(3,1,0)

Thread
(0,0,0)

Thread
(1,0,0)

Thread
(2,0,0)

Thread
(3,0,0)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)

Figure 3.1 An example of CUDA Thread Organization

At the bottom level of the hierarchy, all blocks of a grid are organized into a three-
dimensional array of threads. All blocks in a grid have the same dimensions. Each threadId
consists of three components: the x coordinate threadId.x, the y coordinate threadId.y, and
the z coordinate threaded.z. The number of threads in each dimension of a block is
specified by the second special parameter given at the kernel launch. For the purpose of
our discussion, we refer to the second special parameter as blockDim variable given at the
launch of a kernel. The total size of a block is limited at 512 threads, with total flexibility
of distributing these elements into the three dimensions as long as the total number of
threads does not exceed 512. For example, (512,1,1), (8, 16, 2) and (16,16, 2) are all
allowable dimensions but (32, 32, 1) is not allowable since the total number of threads
would be 1024.

Figure 3.1 also illustrates the organization of threads within a block. Since all blocks
within a grid have the same dimensions, we only need to show one of them. In this
example, each block is organized into 4X2X2 arrays of threads. Figure 3.1 expands
blcck(1,1) by showing this organization of all 16 threads in block(1,1). For example,
thread(2,1,0) has its threadId.x=2, threadId.y=1, and threadId.z=0. Note that in this
example, we have 4 blocks of 16 threads each, with a grand total of 64 threads in the grid.
Note that we use these small numbers to keep the illustration simple. Typical CUDA grids
contain thousands to millions of threads.

We now come back to the point that the exact organization of a grid is determined by the
special parameters provided during kernel launch. The first special parameter of a kernel

Figure 4.6: CUDA thread organization, taken from [NVI10]

scalability if provides. This is, a program written in CUDA, does not have to be
modified to take advantage of more power devices. Figure 4.7 shows how a CUDA
program runs faster when using a more powerful device, without any code modifica-
tion.

4.5.3 Memory layout

On Section 4.5.2 it was shown, that much better performance can be achieved using
multiple threads, but not all performance of GPU architecture comes from a multiple–
threaded program. Memory management is also an important factor to get better
performance.
Memory access to global GPU memory can be a mayor bottleneck, this is due to
the fact that global memory is a Dynamic Random Access Memory (DRAM) which
tends to have long access latencies. One can easily run into a situation where traffic
congestion in the global memory access paths prevent threads from doing any work.
For this reason CUDA provides set of memory types that can filter out a majority of

44

4.5. CUDA CHAPTER 4. CUDA IMPLEMENTATION

! !"#$%&'()*(+,%'-./0%1-,!
!

!

!234(5'-6'#771,6(8/1.&(9&':1-,(;*<! ! =!
!

"#$%!%&'(')(*!+,-.,'//$0.!/-1*(!'((-2%!3#*!4567!',&#$3*&38,*!3-!%+'0!'!2$1*!
/',9*3!,'0.*!):!%$/+(:!%&'($0.!3#*!08/)*,!-;!+,-&*%%-,%!'01!/*/-,:!+',3$3$-0%<!
;,-/!3#*!#$.#=+*,;-,/'0&*!*03#8%$'%3!>*?-,&*!>@5%!'01!+,-;*%%$-0'(!A8'1,-!'01!
"*%('!&-/+83$0.!+,-18&3%!3-!'!B',$*3:!-;!$0*C+*0%$B*D!/'$0%3,*'/!>*?-,&*!>@5%!
E%**!7++*01$C!7!;-,!'!($%3!-;!'((!4567=*0')(*1!>@5%FG!

!

(

4(7/>%1%"'&#.&.($'-6'#7(1:($#'%1%1-,&.(1,%-(?>-0@:(-A(%"'&#.:(%"#%(&B&0/%&(1,.&$&,.&,%>C(A'-7(�"(
-%"&'D(:-(%"#%(#(852(E1%"(7-'&(0-'&:(E1>>(#/%-7#%10#>>C(&B&0/%&(%"&($'-6'#7(1,(>&::(%17&(%"#,(#(852(
E1%"(A&E&'(0-'&:*(

F16/'&()GH*(4/%-7#%10(I0#>#?1>1%C(

)*H (
"#$%!1-&8/*03!$%!-,.'0$H*1!$03-!3#*!;-((-2$0.!&#'+3*,%<!

 4#'+3*,!I!$%!'!.*0*,'(!$03,-18&3$-0!3-!4567G!

 4#'+3*,!J!-83($0*%!3#*!4567!+,-.,'//$0.!/-1*(G!

 4#'+3*,!K!1*%&,$)*%!3#*!+,-.,'//$0.!$03*,;'&*G!

 4#'+3*,!L!1*%&,$)*%!3#*!#',12',*!$/+(*/*03'3$-0G!

 4#'+3*,!M!.$B*%!%-/*!.8$1'0&*!-0!#-2!3-!'&#$*B*!/'C$/8/!+*,;-,/'0&*G!

 7++*01$C!7!($%3%!'((!4567=*0')(*1!1*B$&*%G!

"#$!%&'(!)!*+,-.!

!
+,-!/!+,-!0!

"#$!%&'(!1!*+,-.!

!
+,-!/!+,-!0! *+,-!2!*+,-!)!

34+56!7! 34+56!8!

9:4'&'(,-;<-<!*$=>!#,+?,;@!

34+56!0! 34+56!/! 34+56!)! 34+56!2!

34+56!1! 34+56!7! 34+56!8! 34+56!A!

!!34+56!/!!34+56!0!

!!34+56!2!!34+56!)!

!!34+56!7!!34+56!1!

!!34+56!A!!34+56!8!

!!34+56!0! !34+56!/! !34+56!)! !34+56!2!

!!34+56!1! !34+56!7! !34+56!8! !34+56!A!

Figure 4.7: Transparent thread scalability, taken from [NVI10]

data requests to the global memory.

Figure 4.8 the CUDA devices memories. At the bottom are located the Global
Memory and the Constant Memory, these can be accessed by the host, and are the
way to transfer data from the host to device. These memories are large, but tend to
be slow. The scope of these memories are the entire kernel, this mean that every
thread created by the kernel have access to the this memories.
On top of the figure, one can see Shared Memory and Registers. Shared memory
is a very fast kind of memory, which can be seen only by threads in the same block.
This memory is very limited 16KB2, and it is used to reduce access to the global
memory, increasing the overall performance of the program. Registers can be ac-
cessed by individual threads to store the variables needed to accomplish a task.

2Up to 48KB for the new fermi architecture

45

4.6. LBM ON THE GPU CHAPTER 4. CUDA IMPLEMENTATION

Textures units are sort of hardware interface, built on top of global memory. They
do caching and filtering in the same way as in graphics, and compared to “raw” global
memory do not impose rather tight restrictions on access patterns, required for best
performance.

© David Kirk/NVIDIA and Wen-mei Hwu, 2006-2008 3

• Each thread can:

– Read/write per-thread
registers

– Read/write per-thread local
memory

– Read/write per-block
shared memory

– Read/write per-grid global
memory

– Read/only per-grid
constant memory

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

Figure 4.2 GeForce 8800GTX Implementation of CUDA Memories

Table 1 shows the CUDA syntax for declaring program variables into the various device
memories. Each such declaration also gives its declared CUDA variable a scope and
lifetime. Scope identifies the range of threads that can access the variable: by a single
thread only, by all threads of a block, or by all threads of the entire grid. If a variable’s
scope is a single thread, a private version of the variable will be created for each and every
thread; every thread can only access its own local version of the variable. For example, if a
kernel declares a variable whose scope is a thread and it is launched with one million
threads, one million versions of the variable will be created so that each thread initializes
and uses its own version of the variable.

Table 1. CUDA Variable Type Qualifiers

applicationgridconstant__device__ __constant__ int ConstVar;

applicationgridglobal__device__ int GlobalVar;

kernelblockshared__device__ __shared__ int SharedVar;

kernelthreadglobalAutomatic array variables

kernelthreadregisterAutomatic variables other than arrays

LifetimeScopeMemoryVariable declaration

Lifetime specifies the portion of program execution duration when the variable is available
for use: either within a kernel’s invocation or throughout the entire application. If a
variable’s lifetime is within a kernel invocation, it must be declared within the kernel
function body and will be available for use only by the kernel’s code. If the kernel is
invoked several times, the contents of the variable are not maintained across these
invocations. Each invocation must initialize the variable in order to use them. On the other
hand, if a variable’s lifetime is throughout the entire application, it must be declared
outside of any function body. The contents of the variable are maintained throughout the
execution of the application and available to all kernels.

Figure 4.8: CUDA memory hierarchy, taken from [KmWH10]

One important limiting aspect of performance is known as register pressure. The
pressure comes from the limited number of register available to the GPU, which
is 128000. If you take for example the device GeForce 8800 GTX, which has 16
Streaming Multiprocessors, each SM has 8000 registers, and each SM can handle
768 threads as a maximum. In order to achieve the maximal thread capacity, each
thread can use only 8000/768 = 10 registers. So if one wants to use more registers
(lets say 11 threads for this example), the number of threads will be reduced, and
this reduction is done at the block level. For example if each block has 256 threads,
the next lower number from 768 is 768-256 = 512 threads. This is a reduction of 1/3
of the active threads working on task.

4.6 LBM on the GPU

It was said on Section 1.5 and 3.5, that one of the reasons why the Lattice Boltzmann
Method was chosen for this work, was its parallel friendliness. Figure 4.9 shows an
outline of the algorithm. The Lattice Boltzmann Method runs the algorithm in each

46

4.6. LBM ON THE GPU CHAPTER 4. CUDA IMPLEMENTATION

e0 e1

e2

e3

e4

e5e6

e7 e8

Calculate macroscopic
variables

Stream

Move
obstacle

Boundary
conditions

Collide

START

END

Figure 4.9: LBM runs the same algorithm over each node of grid

node independently, so it does not need to implement a complex communication
scheme, which makes the method very parallel. This is a “perfect” match for the
SIMD paradigm that is used to program GPUs, and that’s why a GPU seems like a
logical architecture to implement the method.

In this work, a simple but fast implementation of the Lattice Boltzmann Method
was made using CUDA. Figure 4.10 shows the implementation done for this work. It
uses a CUDA kernel for each mayor function of the method, this way it is possible to
launch a thread for each node of the grid. To increase speed the direction–specific
densities were stored in textures for the streaming step. Textures allow very fast
fetches and since the streaming process involves many reads, it was clear that per-
formance could be gained using textures for this kernel. Also textures where used
to store the macroscopic variables. This allows an easy and fast interoperability with
the OpenGL subsystem, which gives the program the ability to do fast rendering of
the variables computed by the method and this way achieve a decent rate of Frames
Per Second.

47

4.6. LBM ON THE GPU CHAPTER 4. CUDA IMPLEMENTATION

Calculate macroscopic
variables

Stream

Move
obstacle

Boundary
conditions

Collide

START

END

TEXTURE

KERNEL

Pressure

Velocity

OpenGL

fi

Figure 4.10: CUDA implementation in this work

48

Chapter 5

Visualization and interactivity

Not so long ago, computers could hardly draw a character on the screen. Since then
much has changed. Once graphics systems evolved to be capable of generating
sophisticated images in real time, engineers and researches began to use them as
tool for simulations [Ang09].

5.1 Basic concepts

5.1.1 Visualization

In general visualization is any technique for creating images, diagrams, or animations
to communicate a message. More specifically and related to this work is the Scien-
tific Visualization. Scientific visualization is the transformation, selection or represen-
tation of data from simulations or experiments, with an implicit or explicit geometric
structure, to allow the exploration, analysis and understanding of the data. Tradi-
tional areas of Scientific Visualization are flow visualization, medical visualization,
astrophysical visualization and chemical visualization [wik10d].

5.1.2 Interactivity

One of the most important advances in computer technology was enabling users to
interact with computer displays. Interaction is a process that involves at least two
participants to complete another process[Sva00]. In the context of human–computer
interaction, the human is interacting with the computer. An artifact is cataloged as

49

5.1. BASIC CONCEPTS CHAPTER 5. VISUALIZATION AND INTERACTIVITY

interactive if it allows the user to have any level of interaction. Interactivity denotes
the quality of the interactive aspects of an artifact (levels and forms of interaction)
[Duq07].

The basic paradigm of in Human–Computer interaction is: the user sees an im-
age on the displays, he/she reacts to this image by means of an interactive device,
such as the mouse, then the image changes in response to the input, and later the
user reacts to this change, and so on.

One important aspect of the interactive simulation is a rapid response to human
input, Experiments have shown that a delay of more than 20 ms between when in-
put is provided and the computer reaction is updated is noticeable by most people
[wik10d]. So is desirable for an interactive visualization to provide a rendering based
on human input within this time frame.
The term interactive framerate is good metric to measure how interactive is a visual-
ization. A framerate of 50 frames per second (fps) is considered good enough for an
interactive visualization, while 5 fps would be considered too low for what a human
expects.

5.1.3 OpenGL

OpenGL (Open Graphics Library) is a standard specification defining a multi–language,
multi–platform API for writing applications that produce 2D and 3D computer graph-
ics. The API consists in a set of function calls which can be used to draw complex
3D scenes from simple primitives like: points, lines, rectangles, etc [Ang09].

The basic model of OpenGL is a black box, a term that engineers use to denote
a system in which its properties are described only by its inputs and outputs. There
is no need to know how it operates internally, to use it. It is similar to a car, one does
not need to know how the engine works to drive it.
The main reason for this design are:

• Hide complexities of interfacing with different 3D accelerators by presenting a
single, uniform interface.

• Hide differing capabilities of hardware platforms.

50

5.1. BASIC CONCEPTS CHAPTER 5. VISUALIZATION AND INTERACTIVITY

OpenGL operates accepting primitives such as points, lines and polygons, and
converting them into pixels. This is done by the graphics pipeline known as the
OpenGL state machine. Most OpenGL commands either issue primitives to the
graphics pipeline, or configure how the pipeline processes these primitives.

Figure 5.1: Simplified version of the Graphics Pipeline Process, taken from [wik10e]

Figure 5.1 shows the process in the graphics pipeline, which could be: first an
evaluation, if necessary, of the polynomial functions which define certain inputs, like
NURBS surfaces, approximating curves or the surface geometry. Then, vertex oper-
ations, transforming and lighting the polynomial functions depending on their material
properties, and also clipping non visible parts of the scene in order to produce the
viewing volume. After this, rasterization or conversion of the previous information
into pixels. Later the polygons are represented by the appropriate color by means of
interpolation algorithms. Fragment operations, like updating values depending on in-
coming and previously stored depth values, or color combinations. Finally, fragments
are inserted into the Frame buffer, which is a video output device that drives a video
display from a memory buffer containing a complete frame of data.

51

5.2. INTERACTIVE TOOL CHAPTER 5. VISUALIZATION AND INTERACTIVITY

5.2 Interactive tool

An interactive visualization tool was created to utilize the LBM solver implemented in
this work. This tool is a proof of concept and it is not intended for use in production
environments. The objective of the tool is to allow the user to interact with the solver
by means of moving an object with a common input device as the mouse, inside
the the fluid. The future aiming of this application to allow the interactive analysis of
fluid–structure phenomena. This could could be potentially be exploited by interac-
tive design software applications.

The tool was built using OpenGL. Pixel Buffer Objects are used to store the
macroscopic variables which are velocity magnitude and pressure coming from the
solver, this increases the rendering performance and allows easy integration with
CUDA.

5.2.1 Example

The tool plots the velocity magnitude using the jet color map, which is a color gamut
from blue to red, representing lower values with blue, and higher values on red.
Figure 5.2 shows the fluid flow around an obstacle which is enclosed by to walls
at the top and bottom. The fluid flows from right to left, this set up produces the
Poiseuille flow observable in the Figure. It also can be observed the von Karman
street after the fluid hits the obstacle.

Figure 5.2: Von Karman street

52

5.2. INTERACTIVE TOOL CHAPTER 5. VISUALIZATION AND INTERACTIVITY

(a) Cavity flow, low color saturation (b) Cavity flow, high color saturation

Figure 5.3: Color saturation of a cavity flow, at the same time t

5.2.2 Color scale

A color is assigned to different ranges of a scalar field. However due to the tran-
sient nature of the simulation the scalar range change constantly, an some times the
wrong color scale can led to a lose of details of the simulation, which can make its
interpretation harder. To solve this, it was necessary to create a way to auto–scale
and saturate the color map, to allow the user check for details not visible on a dif-
ferent color scale. Figure 5.3 shows and image of a cavity flow generated with this
application. The image shows an under saturated and an over saturated velocity
field at the same time step.

The application also has the ability to plot the pressure field. The same jet color
map is used. Figure 5.4 shows the pressure field obtained for a cavity flow simulation.
As for the velocity field, color saturation is also available to the pressure field.

Finally the application has the capacity to display the number Millions of Lattice
Updates Per Second (MLUPS), the MLUPS are calculated by the following relation

MLUPS =
of Nodes× 10−6

dt
(5.1)

Where dt is the clock time required to do one iteration. The MLUPS have become
an standard metric when benchmarking LBM codes. Figure 5.5 shows the MLUPS
achieved by the simulation of a cavity flow. The text is rendered over the active filed
(velocity or pressure).

53

5.2. INTERACTIVE TOOL CHAPTER 5. VISUALIZATION AND INTERACTIVITY

Figure 5.4: Cavity flow pressure field

Figure 5.5: MLUPS displayed

5.2.3 Commands

The interactive tool by default loads a channel case, with fluid flow moving from right
to left. The top and bottom boundaries are periodic to simulate an infinite domain.
The tool allows the user the draw and obstacle and select it, to be later moved to a
new position. The inlet velocity it is set in a configuration file and should be set in
Lattice Boltzmann units. The application uses the keyboard and mouse as input, the
command list is a follows:

p pressure

u velocity

i mlups information

s auto scale color map, to maximum and minimum bounds

r restart simulation

54

5.2. INTERACTIVE TOOL CHAPTER 5. VISUALIZATION AND INTERACTIVITY

mouse/left click draw obstacle

mouse/right click pick obstacle to move

mouse/center click obstacle destination

55

Chapter 6

Numerical Experiments

Several tests were accomplished to validate this work. Performance tests where
made on Mac Pro with an Intel Xeon 2.8Ghz processor with 8GB DDR2 of RAM.
The GPU tests where made on the same machine running on a NVIDIA Geforce
8800 GT. This chapter presents the results from this tests and some conclusions
about the results obtained.

6.1 Numerical results

6.1.1 2–D Poiseuille flow

The fully developed laminar flow in a channel is a typical case to examine the ac-
curacy of CFD solver, due to the existence of an analytical solution. The Reynolds
number is defined as Re = u0(2L)/ν in a channel of height 2L, and u0 is the maxi-
mum velocity. The analytical solution of Poiseuille flow is given by

uexact = u0

(
1− y2

L2

)
(6.1)

Here, the flow is driven by pressure gradient ∆P = 2ρνu0/L
2 applied at the inlet and

the oulet of channel.
Figure 6.1 shows the predicted results in comparison with the analytic solution. It

can be seen that the solver and the implemented boundary conditions can produce
results with minimal error, and highly accurate for this kind of flow. The Table 6.1
presents the data from which Figure 6.1 was obtained. In this table A stands for

56

6.2. COMPUTATIONAL RESULTS CHAPTER 6. NUMERICAL EXPERIMENTS

! 0 0

"! 0.009162849 0.009162849

#! 0.016243232 0.016243232

$! 0.02124115 0.02124115

%! 0.024156601 0.024156601

&! 0.024989588 0.024989588

'! 0.023740108 0.023740108

(! 0.020408163 0.020408163

)! 0.014993753 0.014993753

*! 0.007496876 0.007496876

"!! 0 0

!

"#

#!

$#

%!!

! !&!!' !&!%# !&!"(!&!(

)*+,-.-/+,
01234-/+,

u

y

Figure 6.1: Predicted velocity profile of Poiseuille flow

analytical value and N for numerical values obtained.

6.1.2 Other common flows

The solver was able to reproduce other common flows like the cavity flow and vor-
tices of von Karman. Although there is not known analytical solution for this kind
flows Figure 5.3 and Figure 5.2 show that these two flows were generated according
to a “general‘” agreement of the CFD community.

6.2 Computational results

The computational results presented here, are a comparison of performance be-
tween a CPU implementation running on a single core and an implementation run-
ning on GPU. The GPU implementation is a parallel version of the algorithm specially
tuned for the architecture being used. The Acceleration achieved by the GPU imple-
mentation for this comparison is calculated by

Acceleration =
Sp
Ss

(6.2)

57

6.2. COMPUTATIONAL RESULTS CHAPTER 6. NUMERICAL EXPERIMENTS

Poiseuille flow data table
L A N A−N Error %
0 0.0 0.0 0.0 0

10 0.00916 0.00908 0.00007 1.83
20 0.01624 0.01618 0.00005 1.34
30 0.02124 0.02116 0.00007 1.34
40 0.02415 0.02409 0.00006 1.25
50 0.02498 0.02498 0.00000 1.01
60 0.02374 0.02370 0.00003 1.14
70 0.02040 0.02032 0.00008 1.40
80 0.01499 0.01491 0.00008 1.53
90 0.00749 0.00742 0.00007 2.00
100 0.0 0.0 0.0 0

Table 6.1: Poiseuille flow error committed by the solver

Where Sp is the parallel speed in MLUPs and Ss is serial speed.

The Table 6.2 shows a comparison of the GPU and CPU. The Poiseuille flow was
selected to realize all the following tests. This test, compares the acceleration of the
different implementation solving different mesh sizes, with 20000, 80000, 180000
nodes. The results are provided in Millions of Lattice Updates Per Second (MLUPS).
It can be seen that great acceleration is achieved by the algorithm run on the GPU,
compared to its CPU counterpart.

GPU vs CPU comparison table
of nodes CPU GPU Acceleration

20000 3.4 119 35X
80000 3.2 445 142X

180000 3.1 940 303X

Table 6.2: Speed in MLUPs achieved by the GPU and CPU

It is noticed that the CPU shows a degradation in performance at 180000, while
the GPU shows an almost linear performance increase as it is depicted in Figure 6.2.
This can be explained by the perfect match between the LBM algorithm and SIMT
model.

58

6.2. COMPUTATIONAL RESULTS CHAPTER 6. NUMERICAL EXPERIMENTS

20000

80000

180000

3.40 119 35 0.0285714285714

3.2 455 142.1875 0.007032967033

3.1 940 303.22580645161 0.0032978723404

0

250

500

750

1000

20000 80000 180000

CPU GPU

Number of nodes

MLUPs

Figure 6.2: Acceleration gained using GPU

This next test is more related to the tweaking of the GPU implementation of the
algorithm. For this reason, and since the comparison against the CPU implementa-
tion was already established, the CPU results wont be analyzed here.

This test consists in comparing the acceleration achieved by the GPU implemen-
tation solving different mesh resolutions, related to the variation of the block size. As
seen on Section 4.5.2, the block size is the GPU parameter that sets the maximum
number of threads going to be executed by the GPU.

GPU vs GPU comparison table
of nodes 64 128 256

20000 117 118 119
80000 451 455 455

180000 940 941 940

Table 6.3: Speed in MLUPs achieved by different block sizes

Table 6.3 shows the results of this test. It can be seen, that the acceleration
gained is marginal. Much more investigation has to be made in this area to clarify
this event. It was established during this test, that any block size greater than 256

59

6.2. COMPUTATIONAL RESULTS CHAPTER 6. NUMERICAL EXPERIMENTS

would max out the GPU, and one of the GPU kernels would not launch, quitting on
error.

60

Chapter 7

Conclusions

We have seen that the Lattice Boltzmann Method gives a behavior consistent with the
Navier–Stokes equation. This makes the method a good replacement (in some situ-
ations) for the traditional methods as FEM and FVM. The advantages of the method
are, easy implementation and high parallelism that can be achieved by the method.

As seen on this work, the GPUs can offer noticeable speed ups for problems
that fit well into the SIMD paradigm. It was also noticed that the transition of the
CPU code to GPU code is very simple using CUDA, and can be taken as a serious
approach for the development of CFD applications.

7.1 Future Work

This work can be improved in many ways. Only the simplest model was imple-
mented, and in 2D, this work could be easily extended to solve fluid problems in 3D.
Also the simplest and most popular collision operator (BGK) was used, this operator
has several drawbacks, as it only handles low Reynolds (up to 150). The collision
operator can be replaced by a Multiple Relaxation Time (MRT) operator. This model
supports Reynolds numbers bigger than BGK in up to 2 orders of magnitude and
improves the general stability of the method. Also this work could be used as a base
for coupled problems like fluid–structure interaction.
Finally, this model does not support curved geometries, all it does is a stair–cased
approximation. This can be corrected using one of the many models for curved
boundaries.

61

7.1. FUTURE WORK CHAPTER 7. CONCLUSIONS

The GPU implementation can be optimized even more, the use of shared memory
might improve performance for the streaming step.
OpenCL a standard technology and is a new direct competence to CUDA which is
proprietary to NVIDIA. OpenCL works not only on GPUs but also on CPUs, FPGAs,
etc. This technology offers the benefit of transparent scalability from CPUs to GPUs
with no changes on the code. This make the technology attractive, because the need
to write a CPU version to compare, is waived.

62

Bibliography

[Ang09] Edward Angel. Interactive Computer Graphics. Pearson, fifth edition,
2009.

[Bui97] James Maxwell Buick. Lattice Boltzmann Methods in Interfacial Wave
Modeling. PhD thesis, University of Edinburgh, 1997.

[Duq07] Juan Fernando Duque. INTERACTIVE CFD SIMULATIONS. Universi-
dad EAFIT, 2007.

[eth10] Particle methods – cselab [online]. 4 2010. Available from: http:

//www.cse-lab.ethz.ch/index.php?&option=com_content&view=

article&id=315&catid=39 [cited 2010 April 25].

[FHP86] U. Frisch, B. Hasslacher, and Y. Pomeau. Lattice-gas automata for the
navier- stokes equation. Physical Review Letters, 1986.

[HPdP73a] J. Hardy, Y. Pomeau, and O. de Pazzis. Time evolution of a two-
dimensional classical lattice system. Physical Review Letters, 1973.

[HPdP73b] J. Hardy, Y. Pomeau, and O. de Pazzis. Time evolution of a two-
dimensional model system. i. invariant states and time correlation func-
tions. ournal of Mathematical Physics, 1973.

[KmWH10] David B. Kirk and Wen mei W. Hwu. Programming Massively Parallel
Processors: A Hands-on Approach. Morgan Kaufmann, 2010.

[KPP06] Michael Kistler, Michael Perrone, and Fabrizio Petrini. Cell multiproces-
sor communication network: Built for speed. IEEE Computer Society,
2006.

63

http://www.cse-lab.ethz.ch/index.php?&option=com_content&view=article&id=315&catid=39
http://www.cse-lab.ethz.ch/index.php?&option=com_content&view=article&id=315&catid=39
http://www.cse-lab.ethz.ch/index.php?&option=com_content&view=article&id=315&catid=39

BIBLIOGRAPHY BIBLIOGRAPHY

[Lad94] A. J. C. Ladd. Numerical simulations of particulate suspensions via a
discretized boltzmann equation. part i. theoretical foundation. J. Fluid
Mech, 1994.

[Lat08] Jonas Latt. Choice of units in lattice Boltzmann simulations. LB-
Method.org, April 2008.

[LCM+08] Jonas Latt, Bastien Chopard, Orestis Malaspinas, Michel Deville, and
Andreas Michler. Straight velocity boundaries in the lattice boltzmann
method. Phys. Rev. E, 77:056703, 2008.

[MZ88] G. McNamara and G. Zanetti. Use of the boltzmann equation to simu-
late lattice–gas automata. Physical Review Letters, 61(20):2332–2335,
1988.

[NVI10] NVIDIA. Nvidia cuda programming guide. www.nvidia.com, 2 2010.

[Sch06] M. Schäfer. Computational Engineering – Introduction to Numerical
Methods. Springer, 2006.

[ST05] Michael Sukop and Daniel Thorne. Lattice Boltzmann Modeling An In-
troduction for Geoscientists and Engineers. Springer, 2005.

[Suc01] Sauro Succi. The Lattice Boltzmann Equation For Fluid Dynamics and
Beyond. Oxford University Press, 2001.

[Sva00] Dag Svanæs. Understanding interactivity steps to a phenomenology of
human–computer interaction. PhD thesis, NTNU, 2000.

[SWV96] Robert L. Street, Gary Z. Watters, and John K. Vennard. Elementary
Fluid Mechanics. Wiley, 7 edition, 1996.

[Vig09] Erlend Magnus Viggen. The lattice boltzmann method with applications
in acoustics. Master’s thesis, NTNU, 2009.

[VM95] H. K. Versteeg and Malalasekera. An introduction to Computational Fluid
Dynamics. Longman Scientific and Technical, 1995.

[wik10a] Cellular automaton - wikipedia [online]. 4 2010. Available from: http:

//en.wikipedia.org/wiki/Cellular_automaton [cited 2010 April 24].

64

http://en.wikipedia.org/wiki/Cellular_automaton
http://en.wikipedia.org/wiki/Cellular_automaton

BIBLIOGRAPHY BIBLIOGRAPHY

[wik10b] Finite element method- wikipedia [online]. 4 2010. Available from: http:
//en.wikipedia.org/wiki/Finite_element [cited 2010 April 20].

[wik10c] Fluid mechanics - wikipedia [online]. 4 2010. Available from: http:

//en.wikipedia.org/wiki/Fluid_mechanics [cited 2010 April 20].

[wik10d] Interactive visualization - wikipedia [online]. 4 2010. Available
from: http://en.wikipedia.org/wiki/Interactive_Visualization

[cited 2010 April 24].

[wik10e] Opengl - wikipedia [online]. 4 2010. Available from: http://en.

wikipedia.org/wiki/OpenGL [cited 2010 April 27].

[ZH97] Qisu Zou and Xiaoyi He. On pressure and velocity boundary conditions
for the lattice boltzmann bgk model. Physics of Fluids, 1997.

65

http://en.wikipedia.org/wiki/Finite_element
http://en.wikipedia.org/wiki/Finite_element
http://en.wikipedia.org/wiki/Fluid_mechanics
http://en.wikipedia.org/wiki/Fluid_mechanics
http://en.wikipedia.org/wiki/Interactive_Visualization
http://en.wikipedia.org/wiki/OpenGL
http://en.wikipedia.org/wiki/OpenGL

Appendix A

Units Example

There is always confusion about the units conversion for the newcomer to the Lattice
Boltzmann Method . For the this reason, this section presents an example of how
to relate the lattice units with physical units. This section will use the subscript p to
identify physical units and lb to identify Lattice Boltzmann Method units.

The example is called channel case. The channel case consist on a simple 2D
domain with solid walls in the top and bottom, and a incompressible fluid that flows
from left to right. The channel has a speed boundary condition at the inlet (left), and
pressure boundary at the outlet (right). Also there is an object in the channel that is
going to set the proper Reynolds number of the simulation.

A.1 Channel case

Here the process to convert between the different units related to the simulation
is described. As many authors recommend different approaches to convert some
parameters of the simulation, a couple of them are presented, and the differences
are explained.

Simulation parameters:

• uxp = 2cm/s

• pp = 0.5Pa

• νp = 1cm2/sec

66

A.1. CHANNEL CASE APPENDIX A. UNITS EXAMPLE

p

2cm

4cm

0.5cm

ux

Figure A.1: Sample Channel

• L = 4cm

• H = 2cm

As a dimensionless number, the Reynolds, can be used to convert from a system to
the other one,

Re =
ρuL

µ
=
uL

ν
(A.1)

where L is the characteristic length.

A.1.1 Initial approach

The first step is to calculate the Reynolds number. This rises a new problem. Which
L is the proper one to be chosen?. Since we are going to study the flow around a
cylinder the proper L would be 2r (the length of the object of study).

1. Replacing in Equation A.1 we get Re = 0.4

2. Now we have to choose are grid size, I will use a 400×200 (Nx×Ny)grid. One
has to keep in mind that the Lattice Boltzmann Method uses squared lattices
and the proper ratio has to be chosen to make sure that δxp = δyp.

3. With the grid size we can calculate δxp as δxp = L/Nx. This way δxp = 0.01cm

is obtained.

67

A.1. CHANNEL CASE APPENDIX A. UNITS EXAMPLE

4. The next thing we need to calculate is the numerical viscosity (νlb), but for this
calculation a fixed relaxation time (τ) is need. I will use τ = 1. Using the
equation νlb = (τ − 1/2)/3 we get νlb = 0.1666

5. With δx = 0.01, νlb and νp, it is possible to calculate the time δtp using the
equation δtp = (νlb/νp)δx

2 we get δtp = 1.666× 10−5sec

6. Now we calculate the number of iterations to achieve a δtp using the relation
Niter = 1/δtp this way we know that we need Niter = 60000 to simulate 1sec.

7. To convert the up for the inlet boundary condition using the formula ulb =

up(δtp/δxp) So our inlet boundary condition has to be implemented using ulb =

8.33 × 10−4. Always keep in mind that the numerical Mach number has to be
smaller than 0.3 or the method wont converge to Navier–Stokes [Suc01] so
keep Ma << 0.3 using the formula Malb = ulb/cs.

8. Finally for the oulet boundary condition ρlb has to be calculated1. Its been
established that ρlb = 1 + (1/c2s)ppδt

2
p/δx

2
p with c2s = 1/3 we get a ρlb = 1.0

A.1.2 Calculating τ

It is also possible determine the relaxation time τ using Reynolds number to calculate
the numerical viscosity νlb = ulbLlb/Re and the equation τ = 1/2 + νlb/c

2
2 although

this is valid it is dangerous since τ could get close to 1/2 which makes the method
unstable.

A.1.3 Different approach to calculate δt

Since in the Lattice Boltzmann Method there is no easy way to calculate δt it is
recommended to set δt ∼ δx2 to keep the method numerically stable [Lat08].

A.1.4 Calculating Nx

If we have the numerical values for a simulation, the size of the mesh can be found
or optimized.

1Note that as this is an incompressible fluid ρp does not have to be calculated, but ρlb is needed
for the method to do its computations

68

A.1. CHANNEL CASE APPENDIX A. UNITS EXAMPLE

Lets suppose that for the simulation above we have the Reynolds number we want
to simulate, but with do not know the adequate size of the mesh to achieve proper
results. Again the Reynolds number is used to get the missing value, we know νlb, ulb

and Re, then using the Equation A.1 we get L = Reνlb/ulb replacing we get L = 80,
which means that a mesh of 160× 80 would have been enough for the simulation.

69

Appendix B

Fast 2D point in polygon

A new “fast” 2D point in polygon algorithm was introduced during this work. This
algorithm is very simple, it uses only 1 cross product and depends of a δy value that
can be preset according to what is needed.
The objective of this algorithm is find a single point inside a polygon to use it a seed
for a flood-fill.
The algorithm was designed to work on discrete schemes, so it is assumed that min-
imum δy is going to be big enought so is never collinear with the created vector ~B.
Although picking the right δy can tweak the algorithm to make it work on continuum
schemes.

The figure B.1 shows the basic sketch of the algorithm. A vertex V̂ is chosen
arbitrary and always using the right-hand rule, the mid point between V̂ and Ĝ is
found (p0), after this a new point is created using δy+ (p1) a cross product is calculated
to determine if the direction of the resulting vector goes out of the plane or goes into
the plane. If it goes outside the plane δy+ is inside the polygon, if it goes into the
plane then p1 (δy+) is inside the polygon. The algorithm is shown in pseudocode
below:

As seen on the algorithm each instruction is executed only once keeping the
algorithm O(1). The calculation of the cross product is straight forward for 2D and is
also O(1) which produces a fast simple way to check if a point is inside a polygon.

70

APPENDIX B. FAST 2D POINT IN POLYGON

δy

x

y

~B

~A

p0

p2

p1

Ĝ

V̂

Figure B.1: Point in polygon

Algorithm 2 Point inside the polygon
V̂ ⇐ Pick vertex
p0 ⇐ Calculate mid-point between picked vertex and it following vertex
p1 ⇐ p0 + δy+

point⇐ (p0, V̂)× (p1, V̂)
if (point > 0) then

the point is outside the polygon, use δy− to calculate p2
p2 is inside the polygon

else if (point < 0) then
p1 is inside the polygon

else if (point = 0) then
Pick next vertex (we are on a vertical line).

end if

71

	Introduction
	Mechanics of Fluids
	Historical review
	Navier–Stokes and the fluid motion

	Numerical methods
	Computational Fluid Dynamics
	How does CFD works?
	Problem solving with CFD

	Numerical methods for CFD
	Finite difference method (FD)
	Finite elements method (FEM)
	Spectral method (SM)
	Finite volume method

	Particle methods ``the new trend''
	Document structure

	Lattice gas automata
	Background
	Lattice gas automata
	The HPP model
	Advantages and disadvantages

	The FHP model
	Advantages and disadvantages

	Lattice Boltzmann Method
	Boltzmann equation
	LBM framework
	Macroscopic variables
	The equilibrium distribution function
	The BGK model
	Streaming
	Numerical kinematic viscosity

	Boundary conditions
	Periodic
	Bounce–back
	Von Neumann
	Dirichlet
	Corner nodes
	Moving boundary

	Units conversion
	Direct conversion
	Dimensionless conversion

	Algorithm summary

	CUDA implementation
	Introduction
	GPUs as super computers
	Architecture of a GPU
	The need for speed
	CUDA
	Programming model
	Threads
	Memory layout

	LBM on the GPU

	Visualization and interactivity
	Basic concepts
	Visualization
	Interactivity
	OpenGL

	Interactive tool
	Example
	Color scale
	Commands

	Numerical Experiments
	Numerical results
	2–D Poiseuille flow
	Other common flows

	Computational results

	Conclusions
	Future Work

	Bibliography
	Units Example
	Channel case
	Initial approach
	Calculating
	Different approach to calculate t
	Calculating Nx

	Fast 2D point in polygon

