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This article investigates drug dosage individualization when the patient population
can be described with a random-effects linear model of a continuous pharmacokinetic
or pharmacodynamic response. Specifically, we show through both decision-theoretic
arguments and simulations that a published clinical algorithm may produce better
individualized dosages than some traditional methods of therapeutic drug monitoring.
Since empirical evidence suggests that the linear model may adequately describe drugs
and patient populations, and linear models are easier to handle than the nonlinear
models traditionally used in population pharmacokinetics, our results highlight the
potential applicability of linear mixed models to dosage computations and personalized
medicine.

Key Words: Bayesian feedback; Bayes’ theorem; Clozapine; Decision theory; Drug dosage
individualization; Personalized medicine; Population pharmacokinetics; Random-effects linear models;
Therapeutic drug monitoring; Therapeutic window.

1. INTRODUCTION

In the pharmacological treatment of some chronic illnesses, the clinician must
search for an appropriate drug dosage D that, after being administered during
a prespecified time period to a particular patient, will maximize the probability
that a continuous pharmacokinetic or pharmacodynamic response YD takes a
value between two prespecified values l1 and l2. Examples of these treatments
are those based on drugs having a narrow therapeutic range, which is the range
of plasma (or blood) drug concentrations that yield the desired pharmacological
effect without toxicity; in this case, a pharmacokinetic response of interest (YD) is
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usually the steady-state trough plasma drug concentration in the patient, which
is measured during routine therapeutic drug monitoring (TDM) (Shirrell et al.,
1999). For instance, when administering the antipsychotic drug clozapine to a
patient with schizophrenia, the clinician must make efforts to avoid plasma
clozapine concentrations in the patient reaching very low or high values, since low
concentrations will not reduce psychotic symptoms and high concentrations will
increase the risk of severe sedation, seizures, and other undesirable effects (Sabaawi
et al., 2006). In this example, D is clozapine dosage and YD is plasma clozapine
concentration.

Another (classic) example in which the plasma (or blood) concentration of
the treatment drug is a response of interest may be found during the treatment
for heroin addiction based on methadone. An effective methadone-maintenance
treatment requires that the minimum methadone concentration in the patient’s
blood be kept above the threshold of heroin-withdrawal symptoms, and that the
maximum concentration be kept below the threshold of the appearance of narcotic
effects (Dole, 1980). Although low methadone concentrations do not overcome
heroin-withdrawal symptoms and also increase the risk of relapsing into heroin use,
high concentrations will sedate the patient, preventing him/her from enjoying a
normal and fruitful life. In this example, D is methadone dosage and YD is blood
methadone concentration.

There are pharmacological treatments in which the clinician wants to control
a continuous response other than plasma concentration of the treatment drug. An
example is the use of the anti-coagulant drug warfarin to prevent blood clotting
in patients with risk of thrombotic episodes. To monitor the treatment and adjust
warfarin dosage, regular blood tests must be performed to measure the clotting
tendency of the patient’s blood; this measure is usually given as an international
normalized ratio, INR (Cuadrado and Khamashta, 2000). The objective of dosage
adjustment is to find an optimum dosage that produces an anticoagulation intensity
between minimum and maximum prespecified values. Lower dosages than this
minimum may not be effective (putting the patient at risk of a new thrombotic
episode), and higher dosages than the maximum may produce serious hemorrhages.
Here, D is warfarin dosage and YD is the INR, which is a pharmacodynamic
response of interest.

In the preceding examples and similar ones, the clinician usually assumes
that the patient’s continuous response (drug plasma or blood concentration in
the first two examples and INR in the third example) will become stable after
administering a constant drug dosage for a known, fixed period of time. Further,
the clinician must take steps to find a dosage that, after being administered for that
period of time, maximizes the probability that the patient’s response reaches a value
that is not too low or too high, and therefore maximizes the chance of relieving
the illness symptoms and minimizes the risk of experiencing undesirable or toxic
effects. Finding this dosage is usually difficult, since there is usually wide variability
across individual patients in response to the same pharmacological treatment. This
response variability may be due to personal (e.g., age or gender), genetic, or
environmental (e.g., drug–drug interactions) influences on pharmacokinetic and/or
pharmacodynamic parameters, or even to patient compliance (Nies, 2001). Efforts
have been made to develop drug-dosage individualization procedures based on
statistical models that take into account this variability (for a review, see Diaz et al.,
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2007). Among these procedures, those based on mixed-effects models seem to be
very promising.

The application of mixed-effects models to the individualization of drug
dosages was pioneered by Sheiner and his collaborators (see Sheiner and Beal,
1982; Vozeh et al., 1981). Underlying this application is the basic idea that a
random coefficient in a mixed-effects model can be viewed as a parameter that is a
characteristic constant for a particular patient in the population of patients, but that
varies across patients (see Sheiner and Beal, 1980; Whiting et al., 1986). According
to this idea, the variability of a random coefficient reflects a real variation in the
biological and environmental variables that shape each person in the population
as an individual; variability is not a mere mathematical artifact for dealing with a
population’s heterogeneity. Thus, a mixed-effects model includes parameters with
constant values representing the whole population (fixed effects) and parameters
with varying values whose particular values represent particular patients (random
effects). Usually these parameters measure or reflect patients’ pharmacokinetic or
pharmacodynamic characteristics. For a history of both the theory and applications
of mixed-effects models in pharmacology, see Pillai et al. (2005).

In practice, any drug dosage individualization procedure based on a
population mixed-effects model utilizes Bayes’ theorem. Before applying a
procedure to a particular patient, the fixed effects and variance–covariance matrices
of the random effects and errors must be estimated by using one or more samples
of patients, or using previous pharmacological knowledge. Then the estimated
distribution of the random coefficients is conceived of as a prior distribution
for these coefficients, and a few response measurements (e.g., drug plasma
concentrations) from the patient are used to compute the conditional distribution
of the random coefficients given those measurements. A summary measure of
this conditional distribution, such as its mean or mode vector, is considered a
predictor of the true values of the patient’s coefficients, and therefore is used
to compute the patient’s individualized dosage. According to this methodology,
which is usually called “Bayesian feedback,” a prior distribution models real-
world random variables (i.e., models the variability of some pharmacokinetic
or pharmacodynamic parameters in the patient population). Thus, the prior
distribution is not interpreted as a representation of the clinician’s system of
subjective beliefs about hypothetical, constant population parameters, which would
be an orthodox, classic interpretation of the prior distribution underlying Bayes’
theorem. Failing to recognize that statistical practice may profit from these two
different philosophical conceptions of prior distributions, rather than from the
latter one alone, may have contributed to a misunderstanding of the Bayesian
feedback methodology in the statistical community, which struggled for decades to
understand the philosophical implications of Bayes’ theorem.

Diaz et al. (2007) considered the individualization of a drug dosage when
the natural log of steady-state drug plasma concentration-to-dosage ratio can be
described using a random intercept linear model. In their model, it is assumed that
no covariate has a random effect. Specifically, the studied model was

log
(
YD
D

)
= �+ �TX + � (1)
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where YD is a trough steady-state drug plasma concentration, D is the steady-
state dosage, X is a vector with r covariates, � is a vector with regression
coefficients that are population constants, and � is a characteristic constant of
each patient. At the population level, it is assumed that � is an N���� �

2
�� random

variable and that � is an intra-individual N�0� �2
�� random error. Moreover, it is

assumed that � is independent of �. Diaz et al. (2007) suggested interpreting the
quantity � = ��− ���/�� as a standardized, covariate-adjusted index of metabolic
activity, and suggested a procedure for empirically validating this index. (The more
rapidly a patient’s body eliminates the drug, the lower is his/her value of �.) This
interpretation is a direct consequence of the idea that random coefficients may
be viewed as constants for a particular patient. In an independent study, Hu and
Zhou (2008) suggested a more precise interpretation of � (and therefore of �) and
a rationale for using model (1) in dosage computations (see also Hu et al., 2009).
Assuming linear pharmacokinetics, if CL/F is the patient’s apparent clearance, the
quantity e�+�TX is a multiple of �CL/F�−1. Thus, e� may be viewed as the portion
of CL/F that is not explained by the covariates in X . Therefore, � is a covariate-
adjusted proxy for apparent clearance, and model (1) quantifies the effects of
covariates on apparent clearance (Hu and Zhou, 2008), which is the most important
pharmacokinetic quantity to consider when designing a dosage regimen for long-
term drug administration.

Diaz et al. (2007) proposed a clinical algorithm for drug-dosage
individualization based on model (1). The algorithm was deduced from decision-
theoretic concepts and consists of a series of steps that the clinician should follow
in order to find an appropriate dosage for a particular patient, assuming that model
(1) adequately represents the patient population. Before applying the algorithm to a
particular patient, the population parameters �, ��, �

2
�, and �2

� have to be estimated
using a sample of patients. A simulation study using a clozapine model built with
a U.S. patient sample suggested that the algorithm will perform reasonably well,
even including the possibility that parameter estimates are not very close to the true
parameter values, and even if clozapine dosages are rounded to the closest multiple
of the smallest dosage available from clozapine manufacturers, 25mg/day (Diaz
et al., 2007).

A difficult problem when individualizing a drug dosage using a population
mixed-effects model is to decide how many drug plasma concentrations to obtain
from the patient, such that an optimum dosage for the patient is computed.
Solutions to this problem usually are ad hoc or lack clear justifications. However,
Diaz et al. (2007) provided a theoretical framework that enables a solution to this
problem for model (1). They introduced the concept of 	-optimum dosage for a
patient with metabolic index �, which, for 	 close to 1, is essentially a dosage D
that nearly maximizes the conditional probability P �l1 < YD < l2 � ��, where �l1� l2�
is the range of desired plasma concentrations. Thus, the optimum number of plasma
concentrations that must be obtained from the patient is the one that allows
computing an 	-optimum dosage for a prespecified, high proportion of patients in
the population.

When discussing the Diaz et al. article (2007), it is important to differentiate
between model (1) and their proposed algorithm for drug dosage individualization.
Although the former is a description of the patient population, the latter is a series
of steps for finding an optimum dosage for a particular patient. The algorithm’s
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applicability relies on the assumption that model (1) correctly describes the
population. Diaz et al. (2007) found that model (1) was useful in studying the
relationship between plasma concentrations of the antipsychotic clozapine and the
covariates gender and smoking, controlling for clozapine dosage. In addition, Diaz
et al. (2008) and Botts et al. (2008) suggest that a slightly more general version
of model (1) may be useful for investigating drug–drug interactions. In particular,
the model allowed the findings that smoking modifies the size of the effect of the
anticonvulsant valproic acid on plasma clozapine concentrations (Diaz et al., 2008),
and that it also modifies the size of the effect of the anticonvulsant lamotrigine
on the plasma concentrations of the antipsychotic olanzapine (Botts et al., 2008).
Hu and Zhou (2008) described an even more general version of model (1) that
included transformed covariates and both peak and trough steady-state plasma
concentrations. They proposed using their linear model to investigate the sensitivity
of results from population pharmacokinetics analyses, and studied three drugs (two
biologicals and one small molecule) using large, multinational patient samples.
However, although the objectives of Hu and Zhou’s study did not include searching
for empirical evidence in favor of the linear model, they found a remarkable
agreement between the conclusions obtained by using this model and those obtained
by using traditional, pharmacokinetic nonlinear models. In particular, the average
covariate-based dosing adjustment factors provided by linear and nonlinear models
were essentially the same regardless of the investigated drug or covariate. The four
studies just described (Botts et al., 2008; Diaz et al., 2007, 2008; Hu and Zhou,
2008), which used a total of six different samples of patients representing people
from several countries and five different drugs, reported evidence of relatively good
fits of the random-intercept linear models to the data, although some caution was
advised when there was a possibility of comedication-time interactions (Botts et al.,
2008; Hu and Zhou, 2008).

Although there is empirical evidence supporting model (1) and some of its
generalizations, at least for some drugs, the Diaz et al. algorithm has been tested
only through simulations (Diaz et al., 2007). However, the simulation results, the
already-mentioned theoretical developments and evidence in favor of model (1)
or similar models, and other authors’ successful application of Bayesian feedback
suggest that the algorithm is a potential tool for clinical practice and TDM that
deserves a closer investigation. In particular, collaborative effort is necessary for
precisely estimating population parameters using large samples of patients from
particular populations and for particular drugs, and it is essential to compare the
performance of the algorithm with that of currently accepted methods that are
regularly used in TDM.

Model (1) does not include covariates with random effects, that is, covariates
whose corresponding regression coefficients vary across patients. In model (1), the
heterogeneity of the individuals is determined only by differences in the intercepts
(the �’s). This is a limitation, because the model does not allow for the possibility
of covariates whose effects on YD vary among patients who have the same values
on the other covariates and are under the same dosage. In fact, additional analyses
of the clozapine data in Diaz et al. (2008), which are described later in section 4,
indicated that the goodness of the fit of the random-intercept linear model described
in these authors’ article may be improved by incorporating random effects for
some covariates, including smoking. In particular, this suggests that smoking has
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an effect size on plasma clozapine concentrations that varies from patient to
patient and, perhaps more importantly, that the extent to which smoking modifies
the effect of valproic acid on plasma clozapine concentrations may vary from
patient to patient. We do not know whether this differential smoking effect is
due to differences in smoking behavior, to differences in personal, genetic, or
environmental characteristics of the patients, or to all of these factors (although this
difference may not be due to the number of cigarettes smoked daily; Diaz et al.,
2008). However, the possible existence of covariates with random effects affecting
a continuous pharmacokinetic response has motivated us to investigate whether the
drug-dosage individualization algorithm in Diaz et al. (2007) is applicable to the
situation where the patient belongs to a population that can be described by a linear
model incorporating covariates with random effects.

This article investigates the clinical algorithm proposed by Diaz et al. (2007),
and the use of linear mixed models in drug dosage individualization. Specifically,
this article has three objectives: (1) to describe how the Diaz et al. algorithm can be
applied to situations where some clinical and demographic covariates have random
effects on a continuous pharmacokinetic or pharmacodynamic response YD, and to
situations that include the linear models fitted in Hu and Zhou (2008), Diaz et al.
(2008), and Botts et al. (2008) (in these three studies, the D in model (1) was replaced
by Dd, where d was a parameter that was estimated); (2) to report decision-theoretic
arguments that show that the preceding algorithm may produce better dosages than
another method that has traditionally been used in TDM; and (3) to compare
the algorithm with this other method using simulated populations of patients
taking clozapine. With this article, we also want to highlight the potentially wide
applicability of linear mixed models to drug dosage computations and personalized
medicine.

Although at present most of the applications of mixed-effects models to drug-
dosage individualization have been restricted to plasma drug concentrations as the
response variable, other types of response are possible. Thus, in this article, we are
concerned with continuous pharmacokinetic or pharmacodynamic responses that
can be assumed to become stable after an administration of a constant drug dosage
for a known fixed period of time. Hereafter, in model (1) and all models investigated
in this article, YD represents the value of a (positive) continuous pharmacokinetic or
pharmacodynamic response measured after administering a constant drug dosage
D during such time period. Of course, this time period depends on the particular
drug and response. For instance, when the response is plasma (or blood) drug
concentration, this time period usually corresponds to at least 5 drug half-lives,
and the drug concentrations measured after that period are usually termed “steady-
state” (Winter, 2004). However, a continuous response may not necessarily be a
drug plasma concentration, but may be an index of efficacy or toxicity of the drug,
a measure of clinical benefit or harm, a clinical endpoint, or even a continuous
surrogate marker (Molenberghs et al., 2008). The basic goal of a drug-dosage
individualization process is to determine an optimum dosage D for a particular
patient, which allows him/her to reach a response YD that lies within a range of
desired responses �l1� l2�. (The interval �l1� l2� is called the target response range.)

In section 2, we describe how the Diaz et al. algorithm can be used in
situations where some covariates have random effects and/or the log of dosage has
a fixed regression coefficient. In section 3, the algorithm is compared with a popular
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TDM method through theoretical arguments. In section 4, a model of plasma
clozapine concentrations that has covariates with random effects is described, and
some computations that are necessary for performing the Diaz et al. algorithm are
illustrated. In section 5, simulations are used to compare the algorithm with the
TDM method, assuming accurate parameter estimates. The effects of estimation
errors on the algorithm’s performance are investigated through simulations in
section 6. Section 7 discusses empirical evidence supporting the investigated linear
model, and describes additional advantages of using linear over nonlinear models in
drug dosage computations. Conclusions are in section 8.

2. APPLICABILITY OF THE DIAZ ET AL. ALGORITHM IN A MORE
GENERAL SETTING

This study considers the model

log �YD� = 
+ �TZ + �TX + d log �D�+ � (2)

where � is defined as in model (1), Z and X are vectors with k and r (possibly
transformed) clinical or demographic covariates, respectively, � is a vector of
regression coefficients that are population constants, and d is a population constant.
Here, 
 and � are characteristic constants of a particular patient; they vary from
patient to patient. At the population level, it is assumed that 
 is an N��
� �

2

�

random variable, that � is a k-dimensional Nk����V�� random vector, that �
� �� has
a joint normal distribution, and that �
� �� and � are independent from each other.
Note that although X includes only covariates with fixed effects (the elements of
�), Z includes covariates that have fixed effects (the elements of ��) and random
effects (the elements of �− ��). Therefore, in order for � and �� to be identifiable, we
assume that none of the covariates in X are in Z , and vice versa. In the traditional
terminology of mixed linear models, the vectors ��
� �

T
� � �

T � d�T and �
− �
� ��−
���

T �T are called fixed and random effects, respectively (Verbeke and Molenberghs,
2000), with the understanding that �
 and 
− �
 do not measure the “effects” of
any real-world covariate because 
 represents only an intercept. If YD is drug plasma
concentration and linear pharmacokinetics is assumed, d may be fixed at 1 (Hu and
Zhou, 2008; Hu et al., 2009). Alternatively, the maximum likelihood estimator of
d may be used to test the null hypothesis of linear pharmacokinetics, d = 1; and
d should be estimated if there is evidence of nonlinear pharmacokinetics. When
d = 1 and � ≡ 0, model (2) is essentially model (1); in this sense, model (2) is a
generalization of model (1).

For a fixed value of Z , if we denote � = 
+ �TZ then model (2) can be
rewritten as

log
(
YD
Dd

)
= �+ �TX + � (3)

with � ∼ N��� �Z�� �2
� �Z��, where �� �Z� = �
 + �T

�Z and �2
� �Z� = Var�
+ �TZ�.

Thus, for fixed Z , model (3) is analogous to model (1), although in model (3)
the parameters of � depend on Z and the dosage D has been “transformed” to
Dd. Now assume that model (2) describes adequately a population of patients,
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and that a clinician wants to find an appropriate, individualized dosage D for
a patient who belongs to this population and has a constant but unknown �.
The analogy just described and the fact that Z is known and fixed throughout
the entire individualization process suggest that the Diaz et al. algorithm can be
implemented in the following way in the context of model (2). Here, it is assumed
that the values of ���Z�, �2

��Z�, �, �2
� , and d are known (or have been estimated

with acceptable precision before applying the algorithm), which implies that the
distribution N����Z�� �2

��Z�� is our prior distribution of �. When model (2) holds,
the steps of the algorithm are as follows:

Step 1: By using �̂′1 = ���Z� and C∗
0 = √

l1l2, compute the initial dosage

D1 =
(
C∗

0e
−�̂′1−�TX

)1/d
(4)

Next, administer D1 to the patient during an appropriate time period so that the
response becomes stable, and then measure the stabilized response YD1

.

Step i� i ≥ 2: By using the dosage-response pairs (Dj� YDj
), j = 1� 2� � � � � i− 1,

which were obtained in the i− 1 previous steps, compute the ith dosage

Di =
(
C∗

0e
−�̂′i−�TX

)1/d
(5)

where �̂′i is a predictor of � given by

�̂′i = �1− 
i
√
�−1 − 1�

(
1

i− 1

i−1∑
j=1

log

(
YDj

Dd
j

)
− �TX

)
+ 
i

√
�−1 − 1���Z� (6)

with

� = ��Z� = �2
��Z�/��2

��Z�+ �2
�� (7)

and 
i, i ≥ 1, defined by Eq. (12) in Diaz et al. (2007). (We stress that, in the context
of model (2), � depends on Z .) Administer the new dosage Di to the patient until the
response stabilizes, and then measure the produced, stabilized response YDi

. Since
we are assuming that model (2) holds, we have that YDi

= Dd
i e

�+�TX+�i � i ≥ 1, where
� = 
+ �TZ is a constant number for the patient and the �i’s are N�0� �

2
��. The �i’s

are assumed to be mutually independent.

For i ≥ 2, �̂′i is the mean of the conditional distribution of � given
log�YDj

/Dd
j �− �TX , j = 1� � � � � i− 1. By using Eq. (3) and a decision-theoretic

argument analogous to the proof of Theorem 3.1 in Diaz et al. (2007), it can be
shown that when model (2) holds, the Diaz et al. algorithm is optimal in the sense
that at the ith algorithm step, �̂′i and C∗

0 are the predictor �̂i of � and the target
median patient’s response C0, respectively, that minimize the Bayes risk function

R ��̂i� C0� = 1− P�l1 < YDi
< l2�� ��̂i� C0� ∈ �i × �0� �� (8)
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where �i is the set of all predictors �̂i of � that are normally distributed, satisfy
E��̂i� = ���Z�, and are independent of �i, and it is assumed that the interval �0���
includes any possible response. (Keep in mind that the value of Z is fixed during the
whole dosage individualization process, since the algorithm is applied to a particular
patient.) Thus, essentially, the Diaz et al. algorithm aims at finding a good predictor
of � in the sense that this predictor maximizes the clinician’s degree of confidence
that the response YD will fall within the target range �l1� l2�.

Suppose that a population of patients satisfies model (2), and that a particular
patient from the population has characteristic constants 
 and � and, therefore,
a characteristic � = 
+ �TZ . Assume that the Diaz et al. algorithm is applied to
this patient. An important question is: How many algorithm steps are necessary to
obtain an appropriate dosage for the patient? This question is answered by using
the concept of 	-optimum dosage (Diaz et al., 2007). Specifically, in the context of
model (2), for 0 < 	 < 1, an 	-optimum dosage for the patient is a dosage D that
satisfies

P�l1 < YD < l2 � �� ≥ 	

{
sup
i≥1

P �l1 < YDi
< l2 � ��

}
(9)

where � = ��− ���Z��/���Z�. Thus, when model (2) holds, the largest attainable
probability that the response of the patient reaches a value within the target range
�l1� l2� is m, and the minimum number of algorithm steps that are necessary to reach
an 	-optimum dosage for the patient is I��� 	�, where m and I��� 	� are defined
by Eqs. (14) and (16) in Diaz et al. (2007), respectively. (Observe that, besides
depending on � and 	, I��� 	� depends on both m and �, where � is given by Eq.
(7) if model (2) holds.)

In practice, since the patient’s � is unknown, it is necessary to stop the
algorithm at the earliest step that yields an 	-optimum dosage for at least a
fraction p of patients, 0 < p < 1. When model (2) holds, the minimum number of
algorithm steps that are necessary to obtain an 	-optimum dosage for at least p×
100% of the patients in the population is i∗, which is defined by Eq. (18) in Diaz
et al. (2007). In practice, the values of 	 and p should be fixed close to 1 before
starting the algorithm. (These statements can be proven analogously to the proof
of Theorem 3.2 in Diaz et al. (2007).) Note that in the context of model (2), i∗

depends on the particular value that Z takes on in the patient, although i∗ does not
depend on X . Moreover, although the definition of an 	-optimum dosage given by
(9) formally depends on an infinite sequence of future dosages, only a finite number
of administered dosages is needed to compute a dosage that has at least a p× 100%
possibility of being 	-optimum for the patient. This number is i∗ − 1.

3. A COMPARISON WITH THERAPEUTIC DRUG MONITORING

The Diaz et al. algorithm may be considered an optimal method for dosage
adjustment in a TDM setting when the patient belongs to a population that
satisfies model (2) and YD is drug plasma concentration. To understand why this
may be so, let us compare the Diaz et al. algorithm with a popular method for
dosage adjustment, which is advocated in a number of pharmacology textbooks.
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This method, which assumes linear pharmacokinetics, adjusts the patient’s dosage
using the formula

Adjusted dosage = Previous dosage
Measured concentration

C0 (10)

where C0 is a target drug steady-state trough concentration. Let A and B
be two patients from a population that satisfies model (2) with d = 1, and
who are independently treated with the drug. [The condition d = 1 insures
linear pharmacokinetics (Hu and Zhou, 2008; Hu et al., 2009).] Assume that
the two patients have the same covariate values in X and Z , and have the
same but unknown value of �, where � = 
+ �TZ , so that the patients are
closely comparable. Suppose that we want to obtain steady-state trough plasma
concentrations that fall within a target range �l1� l2�, and that patients A and B are
initially administered dosages D1 and Db�1, respectively, where D1 = Db�1 and D1 is
given by Eq. (4). Suppose that the dosage for patient A is adjusted n times using the
Diaz et al. algorithm as described in section 2 (using C∗

0 as target concentration and
�̂′i as a predictor of �), and that the dosage for patient B is adjusted n times using
(10), where C0 may not be equal to C∗

0 . The following argument shows that, after
any dosage adjustment, patient A will have a higher chance of reaching the target
concentration range than patient B.

Let (Di� YDi
), i = 1� � � � � n+ 1, be the dosage–concentration pairs obtained

from patient A. Thus, YDi
= Die

�+�TX+�i , i = 1� � � � � n+ 1, where the �i’s are mutually
independent random errors with a N�0� �2

�� distribution. From patient B, we
obtain dosage–concentration pairs (Db�i� YDb�i

), i = 1� � � � � n+ 1, which satisfy Db�i =
�Db�i−1/YDb�i−1

�C0 and YDb�i
= Db�ie

�+�TX+�b�i , where the �b�i’s are N�0� �2
�� random

errors that may be reasonably assumed to be mutually independent and independent
of the �i’s. But for i ≥ 2,

YDb�i
=
(
C0e

− �̂i−�TX
) (

e�+�TX+�b�i

)
� (11)

where �̂i = log�YDb�i−1
/Db�i−1�− �TX . Thus, applying formula (10) is equivalent to

applying the Diaz et al. algorithm, except that C0 and �̂i are used in place of C∗
0 and

�̂′i [cf. Eq. (5) with d = 1]. Now observe that �̂i ∈ �i, where �i is defined after Eq.
(8). Thus, if C0 	= C∗

0 , then

P�l1 < YDb�i
< l2� < P�l1 < YDi

< l2� (12)

for all i = 1� � � � � n+ 1 (see proof of Theorem 3.1 in Diaz et al., 2007). To see why
inequality (12) is also valid when C0 = C∗

0 , denote �̂′′i = 1
i−1

∑i−1
j=1

(
log
( YDj

Dj

)− �TX
)
.

Note that E� �̂i � �� = � = E��̂′′i � ��. For i ≥ 2, E���̂i − ��2 � �� = �2
� ≥ �2

�/�i− 1� =
E�� �̂′′i − ��2 � ��. Thus, if C0 = C∗

0 and i ≥ 2, E���̂i − ��2� ≥ E���̂′′i − ��2� > E���̂′i −
��2� because �̂′i is a Bayes estimator of � under the squared error loss but �̂′′i is not;
since �̂i ∈ �i, inequality (12) holds. Thus, there is a higher probability of reaching
the target concentration range when the Diaz et al. algorithm is used instead of
formula (10).

Even more, a slight modification of the proof of Theorem 3.1 in Diaz et al.
(2007) allows proving that inequality (12) is also valid for i ≥ 2 when the initial
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dosage D1 is other than that given by Eq. (4), provided that dosage adjustments for
patient A are performed using Eqs. (5) and (6) with i = 2� � � � � n+ 1. This should
not be a surprise, because, in general, the distribution of YDj

/Dj does not depend on
the method used to compute Dj , although, of course, the distribution of YDj

does.
A further modification of the proof also allows proving that if (Di� YDi

), i =
1� � � � � n are n steady-state dosage–concentration pairs provided by patient A in
other circumstances, for instance, during a TDM that did not necessarily implement
the Diaz et al. algorithm, and if YDi

/Di, i = 1� � � � � n, are mutually and conditionally
independent given �, then inequality (12) is also valid for i = n+ 1, provided that
Dn+1 is computed using Eqs. (5) and (6) with i = n+ 1. Interestingly, under these
more general conditions, if i∗ is given by Eq. (18) in Diaz et al. (2007) and n+ 1 ≥ i∗,
then the probability that Dn+1 is 	-optimum is at least p, that is, Dn+1 still enjoys
an optimality property; however, due to inequality (12), Db�n+1 may not have this
property. Finally, if n+ 1 < i∗, then the clinician may use Dn+1 as an initial dosage
for patient A and perform at least i∗ − n− 1 algorithm steps in order to obtain a
dosage that is 	-optimum for patient A with a probability of at least p.

In summary, our computations show that formula (5) may produce better results
than formula (10), even if the dosages and concentrations inputted to formula (6) are
not obtained through a complete or strict application of the Diaz et al. algorithm.
Moreover, if the number of dosage–concentration pairs is sufficient (≥i∗), only one
application of formula (5) may be enough to obtain a desired dosage optimality,
regardless of how the pairs were obtained. The objective of a complete application
of the algorithm, however, is to ensure that the probability of the drug concentration
falling within the target range is maximized each time a dosage is computed.

4. APPLICATION TO CLOZAPINE INDIVIDUALIZATION

Clozapine is an antipsychotic drug used to treat patients with severe
schizophrenia. Diaz et al. (2008) fit a linear model with only a random intercept and
fixed-effect covariates to 415 steady-state (trough) plasma clozapine concentrations
provided by 255 schizophrenia patients. Some schizophrenia patients need to
be treated not only for their psychotic symptoms but also for depression with
antidepressants or seizures with anticonvulsants. Thus, the objective of the study
just described was to measure the size of co-medication effects on plasma clozapine
concentrations, using a measure of average effect size that is also described in Botts
et al. (2008) and de Leon et al. (2007a,b) and is based on relative percentiles (Diaz et al.,
2007; Muñoz and Xu, 1996). The fitted model was similar to model (2), except that
�− �� was assumed to be 0; that is, no random effects for the investigated covariates
were included. In the Diaz et al. study (2008), YD was the steady-state plasma clozapine
concentration produced by the clozapine dosage D, and the covariates included in
the final model were: taking fluoxetine, taking fluvoxamine, taking paroxetine, taking
phenobarbital, taking valproic acid, smoking, and the natural log of clozapine dosage
(log�D�). All covariates except the last were dichotomous. Also, an interaction between
taking valproic acid and smoking was included in the model.

To examine whether some of these covariates have random effects, we
reanalyzed the Diaz et al. (2008) data (Table 1). SAS PROC MIXED was used
for computations (Littell et al., 2006). As a result, we found that the model in
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Table 1 Fixed effects and effect sizes (E) for variables significantly associated with the natural log of
plasma clozapine concentration, according to a linear mixed-effects model that includes random effects
for smoking and taking fluoxetine �n = 255�

Variable Fixed effectsa 95% CIb�c p-valued Ee 95% CIf

Taking fluoxetineg 0.33 �0�15� 0�51� 0�0013 +39% �16� 67�
Taking fluvoxamineg 1.25 �1�04� 1�47� <0�001 +249% �183� 335�
Taking paroxetineg 0.26 �0�12� 0�39� <0�001 +30% �13� 48�
Taking phenobarbitalg −0�34 �−0�53�−0�14� <0�001 −29% �−41�−13�
Taking valproic acidg 0.14 �0�014� 0�27� 0.03
Nonsmokers +15% �1� 31�
Smokers −22% �−44� 8�

Smokingh −0�24 �−0�42�−0�055� 0.011
Not taking valproic acid −21% �−34�−5�
Taking valproic acid −47% �−62�−25�

Valproic acid–smoking
interaction −0�39 �−0�74�−0�038� 0.03
Log (dose) 1.23 �1�09� 1�38� <0�001

Note. 95% CI = 95% confidence interval. This table looks similar to Table 2 in Diaz et al.
(2008) but describes a different model. Following the notation in section 2, the model for plasma
clozapine concentrations was log�C� = �− 0�24Z1 + 0�33Z2 + 1�25X1 + 0�26X2 − 0�34X3 + 0�14X4 −
0�39X5 + 1�23 log�D�+ �, where Z1 = smoking, Z2 = taking fluoxetine, X1 = taking fluvoxamine, X2 =
taking paroxetine, X3 = taking phenobarbital, X4 = taking valproic acid, X5 = Z1X4, C = plasma
clozapine concentration, and D = clozapine dosage. The intra-individual variation, �2

� was 0.027 �95%
CI, (0.022, 0.035)�. The mean of 
 was −1�05 �−1�89�−0�21�. If � is the vector of random regression
coefficients corresponding to Z = �Z1� Z2�

T , then the variance–covariance matrix of the random effects,
Var��
− �
� ��− ���

T �T � was a diagonal matrix whose components were as follows: variance of 
,
0.20 (0.16, 0.26); variance of the coefficient of smoking, 0.19 (0.10, 0.51); and variance of the coefficient
of taking fluoxetine, 0.083 (0.037, 0.34).

aThe numbers in this column are the components of ��, �, or d.
b95% CI for the fixed effect.
cThe standard errors of the fixed-effects estimators were 0.43 (intercept), 0.084 (taking fluoxetine),

0.11 (fluvoxamine), 0.068 (paroxetine), 0.099 (phenobarbital), 0.065 (valproic acid), 0.092 (smoking),
0.1770 (valproic acid–smoking interaction), and 0.075 (log of dose). The standard errors of the variance
estimators were 0.024 for the variance of 
, 0.044 for the variance of the coefficient of taking
fluoxetine, 0.076 for the variance of the coefficient of smoking, and 0.0034 for the intra-individual
variation.

dTests the null hypothesis that the fixed effect is equal to 0 vs. the hypothesis that it is different
from 0.

eThe effect size E measures the (adjusted) percentage change in the mean or median (or any other
percentile) of plasma clozapine concentrations due to co-administration of the corresponding drug.

f95% CI for E.
gThe dichotomous variable was defined as 1 if the patient was taking the co-medication and 0

otherwise.
hThe dichotomous variable was defined as 1 if the patient was a smoker and 0 otherwise.

Diaz et al. (2008) could be improved by including random effects for the covariates
smoking and taking fluoxetine. These random effects were statistically significant
at the 0.05 level of significance. Also, Akaike information criteria were 405.3 and
385.6 for the model in Diaz et al. (2008) and the model with covariate random
effects, respectively, suggesting that the latter fit better. Table 1 describes the new
model. Residual analyses suggested that the model fit well. When the fifth column in
Table 1 is compared with the corresponding column in Table 2 of Diaz et al. (2008),
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Table 2 Initial clozapine dosages (in mg/day) used in simulations. These dosages are optimal for an
“average patient” from a population that satisfies the model in Table 1 and a target steady-state,
plasma clozapine concentration range of 350–600ng/ml

Phenobarbital (no); Phenobarbital (yes);
valproic acid: valproic acid:

Smokers Fluvoxamine Fluoxetine Paroxetine No Yes No Yes

No No No No 350 300 450 400
Yes 275 225 350 300

Yes No 250 225 350 300
Yes 200 200 275 250

Yes No No 125 100 175 150
Yes 100 100 125 125

Yes No 100 75 125 100
Yes 75 75 100 100

Yes No No No 425 500 550 675
Yes 325 425 450 550

Yes No 325 400 425 525
Yes 250 325 350 425

Yes No No 150 175 200 250
Yes 125 150 150 200

Yes No 125 150 150 175
Yes 100 125 125 150

we observe that excluding the random effects of smoking and taking fluoxetine from
the model did not substantially affect the estimates for the average effect sizes of
all covariates included in the model. At the 0.05 level of significance, the statistical
significance of these estimates and of fixed-effect estimates was not affected either.

By using Eq. (14) in Diaz et al. (2007), l1 = 350 ng/ml, l2 = 600ng/ml, and the
error variance �2

� of the model in Table 1, which includes random effects for smoking
(Z1) and taking fluoxetine (Z2), we obtain m = 0�90. Moreover, by using Eq. (7) with
Z = �Z1� Z2�

T , the values of ��Z� are calculated as ��1� 1� = 0�95, ��1� 0� = 0�93,
��0� 1� = 0�91, and ��0� 0� = 0�88. Thus, if we use formulas (16) and (18) in Diaz et al.
(2007) as explained in section 2, and assume that the model in Table 1 is used to
implement an individualization algorithm in particular patients, we can compute that
3 algorithm steps are sufficient to reach a 0.9-optimum dosage for at least 95% of the
patients, regardless of the value of Z . In other words, to calculate such a dosage for a
particular patient, only two blood samples would be required from the patient. (Note
that i∗ does not depend on Z in this particular example; however, in general, i∗ does
not always take on the same value for all values of Z .)

5. COMPUTER SIMULATIONS ASSUMING ACCURATE
PARAMETER ESTIMATES

We conducted a simulation study that compared the performance of the Diaz
et al. algorithm with that of an iterative application of formula (10), assuming
that the model described in Table 1 is a reasonable representation of the patient
population, and using l1 = 350ng/ml and l2 = 600ng/ml. The main purpose of
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these simulations was to explore differences between the two approaches, using
realistic values for model (2) parameters. The issue of whether and how parameter
estimates can be improved is out of the scope of this article and is the topic of a
great deal of research (see, e.g., Verbeke and Molenberghs, 2000).

The simulation program was written with SAS/IML (SAS Institute, Inc.,
2008). For each combination of values of the covariates included in the model, a
population of 10�000 patients that satisfied the model was simulated. Specifically,
a simulated realization of the random vector �
� �� represented “a patient.” In the
two approaches, initial dosages were computed with formula (4) (Table 2). For
each hypothetical patient, the clozapine dosage was adjusted three times using the
Diaz et al. algorithm; that is, four steps of the algorithm were implemented. After
each algorithm step i, the proportion pi of patients whose steady-state plasma
clozapine concentration reached the target concentration range, 350–600ng/ml, was
calculated, i = 1� � � � � 4. (That is, pi = P�350 < YDi

< 600�× 100.) The “patients”
were also used to simulate a traditional TDM in which clozapine dosages were
iteratively adjusted three times using formula (10) with C0 = C∗

0 . For this simulated
TDM, the proportion of patients whose clozapine concentration reached the target
range after the �i− 1�th dosage adjustment was computed and denoted by qi, i =
2� 3� 4, and the proportion of patients who reached the target range after receiving
the initial dosage was denoted by q1. Since the initial dosages were the same in both
simulated clinical procedures, p1 = q1. Since oral clozapine dosages are available as
multiples of 25mg, dosages computed with formulas (4) and (5), or with formula
(10), were rounded to their closest multiple of 25 before “administering” them to
the patients (i.e., before using the model to compute the resultant plasma clozapine
concentrations). All dosages were of at least 25mg/day.

Table 3 shows the simulation results for nonsmokers. Specifically, the table
shows the obtained values of pi and qi, i = 1� � � � � 4, for each possible combination
of covariate values. As seen in Table 3, for any combination of covariate values,
pi > qi, i = 2� � � � � 4. For instance, after performing the third dosage adjustment
with the Diaz et al. algorithm in nonsmokers who were taking only valproic acid
as a co-medication, the proportion of patients who reached the target concentration
range was p4 = 84�4%. In contrast, after the third dosage adjustment with formula
(10) in comparable patients, the proportion was lower, q4 = 68�6% (Table 3). In
general, when compared with the dosage adjustments performed with formula
(10), the dosage adjustments performed with the Diaz et al. algorithm always
yielded dosages that had a substantially higher likelihood of producing clozapine
concentrations within the target range.

Interestingly, p1 < p2 < p3 < p4, regardless of the patient subpopulation
(Table 3). In contrast, in most subpopulations, q3 ≈ q4. Thus, after two dosage
adjustments, the traditional TDM did not produce any additional improvement in
the dosages. The Diaz et al. algorithm, however, was able to further improve the
dosages in the third dosage adjustment. Conclusions from the simulation results for
smokers were essentially the same as those from nonsmokers.

In summary, even after accounting for the fact that oral clozapine dosages are
available only in discrete amounts that are multiples of 25mg, the Diaz et al. clinical
algorithm produced better dosages than a TDM based on formula (10), in that the
algorithm may produce substantially higher proportions of patients reaching the
target clozapine concentration range.
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Table 3 Proportions of nonsmokers who reached a target clozapine concentration range of 350–
600ng/ml under the Diaz et al. algorithm (pi), and under a TDM method based on formula (10) (qi�

Phenob (no) Phenob (yes)

Valpro (no) Valpro (yes) Valpro (no) Valpro (yes)

Fluvox Fluox Parox Step i pi qi pi qi pi qi pi qi

No No No 1 42.1 42.1 43.5 43.5 43.7 43.7 42.6 42.6
2 76.7 66.4 75.8 65.9 75.6 66.6 76.1 65.6
3 82.2 68.1 81.6 67.7 81.7 68.3 81.9 68.8
4 84.2 68.9 84.4 68.6 84.8 68.4 84.3 69.2

Yes 1 43.1 43.1 42.9 42.9 42.7 42.7 42.20 42.2
2 76.8 65.8 76.2 65.8 77.1 66.8 76.4 66.3
3 82.2 68.2 81.2 69.1 82.3 68.4 81.5 68.9
4 83.8 69.3 84.1 69.0 84.7 68.6 84.1 69.4

Yes No 1 36.8 36.8 37.5 37.5 37.5 37.5 37.5 37.5
2 75.6 64.7 75.8 64.1 76.5 63.8 76.3 65.1
3 81.7 68.5 80.8 68.0 82.2 68.5 81.6 68.0
4 84.0 68.5 84.2 68.5 85.0 68.9 84.5 68.5

Yes 1 36.3 36.3 36.3 36.3 37.2 37.2 37.1 37.1
2 74.7 64.4 74.8 63.9 76.2 65.3 75.3 64.0
3 81.0 68.1 80.9 68.1 81.3 68.5 81.2 67.3
4 83.6 68.3 82.8 68.2 84.3 68.4 83.5 67.9

Yes No No 1 43.2 43.2 40.8 40.8 41.1 41.1 42.2 42.2
2 74.1 64.3 72.5 63.5 76.1 64.8 74.4 64.8
3 78.7 65.8 78.0 67.0 80.3 67.9 79.4 66.6
4 80.7 66.0 80.9 67.0 83.2 68.4 82.0 68.2

Yes 1 43.2 43.2 40.8 40.8 42.6 42.6 42.4 42.4
2 72.0 63.9 71.8 62.5 74.0 65.2 73.7 64.8
3 77.4 65.3 75.6 64.1 80.2 66.9 78.9 66.8
4 78.5 66.2 77.3 64.4 81.3 66.3 80.9 66.9

Yes No 1 36.8 36.8 35.2 35.2 37.3 37.3 36.4 36.4
2 71.0 61.4 70.0 60.2 73.5 63.0 73.0 62.7
3 75.6 64.4 73.9 63.7 78.9 67.0 77.0 65.7
4 77.8 64.5 75.7 63.8 80.5 67.8 79.4 65.4

Yes 1 37.5 37.5 36.2 36.2 37.2 37.2 36.3 36.3
2 69.0 59.1 68.1 59.0 72.1 61.9 70.7 61.1
3 73.4 62.5 71.4 61.5 76.7 64.3 75.4 64.3
4 75.3 62.5 73.7 61.5 78.5 64.8 77.1 64.5

Note. These simulations assume that the patients satisfy the model in Table 1. Fluvox, fluvoxamine;
Fluox, fluoxetine; Parox, paroxetine; Phenob, phenobarbital; Valpro, valproic acid.

6. A COMPARISON WITH TRADITIONAL TDM UNDER
PARAMETER ESTIMATION ERRORS

In section 5, the parameters used to compute dosages with the Diaz et al.
algorithm were the same as those used to simulate the subjects’ pharmacokinetic
responses to dosages from both the algorithm and formula (10). Thus, it was
assumed that the available parameter estimates were very precise estimations of
the true model parameters. In practice, parameter estimates must be used by
the clinician to compute dosages with the Diaz et al. algorithm; however, these



478 DIAZ ET AL.

estimates may not be exactly the same as the true parameters that generate the
actual pharmacokinetic responses via model (2). Diaz et al. (2007) explored through
simulations the effect of parameter estimation errors on algorithm performance by
using a model of plasma clozapine concentrations that was built with data from
a double-blind clozapine trial. Although they did not compare the performance
of their algorithm with that of other approaches, they found that unless model
parameters are very far from their estimates, the algorithm still performs well when
the estimates are used in dosage computations in place of the true parameters.
Specifically, even when the potentially true parameters were all at a distance of 1
standard error from their estimates, there was a high probability that Di∗ would be
0.9-optimum (Diaz et al., 2007). Considering that maximum likelihood estimators
are consistent and usually utilized in the estimation of linear model parameters, the
Diaz et al. simulation results increase our confidence in their algorithm.

In this section, we use simulations to compare the Diaz et al. algorithm with
formula (10) under the assumption that the form of the linear model representing
the patient population is the same as that described in Table 1, but incorporating the
possibility that parameter-estimate values may not be exactly the same as the true
parameter values. Observe that the model in Table 1 has 13 real-valued parameters,
including variances and all elements of the fixed-effects vector. Following an
approach to simulation similar to that in Diaz et al. (2007, p. 2066), let �i, i =
1� � � � � 13, denote the true parameters. Let �̂i be the estimate of �i and se��̂i�
its corresponding standard error, i = 1� � � � � 13; these are numbers described in
Table 1. For a fixed r > 0, consider the set Sr of 13-tuples ��1� � � � � �13� for which
the ratio ��̂i − �i�/se��̂i� is either r or −r for all i. That is, Sr is the set of all
possible combinations of potentially true parameter values that are at a distance of
r standard errors from their corresponding estimates. Observe that, for fixed r, Sr
has 213 = 8192 elements.

As in section 5, we used a target plasma clozapine concentration range of 350–
600ng/ml, and p3 and q3 were defined as the proportion of patients who reached
this range after 2 dosage adjustments using the Diaz et al. algorithm and formula
(10), respectively. (Recall that i∗ was estimated to be 3 in section 4.) For each patient
subpopulation determined by the values of X and Z , and r = 0�2� 0�4� � � � � 1�6� 1�8,
we computed p3 and q3 for each element of Sr by assuming that such an element
was the true combination of parameter values. Each computation of p3 and q3 used
10,000 simulated patients. A particular value of the vector �
� ��, which represented
a patient, was generated by using the assumed true values of �
, �

2

, ��, and V�.

Regardless of the drug individualization method, the pharmacokinetic response of
the patient to a dosage D was simulated by first generating one value of the random
error �, using the assumed true value of �2

� ; then YD was computed with the formula
Dde�+�TX+�, using � = 
+ �TZ and the assumed true values of � and d. Independent
random errors were used across iterations of the Diaz et al. algorithm or formula
(10), and across the two individualization procedures. Dosages were always rounded
to the closest, positive multiple of 25 before computing YD. To compute dosages
with the Diaz et al. algorithm, parameter estimates in Table 1 were entered into
formulas (4)–(7). (The parameter estimates were not used to compute dosages with
the traditional TDM approach, since formula (10) does not require them.) As in
section 5, the initial dosages used in both individualization procedures were those
shown in Table 2, and we let C0 = C∗

0 in formula (10).
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For fixed r, the number of elements of Sr for which p3 > q3 was computed,
divided by 213, and multiplied by 100. The resultant percentage, denoted by �r ,
was interpreted as the proportion of potentially true parameter combinations in Sr
under which the Diaz et al. algorithm outperformed formula (10) after 2 dosage
adjustments. Table 4 shows �r for all subpopulations and particular values of r.
Remarkably, for all patient subpopulations, �r > 98% when r ≤ 1�2. (Regardless
of the subpopulation investigated, �r = 100% when r ≤ 1.) Another computation
showed that when r ≤ 1, the average of the differences p3 − q3, taken over all

Table 4 Proportion �r of combinations of potentially true parameters that are at a distance of r

standard errors from their estimates under which the Diaz et al. algorithm outperformed formula (10)
after two clozapine dosage adjustments, for particular values of r and subpopulations of patients

Phenob (no) Phenob (yes)

Valpro (no) Valpro (yes) Valpro (no) Valpro (yes)

Fluvox Fluox Parox r NSMO SMO NSMO SMO NSMO SMO NSMO SMO

No No No ≤1.2 100 100 100 100 ≥99.9 100 ≥99.2 100
1.4 88.3 100 91.3 97.4 88.6 98.8 87.8 96.5
1.6 75.0 92.8 77.0 88.3 78.0 88.0 78.1 88.5
1.8 75.0 80.4 75.0 81.5 75.0 78.5 75.0 81.6

Yes ≤1.2 100 100 100 100 ≥99.5 100 ≥98.7 100
1.4 92.3 99.8 90.2 97.9 88.4 98.8 89.5 96.8
1.6 78.2 90.3 78.3 90.3 78.3 90.8 79.8 88.6
1.8 75.0 79.2 75.0 83.5 75.0 81.4 76.1 82.1

Yes No ≤1.2 100 100 100 100 100 100 100 100
1.4 98.1 100 97.4 99.0 96.8 99.7 96.3 98.2
1.6 83.3 95.5 87.1 91.7 86.9 92.5 84.7 91.2
1.8 76.0 84.1 77.8 84.3 78.0 82.8 77.6 83.5

Yes ≤1.2 100 100 100 100 100 100 100 100
1.4 97.3 100 98.5 98.9 97.0 99.6 96.5 98.5
1.6 86.8 93.7 90.0 92.6 85.2 94.0 87.1 91.4
1.8 77.9 83.0 80.0 85.3 78.0 84.5 79.5 84.4

Yes No No ≤1.2 100 100 100 100 100 100 ≥99.0 100
1.4 93.6 99.9 91.2 97.8 92.9 99.1 92.0 97.7
1.6 81.4 94.4 81.4 90.7 83.6 92.2 83.1 91.1
1.8 75.4 84.9 76.7 84.0 78.1 83.0 77.5 84.4

Yes ≤1.2 100 100 100 100 ≥98.8 100 ≥99.2 100
1.4 93.6 99.8 94.7 98.3 91.7 98.9 93.2 97.9
1.6 84.1 93.9 85.9 92.0 82.6 91.5 84.5 91.1
1.8 77.9 84.8 79.7 85.3 76.9 83.2 79.0 84.7

Yes No ≤1.2 100 100 100 100 100 100 100 100
1.4 98.9 100 97.6 99.4 98.1 99.6 96.2 98.3
1.6 90.1 97.2 88.5 94.2 90.4 95.0 87.5 92.1
1.8 82.4 89.0 80.8 87.4 82.2 86.6 80.2 85.1

Yes ≤1.2 100 100 100 100 100 100 100 100
1.4 98.3 100 99.0 99.3 97.5 99.6 98.1 98.7
1.6 90.8 96.6 92.2 95.0 88.9 95.2 91.3 93.0
1.8 82.2 88.6 84.3 88.4 81.6 87.2 84.0 86.6

Note. Fluvox, fluvoxamine; Fluox, fluoxetine; Parox, paroxetine; Phenob, phenobarbital; Valpro,
valproic acid; NSMO, nonsmoker; SMO, smoker.
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elements of Sr , was ≥8�6%. This suggests that even if all true parameters are at
a distance of 1 standard error from their corresponding estimates in Table 1, a
substantially higher percentage of patients may reach the target concentration range
if the Diaz et al. algorithm is used in place of the traditional TDM method.

Starting from r = 1�0, �r gradually decreased as r increased. For instance,
among nonsmokers who were taking phenobarbital as their only co-medication,
�1�0 = 100%, �1�2 = 99�9%, �1�4 = 88�6%, �1�6 = 78�0%, and �1�8 = 75�0%
(Table 4). However, even when r = 1�6, which is an appreciable distance between
an estimate and its corresponding parameter, �r was relatively large in most
subpopulations of patients (Table 4). In fact, for 56 out of the 64 subpopulations,
�1�6 ≥ 80%; for all subpopulations, �1�6 ≥ 75%.

We conclude that if the true values of the parameters of the clozapine
model reported in Table 1 are not very far from the reported estimates (i.e., ≤1�2
standard errors), the Diaz et al. algorithm will still be superior in performance
to the traditional individualization approach based on formula (10). If moderately
higher levels of error affected parameter estimation (between 1.2 and 1.6 standard
errors), there is still an acceptable likelihood that the former outperforms the latter
approach. These simulation results are consistent with those of Diaz et al. (2007),
who found that their algorithm is robust to errors in the estimation of model
parameters, at least in the context of clozapine individualization.

7. DISCUSSION

This article examines the algorithm proposed by Diaz et al. (2007), which is
a rational approach to computing individualized optimum dosages that is based
on a precise definition of dosage optimality. Diaz et al. (2007) assumed that
the patient belongs to a population that can be described by model (1). This
model represents patients’ heterogeneity through both covariates and a random
intercept. As described in section 2, the algorithm can be applied to a more general
situation, described by model (2), which has two additional features: covariates with
random effects that add more flexibility to heterogeneity modeling, and a regression
coefficient d for the log of dosage that may reflect nonlinear pharmacokinetics when
different from 1 (Hu and Zhou, 2008; Hu et al., 2009). This suggests that the Diaz
et al. algorithm may have wide applicability.

According to the Diaz et al. algorithm, once the parameters in model (2)
are estimated using population data from phases III or IV, parameter estimates
are used to compute a recommended initial dosage D1. Then, after a few dosage
adjustments, these parameter estimates are combined with measurements from a
particular patient in order to compute a dosage that is optimum for the patient with
a high probability. Parameter estimates are also used in these dosage adjustments.

There is empirical evidence that model (2) may be a useful tool for describing
the effects of covariates on drug steady-state concentrations (Botts et al., 2008;
Diaz et al., 2007, 2008; Hu and Zhou, 2008). Some less general versions of this
model have been used to compute average dosage correction factors that allow
incorporating covariate information in the design of dosage regimes. Our results
show that the model may also be used to incorporate individual information that is
not explained by available covariates, which is modeled through random regression
coefficients. This approach may benefit some patients whose pharmacokinetic
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or pharmacodynamic characteristics are considerably different from those of an
average patient with comparable covariate values.

A version of model (2) that is essentially a random intercept linear model was
used by Hu and Zhou (2008) in the analyses of Phase III data from three different
drugs; their data were obtained from very large patient samples. Similar linear
models were used by Diaz et al. (2008) and Botts et al. (2008) in analyses of Phase IV
data. Hu and Zhou (2008) used their linear model only as a method for investigating
the robustness of results obtained through compartmental pharmacokinetic models.
However, they found a close similarity between covariate-based, average dosage
adjustment factors computed with compartmental models and those computed with
their linear model, which supports the validity of the linear model as a description
of their patient samples and investigated drugs. Thus, although Hu and Zhou did
not originally intend to gather evidence in favor of model (2), their work nicely
provides very strong empirical and theoretical support for this model. Hu and Zhou
appear to be aware of this fact, since they explicitly suggest the possibility that this
model may be used to perform primary analyses for regulatory submissions, at least
in some situations. (These authors, unfortunately, do not explicitly describe these
situations.) This suggestion is also made by Hu et al. (2009).

A reasonable explanation for the similarity just described between results from
model (2) and those from compartmental models may be that in the case of YD
being steady-state drug plasma concentration, model (2) is essentially a model of
apparent clearance when the drug follows linear pharmacokinetics, that is, when d
is 1 or close to 1 (Hu and Zhou, 2008; Hu et al., 2009), and apparent clearance
is the main determinant of the association between drug dosage and steady-state
plasma concentrations (Winter, 2004). In Hu et al. (2009), an agreement between
the pharmacokinetic conclusions from linear and nonlinear modeling was also
observed for a drug that did not follow linear pharmacokinetics; in our opinion, this
confirms the potentially wide applicability of linear mixed models to drug dosage
computations. In general, linear models are easier to build and fit to Phase III or IV
data than the nonlinear models that are at the core of traditional pharmacokinetic
methods. Thus, model (2) may be a useful tool to compute dosages that are
adjusted for covariate values or other individual information. The sparse sampling
designs that usually characterize Phase III and IV studies, which impede a clear
determination of absorption parameters (Jiao et al., 2009), may also be a reason for
preferring model (2) when using data from these studies. Sparse sampling is also
a reason for focusing only on steady-state concentrations when using Phase III or
IV data (Hu and Zhou, 2008; Jiao et al., 2009). Its use in primary analyses for
regulatory submissions is a potential application of model (2), as suggested by Hu
and Zhou (2008) and Hu et al. (2009). More research is needed to explore this
possibility and to examine whether the inclusion of covariates with random effects
may provide more precise dosage computations.

8. CONCLUSION

The main conclusion of this investigation is that if model (2) holds, the Diaz
et al. algorithm may produce better personalized dosages than some traditional
dosage-adjustment methods used in TDM. This conclusion, along with empirical
findings showing that linear mixed models may provide accurate representations of
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pharmacokinetic data and the fact that linear models are much easier to handle than
the nonlinear models that are traditionally used in population pharmacokinetics,
suggests a potential use of linear mixed models in drug dosage computation.
Moreover, the results in section 3 show that the algorithm may easily be modified
to incorporate steady-state concentrations previously measured through another
dosage adjustment procedure, provided that there is no evidence that apparent
clearance or covariate values in the patient have substantially changed. (If the values
in X have not changed, the stability of apparent clearance may be monitored by
examining the stability of the empirical Bayes estimates of �, which coincide with
the �̂′i’s when the algorithm is applied [Verbeke and Molenberghs, 2000]). Also, if
for some particular reason the clinician decides to change the dosage computed with
formula (5) at a particular algorithm step (perhaps because of an observed unwanted
reaction from the patient, or just because he/she has to administer a dosage rounded
to the closest available dosage), the clinician may still incorporate the obtained
concentration into formula (6), treating this concentration as if it were one obtained
through an application of the algorithm. Our results show that the dosage computed
at the next algorithm step will have the same optimality property as the dosage
that would be obtained if the clinician had not changed the dosage. Future clinical
studies that compare the Diaz et al. algorithm with dosage-adjustment methods
routinely used in TDM are needed in order to quantify the clinical importance
of differences between dosages. More research is needed to investigate how to deal
with changes in covariate values or apparent clearance during an application of the
algorithm, and to explore the implications for the algorithm’s performance of not
considering, at the population-modeling stage, variables with important effects on YD.
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