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Co-Advisor:
Prof. Pablo Zavattieri
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Abstract

The aim of this project is to explore the wave propagation properties in
a phase transforming cellular material suitable for energy dissipation applica-
tions. We pretend to understand how to control the dispersion behavior and
switch the propagation properties when the phase transition is triggered. In
the long-term, the main objective is to achieve a device with tunable band
gaps and wave guide properties.

The first part of this document presents the theoretical background of wave
propagation in periodic materials. The second part is dedicated to the Bloch
analysis of the phase transforming cellular material.
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Introduction
Cellular materials offer a unique combination of properties making them highly ap-
pealing and with a strong potential in different fields. They can exhibit high strength-
to-weight and stiffness-to-weight ratios; high compressive failure strains at nearly
constant stress; low thermal conductivity combined with high mechanical strength
at elevated temperatures; high surface area per unit volume together with high me-
chanical strength and low density, among others [1–3]. With a controlled topology,
relative density and geometry, novel materials are now possible thus widening its
range of applications covering areas like medicine, package protection, chemical pro-
cessing, waste management, aerospace and construction engineering.

Using the extended notion of solid state phase transformations to cellular solids,
Restrepo et al. [4] designed a material that can switch its effective properties under
a phase transformation. A phase transformation represents a change in the geome-
try of the unit cell in such conditions that the topology remains unmodified, while
experiencing changes in its effective properties. Thus, it is possible to generate pro-
grammable devices with the advantages of cellular materials changing “on the fly”.
On the other hand, the resulting phase transforming cellular material also offers
good energy dissipation characteristics. This is achieved through an elastic bistable
mechanism which produces a long stress-strain plateau, usually found in association
to plastic behavior of materials.

A cellular material can also be regarded as a periodic material which inherently
implies the existence of interesting phenomena associated to its wave propagation
characteristics. First, periodic materials may exhibit stop bands introduced by Bragg
scattering which produce frequency regions where waves are forbidden to propagate.
Secondly, periodic materials may posses specific directions of preferred wave prop-
agation or so-called directionality effects. The study of the effects known to exist
in periodic materials in combination with the idea of bi-stable elemental cells with
energy dissipation capabilities is a problem of interest on its own. In the particular
case of Grupo de Investigación en Mecánica Aplicada of Universidad EAFIT, there
is interest in exploring new alternatives to mitigate and attenuate elastic waves. In
this project we conduct a preliminary study of phase transforming cellular materials
aiming at identifying its potential in the frequency ranges of seismic waves.

Grupo de Investigación en Mecánica Aplicada has at its core interest, the iden-
tification of low-cost alternatives for earthquake resistant structures and as a conse-

5



quence, it has directed its attention to the study of elastic wave propagation [5–8].
In the case of a phase transforming cellular material, we are interested in exploring
the mechanisms that lead to wave control and energy dissipation (the last one al-
ready covered in [4]). In general, with this work we seek to understand how a phase
transformation changes the wave propagation properties of the cellular material and
how to design appropriate unit cell geometries to achieve band gap tunability.

In the first part of the document we summarize the theoretical aspects of elastic
wave propagation in periodic materials. In the first section of part I we present fun-
damental concepts on Bloch analysis, while in the second we describe the basis of
Bloch-periodicity conditions in the finite element method. The last section of part
I is dedicated to two cases of elastic periodic materials studied with Bloch analysis
(the homogeneous and isotropic material and the square inclusion).

In part II we present the analysis on wave propagation of a phase transforming
cellular material. The first section of part II contains the mechanical description of
the cellular material, and the second section is dedicated to study the evolution of
the wave propagation properties while building an open cell in five stages. The next
section describes dispersion diagrams for each stable phase of the material while the
fourth section study the change of these propagation properties when considering
pre-stresses. The last section explores the influence of topological modification on
the band diagrams in a closed cell.
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State of the art
The study of periodic materials and structures can be traced back to Newton’s work
on sound propagation in air and to Lord Rayleigh’s work in continuous periodic
structures. Rayleigh showed that such materials can exhibit band gaps in the fre-
quency spectrum, i.e., forbidden bands where waves can not propagate [10]. These
and other early developments in the field are described in Brillouin’s book on peri-
odic structures [11].

The fundamental analysis tool for the study of infinite periodic media can be
identified in a theorem proved by G. Floquet [12] in 1880 and extended by F. Bloch
in 1929 [13]. Bloch stated that in a crystal, the energy eigenstates for an electron
can be written as a plane wave times a periodic function; this fact underlies the
concept of electronic band structures and crystals properties1 which are well known
in solid-state physics. It turns out that a description in terms of Bloch waves applies
to any wave-like phenomenon present in a periodic medium.

Periodic structures are differentiated as photonic crystals in electromagnetism
and phononic crystals in acoustics and elasticity. The applications of phononic crys-
tals are found, as expected, in wave control and filtering [14–19]. Also, there is
important literature on the subjects of non-destructive testing [20], waveguiding and
localization [21–25], signal sensing [26], wave demultiplexers passive devices [27–29],
logic gates [30], liquid sensors [31], microfluidic manipulation [32], ultrahigh sensitiv-
ity mass sensing above 100 GHz [33], sound collimation [34], refraction and focusing
of sound waves [35, 36], wave rectification and acoustic diodes [37, 38], and “phoX-
onic” crystals2 [39].

Another extension of phononic crystals applications, of particular interest to us,
is active control or tunability. This branch focuses on the development of devices
with the capability to change the location and size of band gaps “on the fly”, as well
as the shapes of its band diagrams. For example, crystals where the orientation of the
inclusions with respect to the incoming waves may be tuned during operation [40];
piezoelectricity to alter the cells [41–44]; light-induced substrate potential and elec-
trorheological materials in which tuning is done via an external electric field [45,46];

1The classification of all crystals to metals, semiconductors and insulators is based on these
phenomena.

2Crystals that exhibit simultaneous phononic and photonic bandgaps coinciding at the same
range of wavevectors.
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magnetism to alter material elastic properties [47] and temperature control [48]. Also,
there are some works related to the control of elastic waves like those using finite
elastic pre-straining [49], mechanical instabilities to trigger large deformations [50]
and nonlinear materials to tune band gaps [51–54].

To optimize the band gap characteristics, researches have identified two features
in the design of phononic crystals: the unit cell topology [20, 55–65] and the lattice
symmetry [66]. The choice of the constitutive material phases and interweaving more
than one lattice also provide possibilities for improving band gap characteristics [67].

Particularly in mechanics, before the introduction of phononic crystals theory
as reported by Hussein [10], periodic structures had applications in composite ma-
terials (modeled as periodic) [68, 69], aircraft structures [70, 71], multiblade tur-
bines [72, 73], impact resistant foam/cellular materials [74, 75], periodic foundations
for buildings [76,77], and multistory buildings and multispan bridges [78]. The field
has been enriched notably with migration of concepts from phononic crystal treat-
ment and recently, with the boom in metamaterials, broadly considered as examples
of phononic materials except they have the added feature of exhibiting local reso-
nance [9].

Starting in the 90s, we found contributions in elastic wave propagation for 2D
spaces [79–83] and 3D phononic crystals [84–86]; sonic crystals, consisting of multiple
phases of liquids and/or gases [14, 80, 87–89]; Rayleigh-type Bloch waves propagat-
ing along free surfaces in 2D semi-infinite domains [90–93]; phononic crystals in the
form of plates of finite thickness [26,94–103]; phononic crystals as MEMS [104,105];
other configurations as radial phononic crystals [106], quasicrystals [107] and frac-
tals [108,109], and techniques to compute modes of evanescent Bloch waves [110,111].

The reader is encouraged to review the work of Hussein et al. [10] where the his-
torical origins, recent progress and future outlook in phononic materials are exposed
in detail.
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Part I

Wave propagation in periodic
materials
A periodic material (PM) is defined as the repetition of a given motif in one, two
or three space directions. The motif can be in the constituent material phases, the
internal geometry, or the boundary conditions [10,112,113].

(a) Space Lattice (b) Motif (c) Material structure

Figure 1: To every lattice point, the motif is added till is formed the material struc-
ture.

The description of a PM involves just the association of the motif to a lattice,
which is a set of mathematical points (Figure 1). The material is then formed by the
addition of the motif to each point with the final result allowing the condition that:
“in every point of the lattice the arrangement of the whole structure must look the
same”. The lattice is thus said to be primitive and such condition implies that a
PM is invariant under any translation of the form (for three dimensions 3):

T = n1a1 + n2a2 + n3a3, (1)

where ni ∈ Z and ai are basis vectors called primitive translation vectors
(with i = 1, 2, 3). They are formed by connecting the nearest neighboring points in
the lattice and explicitly define the axes of periodicity. Figure 2 shows the primitive
lattice in the description of a PM.

3For a perdiodicity in 2D, the translation is expressed with a1 and a2. Similarly, in 1D the
primitive vector would be a1.
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Figure 2: Description of a periodic material in 3D.

The parallelepiped formed by the primitive axes a1, a2 and a3 contains the motif
and is called a primitive cell. This cell serves as building block of the material
structure and will fill all the space by the repetition of suitable translation operations.
Any local physical property of the PM is invariant under T, thus, the behavior of
the whole material can be obtained just by studying the primitive cell.

1 Bloch analysis

The study of wave propagation in a PM can be conducted through Bloch-Floquet’s
theorem which states that the wave function for a periodically repeated medium can
be defined as:

u(r) = w(r)eik·r (2)

where, r is the vector of spatial coordinates, k the wavevector and w(r) is a func-
tion with the same periodicity of the associated lattice, i.e., w(r + T) = w(r).

The theorem was originally proved in the context of the Schrödinger equation
with a periodic potential 4. According to [114]:

4The Schrödinger equation describes how the quantum state of a quantum system changes with
time, it predicts that wave functions can form standing waves, called stationary states: ĤΨ(r) =
EΨ(r), where E the energy of the wave function Ψ(r) and Ĥ the Hamiltonian operator.
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The eigenfunctions of the wave equation for a periodic potential are the product
of a plane wave eik·r times a function w(r) with the periodicity of the crystal lattice.

In general, equation (2) is a suitable solution for any wave equation where a
physical property is represented as periodic, i. e.,

Lu(r) = ω2u(r) + f(ω),

where L is a differential operator and f(ω) a harmonic body force with angular
frequency ω that is applied with the same periodicity of the lattice.

If we express equation (2) for a point in the space r + T, we will obtain

u(r + T) = w(r + T)eik·(r+T),

with T = niai being the translation vector. The function w(r) has the periodicity
of the lattice, thus

u(r + T) = w(r)eik·(r+T).

Replacing w(r) in equation (2) we have

u(r) = u(r + T)e−ik·(r+T)eik·r,

which gives;

u(r + T) = u(r)eik·T. (3)

Equation (3) is known as the Bloch-periodicity condition and is used as the
boundary condition for a Boundary Value Problem (BVP) when studying PMs.

1.1 Bloch-periodicity as boundary condition

The elastodynamic wave equation in the frequency domain (reduced wave equation)
reads [115]:

(λ+ µ)∇(∇ · u) + µ∇2u + ρf = −ω2ρu, (4)

where λ and µ are the Lamé parameters, and ρ is the volumetric mass density.
Writing the displacement field u in terms of scalar and vector potentials φ and ψ,
respectively yields:
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u = ∇φ+∇×ψ,
where ∇ ·ψ = 0 [115].

If we neglect body forces f , equation (4) is satisfied when:

∇2φ = −ω
2

α2
φ,

∇2ψ = −ω
2

β2
ψ.

The fact that these expressions are also wave equations, implies that the dis-
placement field is formed by two decoupled types of waves: a dilatational (gradient)
term ∇φ corresponding to longitudinal waves or P-waves propagating with velocity

α =
(
λ+2µ
ρ

)1/2

, and a distortional (rotational) term ∇ × ψ corresponding to shear

waves or S-waves propagating with velocity β =
(
µ
ρ

)1/2

. Applying Bloch-Floquet’s

theorem to the above (see equation (3)) gives:

φ(r + T) = φ(r)eik·T,

ψ(r + T) = ψ(r)eik·T,

then,

u(r + T) = ∇φ(r + T) +∇×ψ(r + T),

= eik·T∇φ(r) + eik·T∇ψ(r),

= eik·T [∇φ(r) +∇ψ(r)] ,

= u(r)eik·T,

which shows that Bloch-Floquet’s theorem is also satisfied for the displacement
field u.

The complete BVP for equation (4) over a domain Ω bounded by a boundary
surface Γ, using Bloch-periodicity condition reads:
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(λ+ µ)∇(∇ · u) + µ∇2u = −ω2ρu in Ω, (5)

u(r + T) = u(r)eik·T in Γ, (6)

t(r + T) = −t(r)eik·T in Γ. (7)

In the above t(r) is the surface traction vector.

1.2 Fourier expansion of w(r)

It has been stated that w(r) is a periodic function of r, with period a1, a2 and
a3 in the directions of the three material axes, respectively. It follows that the
condition w(r) = w(r + T) is better understood when expanded in Fourier series.
Following [114] for a one-dimensional periodic function w(x) with period a in the
direction of x, it is found that its sine and cosine Fourier expansion can be written
like:

w(x) = w0 +
∑
p>0

[Cp cos (2πpx/a) + Sp sin (2πpx/a)] , (8)

where p are positive integers, and Cp, Sp are real constants.

It must be noticed that the factor 2π/a renders periodic the function w(x) with
period a. Similarly, it shall be noticed that 2πp/a is a point in the reciprocal lat-
tice or Fourier space of the material 5. A term or point is allowed if it is consistent
with the periodicity of the material.

Equation (8) can be simplified into:

w(x) =
∑
p

wpe
i2πpx/a,

where the sum extends over all integers (p ∈ Z) and wp is a complex coefficient.
The extension to three dimensions of this last expression follows:

w(r) =
∑
G

wGe
iG·r, (9)

5In one dimension, these points lie on a line.
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where the set of vectors G leaves the equation invariant under T. These vectors
are called the reciprocal lattice vectors.

1.3 The reciprocal space

The points in the reciprocal lattice can be defined by the set of vectors

G = m1b1 +m2b2 +m3b3,

where mi ∈ Z and the basis vectors bi are primitive vectors of the recipro-
cal lattice, with i = 1, 2, 3. A vector G of this form is a reciprocal lattice vector and
must keep the invariance of equation (9) under translations T = n1a1 +n2a2 +n3a3:

w(r + T) =
∑
G

wGe
iG·reiG·T = w(r) =⇒ eiG·T = 1.

To ensure the invariance, we construct the axis vectors bi of the reciprocal lattice
using the expressions:

b1 = 2π
a2 × a3

a1 · a2 × a3

, b2 = 2π
a3 × a1

a1 · a2 × a3

, b3 = 2π
a1 × a2

a1 · a2 × a3

. (10)

It shall be observed that a1, a2 and a3 are primitive vectors of the material lattice
(physical space) while b1, b2 and b3 are primitive vectors of the reciprocal lattice
(reciprocal space). They have the property

bi · aj = 2πδij with δij = 1 for i = j,

δij = 0 for i 6= j.

From the above it is now evident that every material implicitly has two lattices:
a material (direct) and a reciprocal lattice. Vectors in the direct lattice have dimen-
sions of [length] while vectors in the reciprocal lattice have dimensions of [1/length],
i.e., they have the units of wavelength and wavevector, respectively.

It has been shown that the reciprocal lattice is a lattice in the Fourier space
representation of the material. It is also observed that wavevectors k are always
represented in a general Fourier space and where every point in that space describes
a wave [114]. There is a special phenomenon associated to waves defined by the set
of vectors G, which is known as the diffraction condition as will be discussed next.
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1.4 The diffraction condition

Consider the diffraction of an elastic wave of wavevector k by a volume element
dV of a PM. The diffracted wave will have an outgoing wavevector k′ with a phase
difference and amplitude Ad (see Figure 3 ).

dV

k

k'

Δk

Figure 3: Diffraction of a plane wave by a volume element dV in which k + ∆k = k′.

It can be assumed that the amplitude Ad is proportional to the local proper-
ties [114] (density ρ, Young’s Modulus E and Poisson’s ratio ν). Since these proper-
ties also have the periodicity of the lattice, the proportionality results in a periodic
function having the form (see (9)):

w(r) =
∑
G

wGe
iG·r.

The total amplitude Ad of the diffracted wave in the direction of k′ is proportional
to the integral over the PM of w(r)dV times the phase factor ei(k−k

′)·r. Then,

Ad =

∫
ei(k−k

′)·rw(r)dV ≡
∫
e−i∆k·rw(r)dV,

where k − k′ = −∆k and ∆k measures the change in the wavevector when the
wave is diffracted, i.e., a phase factor. Replacing for the Fourier components of w(r)
(Eq.(9)), the diffraction amplitude becomes:

Ad =

∫
e−i∆k·r

∑
G

wGe
iG·rdV ≡

∑
G

∫
wGe

i(G−∆k)·rdV,
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If the phase difference ∆k is equal to a particular reciprocal vector G, i. e.,

∆k = G, (11)

the argument of the exponential vanishes and the integral is equal to V wG. Also,
if ∆k differs significantly from G, Ad is negligibly small which means that diffraction
is highly influenced by the periodicity of the material and it is interesting to identify
which vectors satisfy this requirement. To this aim, it is convenient to write the
expression given in (11) like:

k + G = k′,

(k + G)2 = k′2.

On the other hand, since we are considering elastic scattering, the energy of the
incident wave is the same as that in the outgoing wave, in other terms: the angular
frequencies must be the same ω = ω′. From relation ω = c|k|, where c is a wave
velocity, it follows that |k| = |k′|. Substituting the above in the last expression gives
the well known diffraction condition:

2k ·G +G2 = 0. (12)

Since both G and −G are reciprocal lattice vectors, the result can also be written
like:

2k ·G = G2,

where one of the vectors satisfying the condition is recognized to be:

k = ±1

2
G.

This phenomenon is maximized when ∆k = G, where the diffracted beams are
the result of a constructive interference 6. From the superposition of two plane sine
waves with the same wavelength, it is clear that:

u(r) = A1 sin (k · r) + A2 sin (k · r + ϕ),

= [A1 + A2] cos (ϕ/2) sin (k · r + ϕ/2),

6Diffraction phenomenon is described as the interference of waves according to the Huygens-
Fresnel principle [116].
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which gives a wave whose amplitude depends on the phase ϕ. When the two
waves are in phase (ϕ = 0), they interfere constructively; when the waves have
opposite phase (ϕ = π), they interfere destructively. For an incident wave vector of
the form k = ±1/2G, the periodicity always causes a constructively interference, i.e,
waves add in phase and yield the maximum amplitude for Ad.

1.5 First Brillouin zone

A Brillouin zone is said to be a vivid geometrical interpretation of the diffraction
condition 2k ·G = G2 [114] and it can be constructed as follows. Divide both sides
by 4 gives 7

k · 1

2
G =

(
1

2
G

)2

. (13)

and select a vector G from the origin to a reciprocal lattice point. Then construct
a plane normal to the vector G at its midpoint. The resulting plane forms a part of a
boundary zone as shown in Figure 4. The wave vectors k having the magnitude and
direction required by (13) will be diffracted. It may be observed that this Brillouin
construction encloses all such vectors, i.e., they go from the origin to any point along
the constructed plane.

7Notice that geometrically, we are working in the reciprocal space.
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B

A

k1

k2

1/2 GB

O

1/2 GA

plane 1

plane 2

(a) Construction of Brillouin
zones: The reciprocal lattice vector
GA connects the points OA; GB

connects OB. Planes 1 and 2 are the
perpendicular bisectors of GA and
GB , respectively. Any vector from
the origin to the plane 1, such as k1,
will satisfy the diffraction condition
k1 · 1/2GA = (1/2GA)

2
; any vector

from the origin to the plane 2, such as
k2, will satisfy the diffraction condition
k2 · 1/2GB = (1/2GB)

2
.

(b) Some Brillouin zones: We
have the square reciprocal lattice
with lattice vectors in black lines;
the bisectors planes are shown in
colors. The central blue square
is the smallest volume about the
origin and is formed by the bi-
sectors planes of the vectors G
connecting the nearest neighbor-
ing points, it is called the first
Brillouin zone.

Figure 4: Definition and construction of the first Brillouin zone.

From (11)8 it is known that k + ∆k = k′ and ∆k = −G which means that
diffracted beams will be in the direction of k −G. In Figure 5 it is shown that a
special geometric condition for all the diffracted beams corresponds to an incident
wave generating a diffracted wave with direction k − G. Similarly, this last wave
generates another diffracted wave and so on (all of them with the same magnitude).

A wave vector k drawn from the origin O to any corner will satisfy the diffraction
condition for both GA and GB, thus, this wave generates two diffracted waves with
opposite directions that will act as new incident waves. As a result, the wave that
points to a corner generates diffracted waves that point to the opposite corners. Such
a feature will lead to a key concept in periodic materials as is the existence of band

8Both G and −G satisfy the diffraction condition.
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gaps due to the formation of standing waves.

A

k1

O - GA

k1 - GA = k'1

B

k'1

(a) Diffraction of a wave vector k1. The
diffracted wave will be in the direction
of k1−GA like a mirror image, this last
wave act as a new incident wave and
generate another one in the direction
of k1. This process continues infinite
times.

A

k2

O - GA

k'2

k'2

B

- GB

(b) Diffraction of a wave vector k2 that
points to a corner of the first Brillouin
zone. This wave generate diffracted
waves that point in the direction of the
rest of the corners, i.e., waves travelling
in opposite directions.

Figure 5: Direction of diffracted waves for the first Brillouin zone.

The set of planes that are perpendicular bisectors of the reciprocal lattice vectors
divide the Fourier space into fragments, as shown in Figure 4. The central square
is a primitive cell of the reciprocal lattice, called the first Brillouin zone and it is
the smallest volume entirely enclosed by the bisectors planes.

It must be recalled that the reciprocal lattice space contains the information of
the material periodicity: the set of vectors G render invariant any periodic function
under translations T. Considering again Bloch-Floquet’s theorem from equation (2),
and increasing the wave vector k by a factor p times G, i.e., k+pG with p an integer,
gives:

u(r) = w(r)ei(k+pG)·r,

= w(r + T)ei(k+pG)·r,

after using w(r + T). From equation (9) it follows that:
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u(r) =
∑
G

wGe
iG·(r+T)ei(k+pG)·r,

=
∑
G

wGe
iG·reiG·Teik·reipG·r,

=
∑
G

wGe
ipG·reiG·Teik·r,

=
∑
G

wGe
ipG·(r+T)eik·r,

where the property bi · aj = 2πδij (with i, j = 1, 2, 3) in the term eipG·T, yields:

eipG·T = e[ip(m1b1+m2b2+m3b3)·(n1a1+n2a2+n3a3)],

= e[i2πp(m1n1+m2n2+m3n3)],

= 1.

The argument of the exponential contains the term 2π times an integer p because
m1n1 +m2n2 +m3n3 is also an integer. Thus, increasing the wave vector by a factor
of pG means a translation of 2πp in the reciprocal lattice space and then, the initial
expression u(r) remains invariant. It can be said that the information in k + pG is
redundant, therefore, it is only neccesary to consider the values of k in the interval
of [0, 2π] in all directions. The region enclosed by the interval will be defined around
one node of the reciprocal lattice space where the origin is defined, this means that
the first Brillouin zone fills the whole region of analysis: all the wave vectors k
are considered in this zone. The primitive cell contains the information of the whole
lattice and the other Brillouin zones have redundant information.

A related concept is that of the Irreducible Brillouin Zone (IBZ), which is
the first Brillouin zone reduced by all of the symmetries in the point group of the
lattice. Figure 6 shows the irreducible Brillouin zone for a square lattice.

20



GA

Γ Χ

Μ

Figure 6: The irreducible Brillouin zone for a square lattice. The triangle Γ−X−M
can describe completely the first Brillouin zone using symmetry operations.

1.6 The band structure

In a dispersive material (i.e., when the wave propagation velocity depends upon
frequency) the dispersion relation ω = c|k| is no longer linear. This requires
the distinction between two quantities: phase velocity and group velocity. The
phase velocity cp is the velocity at which the phase of the wave (of any frequency
component) propagates in the space. It is defined as

cp =
ω

|k|
k̂. (14)

The group velocity, on the other hand, is the velocity of propagation of the
envelope of a wave package. It is defined by the relation:

cg = ∇kω, (15)

where ∇k is the gradient of the angular frequency ω when written as a function
of the wave vector k, and k̂ is the unit vector in direction of k. The group velocity is
often thought of as the velocity at which wave energy or information is transported.
In most cases this is accurate, however, if the wave is travelling through a dissipative
medium, the group velocity ceases to have a clear physical meaning, [117]. Figure 7
taken from [113], illustrates the distinction between a dispersive and a non-dispersive
medium.
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Figure 7: Dispersion relation for a dispersive medium. The black solid line represent
the dispersion curve, the phase velocity is the slope of the secant cutting the curve
and the group velocity is the slope of the tangent in that cutting point.

The dispersion relation is also known as the band structure of a material as it
describes the behavior of waves in terms of frequency bands. Among the methods to
determine the band structure of complex systems one can identify wave expansions,
finite difference time domain methods, finite element methods, multiple scattering
theory, Rayleigh multipole and Green’s function methods (see [118]). Most of them
cast the problem in the form of a generalized eigenvalue problem of the form:[

K(k)− ω2M
]
u = 0, (16)

and where K and M are matrices containing information about the geometry
and material parameters and u is the vector of degrees of freedom in the system.
The band structure is found after finding the eigenfrequencies associated to the wave
vectors k along the borders of an irreducible Brillouin zone. .

As discussed earlier, the diffraction condition9 affects the dispersion relation of
a PM causing the formation of standing waves and the appearance of band gaps.
Moreover, at Bragg’s diffraction wavelike solutions do not exist [114].

9Usually called Bragg’s diffraction and considered to be a special feature of wave propagation
in periodic materials.
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The diffraction condition, (k + G)2 = k2, for a wave vector k in one-dimensional
space becomes:

k = ±1

2
G = ±qπ

a
,

where G = 2πq/a is a reciprocal lattice vector and q is an integer. The first
diffraction (and the first energy gap) occurs at k = ±π/a, which in the wave vector
space belongs to the region between [−π/a, π/a] and thus, to the first Brillouin
zone of the 1D lattice. Other energy gaps occur for other values of the integer q.

As discussed previously, an incident wave vector k satisfying the diffraction con-
dition will trigger the diffraction of waves traveling in opposite directions. In the
current case of a 1D-space, the wave functions at k = ±qπ/a are not traveling waves
of the form eikx or e−ikx, but at these special values of k the waves are composed of
equal parts traveling to the right and left thus forming a standing wave.

The Bragg diffraction condition is satisfied by the wave vector k = ±qπ/a, there-
fore, in the 1D case a wave traveling to the right is Bragg-diffracted to travel to
the left, and vice versa. Each subsequent Bragg diffraction will reverse the direction
of the wave. A wave that travels neither to the right nor to the left is a standing
non-propagating wave as explained next. From the two traveling waves:

e±iπx/a = cos
(πx
a

)
± i sin

(πx
a

)
,

two different standing waves are formed and given by:

u(+) = eiπx/a + e−iπx/a = 2 cos
(πx
a

)
,

u(−) = eiπx/a − e−iπx/a = 2i sin
(πx
a

)
.

Both standing waves are composed of equal parts of right and left directed trav-
eling waves.

The energy of a system defined by equation (16), depends upon ω since the
contributions to the potential and kinetic energy depend upon ω:

E = EP + EK ,

=
1

2
K(ω)u2(x) +

1

2
ω2Mu2(x),
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where ω(k) indicates that the frequency is a function of k.

A band gap in the band structure corresponds to an energy gap and there is an
energy gap when a wave vector k satisfies the diffraction condition therefore, leading
to the appearance of standing waves. The energy of the system when k = ±π/a is
given by:

E = EP =
1

2
K(ω)u2.

and it is evident that it only depends upon the potential energy due to the non-
propagating nature of the standing waves.

cos²(πx/a)sin²(πx/a)

u²(x)

Figure 8: Distribution of u2(x) in space. u(+) ∝ cos2 (πx/a) and u(−) ∝ sin2 (πx/a).

Figure 8 shows the space distribution of u2(x). The energy of the system would be
proportional to the envelope of this graph if K(ω) were a constant. However, there is
an energy difference between the standing waves since K(ω) is also distributed in the
space. That is, it contains the information of the material properties and then, the
information of the material periodicity. The energy difference between the standing
waves creates an energy gap Eg [114] given by:

Eg =
1

2
K(ω) [u(+)− u(−)] .

The wave functions at the boundary of the Brillouin zone k = π/a, normalized
over unit length of line, are

√
2 cos (πx/a) and

√
2 sin (πx/a). Assuming that K(ω)

is a periodic function of the form

K(ω) = K cos (2πx/a),
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leads to an energy difference between the two standing wave given by:

Eg =

∫ 1

0

1

2
K cos (2πx/a)

[
u2(+)− u2(−)

]
dx,

= 2

∫ 1

0

1

2
K cos (2πx/a)

[
cos2(πx/a)− sin2(πx/a)

]
dx,

which after some manipulation10 becomes:

Eg = 2

∫ 1

0

1

2
K cos (2πx/a)

[
cos2(πx/a)− sin2(πx/a)

]
dx =

1

2
K.

It can be observed that the energy gap is equal to the Fourier component of the
material properties.

1.7 Dispersion relations for one dimensional lattice models

In elastodynamics, many complex structures can be represented by simple lattice
models described in terms of systems of masses and springs. This section discusses
the response of two of such systems, one corresponding to a simple mass and spring
(Figure 9) and the other with two different masses (Figure 11).

The period of the structure shown in Figure 9 is a, while the lumped masses and
spring stiffness are m and K respectively. The displacement at the arbitrary location
xj is uj and the unit cell is repeated infinitely.

m m m

K K K

uj-1 uj uj+1

a

Unit cell

Figure 9: Simple mass-spring lattice.

Now, consider the motion for the j-th mass governed by:

10We have used the identity cos2(θ)− sin2(θ) = cos2(2θ)
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K (uj+1 − uj)−K (uj − uj−1) = müj.

If this motion is time harmonic with frequency ω, it follows that:

K (uj+1 − uj)−K (uj − uj−1) +mω2uj = 0.

The Bloch-periodicity condition between consecutive masses reads:

uj−1 = uje
−ika and uj+1 = uje

ika,

therefore

Kuj
(
2− eika − e−ika

)
−mω2uj = 0.

On the other hand eika + e−ika = 2 cos (ka) and 1− cos (ka) = 2 sin2(ka/2) which
leads to: [

4K

m
sin2(ka/2)− ω2

]
uj = 0.

Since w > 0, it follows that for real values of k this equation has a nontrivial
solution only if

ω(k) = 2

√
K

m
| sin (ka/2)| =: 2ω0| sin (ka/2)|, (17)

with ω0 =
√

K
m

. This is the dispersion relation for the structure (see Figure 10).

It should be noticed that in the quasistatic limit k → 0, sin (ka/2) = ka/2 and
ω(k) = ka

√
K/m. The group velocity in this limit is dω/dk = a

√
K/m.

In the band diagram of Figure 10, frequency is a periodic function of k with
period of 2π/a. It is observed that the frequency is zero every time k becomes an
integer multiple of 2π/a. Thus, it is only necessary to consider just a small range
of values of k in order to capture the response of the system for all k. The shaded
region corresponds to the first Brillouin zone and contains the complete information
of the system. At the boundaries of the first Brillouin zone it holds that ω = 2ω0

and the group velocity dω/dk becomes zero; standing waves are present for values of
k which are odd integer multiples of π/a.

26



0

0.5

1

1.5

2

2.5

3

-2 0 2 4-1 1 3
ka/π

ω
/ω
0

Figure 10: Dispersion curve for a simple mass-spring lattice. The shaded region
corresponds to the first Brillouin zone. This eigenmode is called an acoustic mode
because both ω and k go to zero simultaneously for some values.

In this simple one-degree-of-freedom system, there is only one eigenmode (called
the acoustic mode) and therefore only one branch in the band diagram because there
is only one direction of wave propagation. More eigenmodes and branches can be
observed after increasing the complexity in the model.

For instance, consider now a two-mass-system (Figure 11) with equations of mo-
tion given by:

K (2Uj − uj − uj+1)− ω2MUj = 0,

K (2uj − Uj−1 − Uj)− ω2muj = 0.

M

K K K

uj

Uj

uj+1

a
Unit cell

M

K

Uj+1

K

uj-1

M

Uj-1

Km m m m

Figure 11: Mass-spring lattice with two species of masses.
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Using the Bloch-periodicity condition

uj+1 = uje
ika and Uj−1 = Uje

−ika,

yields,

K
[
2Uj − uj(1 + eika)

]
− ω2MUj = 0,

K
[
2uj − Uj(1 + e−ika)

]
− ω2muj = 0;

or using the matrix form (K̄− ω2M̄)ū = 0̄ as[
2K − ω2M −K(1 + eika)
−K(1 + e−ika) 2K − ω2m

] [
Uj
uj

]
=

[
0
0

]
.

The resultant eigenvalue problem has a nontrivial solution if det(K̄− ω2M̄) = 0
or equivalently if:

mMω4 − 2K(m+M)ω2 + 4K2 sin2 (ka/2) = 0.

It can be shown that positive eigenvalues correspond to:

ω(k) =

[
K
m+M

mM
± K

mM

√
m2 +M2 + 2mM cos(ka)

]1/2

,

and the dispersion relation is shown in Figure 12. Notice that there is now one
extra mode called the optical mode. At k = 0, the group velocity of the optical mode
is zero and standing waves exist. This time we obtain a frequency band gap that
depends upon the difference between m and M; high contrast composites are more
likely to exhibit band gaps.
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Figure 12: Dispersion relation for a mass-spring lattice with two species of masses.

2 Bloch-periodicity in the Finite Element Method

The total potential energy functional of the system corresponding to equations (5)-
(7) is given by (see [113]):

Π(ω) =

∫
Ω

ε∗rs(r)Crskl(r)εkl(r)dΩ− ω2

∫
Ω

ρ(r)u∗r(r)ur(r)dΩ−
∫

Γ

u∗r(r)tr(r)dΓ,

where the Einstein summation convention is implicit in the index notation and
the complex conjugate is denoted by *. In the above expression the last term on
the right corresponds to the work of the external traction and it implicitly contains
the corresponding Bloch-periodicity conditions. After using standard finite element
discretization ideas over the variational equation associated to Π, yields the following
direct formulation: [

K− ω2M
]
u = f .

In the above, the Bloch-periodicity conditions can be expressed through relations
between the degrees of freedom (DOF) of opposite boundaries for the primitive cell
of the PM.

Figure 13 shows the primitive cell with the nodal DOF corresponding to boundary
and domain nodes.
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Figure 13: Primitive cell of finite elements. In the perimeter nodes, the subindex b
denotes bottom, t=top, r=right and l=left. The domain nodes not in the perimeter
are denoted as i=internal.

In the discretized domain, all of the elements will lie completely within the primi-
tive cell and all boundary nodes will lie on the perimeter of the primitive cell. On the
other hand, there is no energy associated with M or K belonging to a neighboring
primitive cell. However, there are extra degrees of freedom in u since the nodal DOF
at the top and right boundaries of the primitive cell belong to neighboring primitive
cells. For plane waves, the Bloch-periodicity conditions translate into a reduction of
these nodal DOF. In the particular case of the primitive cell shown in Figure 13, the
system of equations correspond to the vectors:

u = [ul ur ub ut ulb urb ult urt ui]
T ,

f = [fl fr fb ft flb frb flt frt fi]
T .

From Bloch-Floquet’s theorem it follows that:

ur = ule
ikxTx , ut = ube

ikyTy ,

urb = ulbe
ikxTx , ult = ulbe

ikyTy ,

urt = ulbe
i(kxTx+kyTy),

where (kx, ky) are the wave vector components and Tx and Ty are the translation
vector components. Notice that the terms k ·T correspond to a phase shift in every
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direction x and y.

The above relations can be expressed in matrix form as

ul
ur
ub
ut
ulb
urb
ult
urt
ui


︸ ︷︷ ︸

u

=



Il 0 0 0
Ile

ikxTx 0 0 0
0 Ib 0 0
0 Ibe

ikyTy 0 0
0 0 Ilb 0
0 0 Ilbe

ikxTx 0
0 0 Ilbe

ikyTy 0
0 0 Ilbe

i(kxTx+kyTy) 0
0 0 0 Ii


︸ ︷︷ ︸

A


ul
ub
ulb
ui


︸ ︷︷ ︸

uR

,

where I are identity matrices with subindex l and b denoting the boundary.
Similarly, considering the equilibrium conditions

fr + fle
ikxTx = 0, ft + fbe

ikyTy = 0,

frt + frbe
ikxTx + flte

ikyTy + flbe
i(kxTx+kyTy) = 0,

or using its matrix form:


0
0
0
fi


︸︷︷ ︸
fR

=


Il Ile

−ikxTx 0 0 0 0 0 0 0
0 0 Ib Ibe

−ikyTy 0 0 0 0 0
0 0 0 0 Ilb Ilbe

−ikxTx Ilbe
−ikyTy Ilbe

−i(kxTx+kyTy) 0
0 0 0 0 0 0 0 0 Ii


︸ ︷︷ ︸

AH



fl
fr
fb
ft
flb
frb
flt
frt
fi


︸ ︷︷ ︸

f

,

where AH is the Hermitian transpose of A.

The direct formulation of the problem can be written in compact form as:
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AHKA︸ ︷︷ ︸
KR

−ω2 AHMA︸ ︷︷ ︸
MR

uR = fR,

and after neglecting the body forces fR as the reduced system

KRuR = ω2MRuR.

2.1 Implementation

A finite element implementation of the Bloch-analysis formulation can be developed
following [113] through:

• A modification of the connectivity and also of the shape functions of the finite
element method.

• An assembly of the mass and stiffness matrices without the boundary conditions
and then, using elementary row/column operations to impose the boundary
conditions.

In this work we have used the multi-point constraints tool (MPCs) from the com-
mercial finite element code Abaqus in order to impose Bloch-periodicity conditions

2.1.1 Code for Abaqus input files

The used computer code writes the input files for the implementation of Bloch-
periodicity conditions in Abaqus . The conditions are imposed through the multi-
point constraint equation that describes a linear constraint between individual DOF.
The equation used by Abaqus is

A1u
P
1 + A2u

Q
2 + ...+ Aku

S
k = 0,

where the subindex k =integer, represents the component of the solution vector
u; A is the amplitude and P the selected point or node, i.e, A1u

P
1 represents the

amplitude times the solution for the component 1 of the P -node. The Abaqus com-
mand line reads

*EQUATION
Number of terms in the equation
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Node, Component, Amplitude, Node, Component, Amplitude, ...

A particular case could be given by

*EQUATION
3
3, 1, 1, 45, 1, − cos (kx), 128, 1, − sin (kx)

that belongs to the equation

u3
1 − cos (kx)u

45
1 − sin (ky)u

128
1 = 0.

The implemented code works for 2D rectangular cells and uses a rectangular win-
dow for the sampling of the wave vector space. This is a grid of Sx × Sy data points
in direction of the Cartesian coordinates x and y. The pseudo codes are described
in 1 and 211.

11It is important to state that the method requires to duplicate the mesh to consider the imaginary
part, in this sense, the phase shift in the Bloch conditions is assigned to the solution using Euler’s
equation:

e±iθ = cos (θ)± i sin (θ).
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Algorithm 1: Creates Abaqus input files with Bloch-periodicity conditions
through MPCs.

Input :
Mesh: Nodes, Elements, Material Sets
# Eigenvalues
Element Type
Material Properties
Wave vector space sampling Sx, Sy.

Output:
Sx × Sy input files with Bloch-BC through MPCs.

/* Rectangular window of the wave vector space */

1 kx ← linspace(−π, π, Sx);
2 ky ← linspace(−π, π, Sy);
3 [kx, ky]← Meshgrid(kx,ky);

/* Phase assignment for every k */

4 Ckx← cos (kx); Skx← sin (kx);
5 Cky ← cos (ky); Sky ← sin (ky);
6 Ckxky ← cos (kx + ky); Skxky ← sin (kx + ky);

/* Identical mesh for the imaginary part */

7 RNodes←Nodes;
8 RElmts←Elmts;
9 [INodes, IElmts] =CopyMesh(RNodes,RElmts);

10 Nodes ← [RNodes; INodes];
11 Elemts ← [RElmts; IElmts];

/* Bloch-periodicity conditions */

12 Bloch-BC(Nodes, Phases);

34



Algorithm 2: Function to impose Bloch-periodicity conditions through MPCs.

1 Bloch-BC(Nodes, Phases);

/* Perimeter nodes in the real and imaginary meshes */

2 Rre; RIm; /* Right */

3 Lre; LIm; /* Left */

4 Tre; TIm; /* Top */

5 Bre; BIm; /* Bottom */

6 LTre; LTIm; /* LeftTop */

7 RTre; RTIm; /* RightTop */

8 LBre; LBIm; /* LeftBottom */

9 RBre; RBIm; /* RightBottom */

10 for i = 1 : Sx × Sy do
11 print(’∗EQUATION ’);

/* The following procedure will also apply for bottom and top

nodes with the respective phases */

12 for j = 1 : #LeftNodes do
/* Real part */

13 print(’3’);
14 print(’Rre(j),1,1,Lre(j),1,-Ckx(i),Lim(j),1,-Skx(i)’);
15 print(’Rre(j),2,1,Lre(j),2,-Ckx(i),Lim(j),2,-Skx(i)’);

/* Imaginary part */

16 print(’3’);
17 print(’Rim(j),1,1,Lim(j),1,-Ckx(i),Lre(j),1,-Skx(i)’);
18 print(’Rim(j),2,1,Lim(j),2,-Ckx(i),Lre(j),2,-Skx(i)’);

19 end
/* Corner points: same procedure for LT and RB with the

respective phases */

/* Real part */

20 print(’3’);
21 print(’RTre(j),1,1,LBre(j),1,-Ckxky(i),LBim(j),1,-Skxky(i)’);
22 print(’RTre(j),2,1,LBre(j),2,-Ckxky(i),LBim(j),2,-Skxky(i)’);

/* Imaginary part */

23 print(’3’);
24 print(’RTim(j),1,1,LBim(j),1,-Ckxky(i),LBre(j),1,-Skxky(i)’);
25 print(’RTim(j),2,1,LBim(j),2,-Ckxky(i),LBre(j),2,-Skxky(i)’);

26 end
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2.2 Construction of the band structure

The determination of the band structure of a PM, requires the solution of an eigen-
value problem for every k-point in the wave vector space. The required number of
eigenvalues is approximately fixed by the desired number of curves in the dispersion
relation.

The band structure is constructed for the wave vector values along the borders
of the IBZ. The complete dispersion relation depends upon the cell dimension, i.e.,
for a 2D cell the wave vector will have two components, kx and ky in Cartesian co-
ordinates, then, the complete dispersion relation ω(kx, ky) will be formed by surfaces.

Figure 14 shows the construction of a band structure in a 1D problem, where
there are twenty k-points between [0, π] and around seven eigenvalues for each value
of k.
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Figure 14: Band structure of a 1D PM: a homogeneous and isotropic material. To
construct the graph we solved twenty eigenvalue problems that correspond to the
values of k-points between [0, π]. Every value of the wave vector has around seven
eigenvalues as it is shown in the red dashed line with ka/π = 0.6.
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3 Classical problems in periodic materials

This section, used for further reference, describes the results of previous analysis
reported in the literature, see [112,113]. The section describes the following cases:

1. A homogeneous and isotropic material.

2. A square inclusion.

3.1 Elastic, homogeneous and isotropic infinite space

The material is infinite and uniform in the three space directions and is formulated
in the xy plane after using a plane strain idealization. The primitive cell can be
chosen arbitrarily since the material is homogeneous and isotropic (Figure 15). The
elastic properties of the material (Aluminum) are E = 7.31×1010Pa for the Young’s
modulus, ν = 0.325 for the Poisson’s ratio, ρ = 2770kg/m3 for the mass density and
the longitudinal α and transversal β velocities are α = 6198m/s and β = 3157m/s.

2da

2db
x

y

Figure 15: Primitive cell: infinite isotropic and homogeneous elastic material.

For traveling plane waves, the wave vector norm or wave number is:

k =
√
k2
x + k2

y.

Since there is no dispersion in a homogeneous and isotropic medium, the phase
and group velocities coincide and the angular frequency is a linear function of the
wave number

ω = ck = c
√
k2
x + k2

y, (18)

and where the constant c can be either α or β.
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The dispersion relation in equation (18) represents the positive part of a cone in
Cartesian coordinates, this cone must be obtained for every type of wave after solving
the eigenvalue problem. Figure 16 shows the numerical results for this dispersion
relation12.

(a) Dispersion surface. (b) Dispersion contour.

Figure 16: Numerical results for a homogeneous and isotropic material. These results
correspond to the longitudinal wave (second calculated eigenvalue).

The dispersion relations are plotted in the First Brillouin zone, i.e., for a square
cell 2dakx/π = [−1, 1] and 2dbky/π = [−1, 1]. Wave vectors k outside the First
Brillouin Zone can be written as:

kn,m =

[
kx +

nπ

da
, ky +

mπ

db

]T
, (19)

where n and m are integers counting cells to the right (or left) and up (or down).
The vector [kx, ky]

T belongs to the First Brillouin Zone.

The wave numbers can also be written as

kn,m =

√(
kx +

nπ

da

)2

+

(
ky +

mπ

db

)2

,

and thus, the angular frequency would be

12In the literature, one frequently finds the iso-frequency contours: a projection of every formed
dispersion surface into the [kx, ky] plane, as shown in Figure 16 for this particular case.
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ωn,m = c

√(
kx +

nπ

da

)2

+

(
ky +

mπ

db

)2

.

The complete band structure is constructed covering the range [0, π/2d] (2da =
2db = 2d): the IBZ since the material is isotropic. This region will capture also
the data corresponding to the wave vectors outside the Brillouin zone. Figure 17
represents the theoretical and numerical dispersion curves for the homogeneous and
isotropic material.

ωn=0,m=0

P-waveS-wave

kx = nπ/da
kx 

ky 

(a) Intersection of cones ω0,0(kx, ky)
with the plane kx = nπ/da.

(b) Band structure. The solid lines are the
theoretical solution, the dots are the numer-
ical results.

Figure 17: Branches of the dispersion curves in a homogeneous and isotropic material.

For an incident wave taken in the y-direction, with kx = 0, the branches of curves
that are observed correspond to

• If n = m = 0, the obtained curves are straight lines of the form ω = c|ky|.

• If n = 0 and m 6= 0, the curves are folds of the straight lines corresponding to
n = m = 0 in the First Brillouin Zone: ω = c|ky +mπ/d|.

39



• If n 6= 0 and m = 0, the curves are hyperboles, resulting from the intersection
of the cones ω0,0(kx, ky) with the plane kx = nπ/d (Figure 17 a).

• If n 6= 0 and m 6= 0, the curves are folds of the hyperboles from the First
Brillouin Zone.

The group and phase velocities will provide an indication of the anisotropy of
the material. The group velocity is calculated from the dispersion relation using
equation (15). The result is a vector field whose components point in the direction of
the greatest rate of increase of the function (perpendicular direction to each contour
line in Figure 16), and with a magnitude given by the slope of the graph in that
direction. Figure 18 shows the group velocity vector field and its magnitude for the
homogeneous and isotropic material.

(a) Vector field superimposed to the dis-
persion contour. The arrows are perpen-
dicular to each contour line.

(b) Magnitude: the colorbar value is nor-
malized to α.

Figure 18: Group velocity for the second eigenvalue (longitudinal wave) of a homo-
geneous and isotropic material.

Since there is no dispersion the group velocity must be the same for all wave
vectors and the magnitude graph is monochromatic. Another very helpful way to
read the vector field data is using a polar histogram: how many vector arrows point to
a specific direction. This graph shows the preferred direction of energy propagation
in the material but it does not have information about the magnitude (if the wave
packets are faster in that direction). Figure 19 displays the polar histogram together
with a polar graph of iso-frequency directivity, both for a homogeneous and isotropic
material.
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(a) Polar histogram: how many vector ar-
rows point to a specific direction.

(b) Iso-frequency directivity: The direc-
tion of group velocity for a specific value
of the angular frequency (or contour
level). The chosen value 2dω/5000 ≈ 3.8

Figure 19: Directivity of the material using the group velocity direction.

The polar histogram in Figure 19, shows that there is not a preferred direction
of energy propagation in the material and there is the same number of wave vec-
tors propagating energy in every direction. On the other hand, the iso-frequency
directivity shows the preferred directions of energy propagation for just one value of
the angular frequency, i.e., for a contour level in the dispersion contour. It is also
observed how the chosen angular frequency does not present a preferred direction for
energy propagation.

The phase velocity is obtained using equation (14). It shows which wave vectors
(with a particular direction of incidence) are comparatively faster. Again, there is
no dispersion leading to a monochromatic graph for the homogeneous and isotropic
material (Figure 20).
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Figure 20: Phase velocity of the second eigenvalue (longitudinal wave)for a homoge-
neous and isotropic material. The colorbar value is normalized to α.

3.2 Square inclusion

Consider now a cell composed of a square inclusion embedded in a matrix of an
homogeneous material. The mechanical properties of the matrix are the same as
in the previous case (Aluminum), while the inclusion has a Young’s modulus E =
9.2×1010 Pa, a Poisson’s ratio ν = 0.33 and a mass density ρ = 8270 kg/m3 (brass).
The dimensions are presented in Figure 21.

a ⅓
a 

a 

Figure 21: Primitive cell for a square inclusion.

The band structure is presented along the IBZ for a square cell (Figure 22), the
region Γ−X −M − Γ correspond to:
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ΓX −→ ky
a

π
= 0 and kx

a

π
= [0, 1], (20)

XM −→ kx
a

π
= 1 and ky

a

π
= [0, 1], (21)

MΓ −→ kx
a

π
= ky

a

π
= [0, 1]. (22)

Figure 22: Band structure for a square inclusion.

From Figure 22 it is evident that there are no full band gaps along the complete
IBZ. This is in contrast with the diffraction condition which implies that band gaps
appear every time kx,y = π/a. However, in the case of 2D elasticity, the fact that
several wave modes interact inside the material implies that the diffraction condition
must hold for every wave mode and its corresponding phase difference. For instance,
with reference to Figure 23 the blue dashed line corresponds to a shear wave. It
can be observed that band gaps occur every time ka/π = 1 (region in light gray).
However, the longitudinal waves (red solid line) with a band gap at higher frequencies
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can propagate along this region. In order to have a full band gap is thus necessary
that the two forbidden regimes coincide.

6

3

1
0 1

Complete band gap

ka/π

aω
/5

00
0

Figure 23: Band structure for a bilayer cell.

From the analysis above it is clear that a complete band gap can be reached under
very specific combinations of geometric conditions and material properties. These
parameters control the slopes of the curves in the band structure. As a conclusion,
in elasticity the existence of periodicity does not guarantee the existence of band gaps.

On the other hand, partial band gaps in the IBZ (usually known as pseudo band
gaps) can exist. Considering again the square inclusion it is also observed that in
the dark gray region there is a band gap for all the possible waves. However, it is
constrained to the directions of X −M and M − Γ, i.e., for waves with an incidence
of [0◦, 45◦) and 45◦, respectively 13.

The dispersion contours of the first two eigenvalues for the square inclusion are
shown in Figure 24. At low frequencies both contours show the behavior of a homo-
geneous and isotropic material, with stronger directional effects at higher frequencies.
The directionality of the material is shown in Figure 25.

13The segment ΓX represents the propagation in horizontal direction, i.e. 0◦; XM in the direc-
tions from 0◦ to 45◦; and MΓ in the direction of 45◦.
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(a) First eigenvalue. (b) Second eigenvalue.

Figure 24: Dispersion contour for a square inclusion.
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(a) First eigenvalue.
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(b) Second eigenvalue.

Figure 25: Polar histogram for a square inclusion. The data is normalized to the
homogeneous and isotropic material, then, the red circle with radius= 1 corresponds
to the homogeneous case.

The polar histograms in Figure 25 show that the material propagates energy
specially along the diagonals. This is particularly strong for the first eigenvalue,
although energy propagation is also observed along the vertical and horizontal axes.
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The opposite behavior occurs for the second eigenvalue where it is observed that
there is propagation along the diagonals but the preferred directions are around the
principal axes, in the regions between (−30◦, 30◦) and (−150◦, 150◦) taken from each
axis, approximately.

The iso-frequency directivity in Figure 26 supports what has been observed in
the contours: the material behaves as homogeneous and isotropic at low frequencies,
even at high frequencies for the second eigenvalue. The first eigenvalue presents pre-
ferred directions of energy propagation at high frequencies: it is highly directional
in the diagonals.
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(a) First eigenvalue.
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(b) Second eigenvalue.

Figure 26: Iso-frequency directivity for a square inclusion. Every color represents a
value of the angular frequency.

The group and phase velocities are presented in Figure 27 and 28. All images
are monochromatic at low values of the wave number (with the highest velocity),
and start to change in color towards the borders. This agrees with the analysis of
the dispersion contours: the material behaves as homogeneous and isotropic in the
monochromatic region. For both velocity graphs, it is observed that the contours
of the first eigenvalue are slightly expanded along the diagonals. In the second
eigenvalue of the group velocity, the contours lean towards the vertical and horizontal
directions. This also supports what has been identified in the polar directivity graphs
(Figure 25).
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(a) First eigenvalue. (b) Second eigenvalue.

Figure 27: Group velocity for a square inclusion.

(a) First eigenvalue. (b) Second eigenvalue.

Figure 28: Phase velocity for a square inclusion.
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Part II

Wave propagation in a bistable
material
This section is dedicated to the analysis of wave propagation in a phase transform-
ing cellular material. The material was originally introduced by Restrepo et al. [4],
in a project formulated between the Computational Multi-Scale Materials Modeling
Laboratory of Purdue University, and the Research Laboratory in Smart Materials
and Structures of General Motors Global Research & Development.

In the phase transforming cellular material, the primitive cell in its periodic rep-
resentation has multiple stable configurations with each one of them corresponding
to a phase. The change from one stable phase to the other is achieved trough large
elastic deformations thus consuming energy during the process 14. This feature com-
bined with the periodic character of the material suggests the existence of complex
and varying band structures opening the possibility for alternative forms of wave
filtering and guiding. In this particular study the aim is to explore how to control
the wave propagation behavior in the material and switch the propagation properties
when the phase transition is triggered.

1 A cellular material that exhibits bistability

The cellular material consists of a primitive cell that can undergo phase transforma-
tion. This corresponds to a change in geometry that leads to stable configurations
while keeping its original topology.

The phase transforming cellular material (PXCM) is presented in Figure 29.
The primitive cell comprises a compliant bistable mechanism that exhibits a force-
displacement relation with a sawtooth shape (see Figure 30). The relation presents
two limit points: (dI , FII) and (dII , FII), which define three regimes in the mechanical
response [4] described as follows:

• Regimes I and III are characterized by a positive stiffness, and represent the
deformation of stable configurations of the primitive cell. These configurations
correspond to a local minimum in the potential energy of the mechanism.

14For more details please review reference [4].
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• Regime II is characterized by a negative stiffness and corresponds to a transition
of the mechanism from one limit point to the other.

(a) Lattice. (b) Primitive cell.

Figure 29: The Phase Transforming Cellular Material (PXCM).

F

FI

U

FII
dI dII

d

Regime I Regime II Regime III

.

Figure 30: Force Vs Displacement relation for the PXCM and its change of potential
energy U [4].

The material is expected to dissipate energy when subjected to impact and cyclic
loading. The dissipation is achieved through large deformations that trigger the
phase transitions and keep the elastic reversibility, as opposed to classical dissipa-
tion associated to plastic deformation.
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The main question arising for the PXCM is whether the wave propagation is
different for each stable phase, considering that there are only geometrical changes
while the topology remains constant. This study explores how such particular fea-
tures influence the dispersion relations of each phase and what are the controlling
parameters in the wave propagation properties.

The three phases considered in this study are described by primitive cells referred
to as open, intermediate and closed cell (see Figure 31). It is important to clarify
that the study does no addresses the propagation properties during the phase change
(Regime II). Furthermore, as the infinite material is deformed, the phase transition
takes place one row at the time and the periodicity is broken. This suggests that the
wave propagation properties also undergo a transition and the intermediate phase is
an approximation when every row in the material has experienced half a collapse. In
this study, we assume that during wave propagation the phase of the cellular material
remains constant.

(a) Open cell
(Regime I).

(b) Intermediate
cell (Regime III for
the upper half and
Regime I for the
lower half).

(c) Closed cell
(Regime III).

.

Figure 31: Primitive rectangular cells used to describe the cellular material in each
stable phase

In order to understand the response of each one of the considered phases, the
analysis starts by studying the band structure of a progressively built open cell, that
is a cell that is built in several stages after considering the contribution from addi-
tional elements. This analysis is followed by the study of the three stable phases and
by a final analysis considering pre-stresses. Accordingly, the last section explores the
effects of a topological change in a closed cell.

All of the analyses in this part of the document were performed with FEMs using
Bloch-periodicity conditions through MPCs in the commercial code Abaqus (Part
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I). Since the depth (cross section) of the PXCM is considered to be larger than
any other delimited area inside the primitive cell, the model follows a plane strain
idealization. Also, all of the primitive cells used for the analyses are rectangular and
its IBZ correspond to the perimeter pointed in Figure 6 and equations (20)-(22).
The mechanical properties and lattice parameters used during the analysis are:

• Young Modulus E = 1 GPa.

• Poisson’s ratio ν = 0.49.

• Density ρ = 1000 kg/m3.

• For each phase a = 60 mm; in the open cell b ≈ 42 mm, intermediate cell
b ≈ 32 mm and closed cell b ≈ 22 mm.

2 Building an open cell

In order to build the open cell, consider the five intermediate stages shown in Figure
32. Figure 33 displays the differences in dimensions between the different stages
together with the proportions of the open cell compared to the first stage. The
remaining cases will maintain the same dimensions as the components in the open
cell. Figure 34 shows the formed cellular materials based on each stage.

(a) Stage 1 (b) Stage 2 (c) Stage 3 (d) Stage 4

(e) Stage 5
.

Figure 32: Primitive rectangular cells of the stages while building an open cell.
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(a) Open cell. (b) Stage 1.
.

Figure 33: Dimensions of the open cell and the stage 1.

Figure 35 shows the band structure for each one of the stages. The way in which
the dots are connected is important as each line will correspond to a type of wave
defining the limits of the band gap. However, the identification of the different types
of waves for a connected line (i.e., telling if it is a P, S, or a combination mode) is
still complex and an analysis of the eigenvectors would be necessary in order to have
an idea of the propagation (of the deformation shape).

The most noticeable feature is the appearance of band gaps for the stage 1 and 3
and also, the fact that the eigenvalues decrease and the curves are compressed when
new elements are considered in each following stage. With respect to the band gap
of stage 1, it must be observed that although the cell is very similar to the stage 2,
the band gap vanishes for the last one15.

Figure 36 shows a close up of the band structure for the first nine eigenvalues of
each stage. The existence of pseudo band gaps is evident, and also, it is observed
how the band structure changes in stage 3 just because the addition of vertical bars.

15We can not say that stage 2 is the vertical alignment of two cells of stage 1, aligning two cells
results in a middle bar with thickness 1.484 mm, while that bar in stage 2 has a thickness of 2.5
mm.
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In order to track the band gap found in stage 1, an analysis for cells correspond-
ing to stage 2 with increasing density in the middle bar was conducted. We started
from ρ = 1 kg/m3 with the assumption of absence of material. Figures 37 show the
band gap evolution.

The band structure of stage 1 and stage 2 with ρ = 1 kg/m3 agree. More eigen-
values appear as the density of the middle bar increases. By contrast the band gap,
between ρ = 70 kg/m3 and ρ = 85 kg/m3 vanishes at a low value of the density
considering the 1000 kg/m3 bound. The next step is exploring the region between
100 kg/m3 and 1000 kg/m3, where it was found that around 500 kg/m3 the band
gap reappears but is lost again for higher values.

The results suggest that full band gaps require specific combinations of geometry
and material properties. Such problem is the subject of future work.
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The anisotropy and directivity of each stage is now studied for the first two eigen-
values. The dispersion contours in Figure 38 and the polar histograms in Figure 39
and 40, show that all stages in both eigenvalues, except for the open cell, propagate
energy preferably along the horizontal direction: the contours are compressed mainly
towards the y axis. The open cell presents a difference between the eigenvalues, the
first one propagates energy mostly in the vertical direction while the second one does
it in the horizontal direction.

We note also the similarity between stages 1 and 2. The contours are highly
similar with the only difference in the polar histogram: stage 2 has a sharper angle
around the horizontal direction. This could be explained from Figure 34, where the
presence of an additional horizontal bar in the cell facilitates the energy propagation
along this direction. From the cellular material of stages 3 and 4, it is observed that
the lost in continuity of the vertical bar could also explain why the contours are com-
pressed towards the y axis and the pronounced directionality along the horizontal
direction.

The directionality results for the first four stages, show the cells prefer a narrow
region around the horizontal direction for the energy propagation. The open cell
with the sinusoidal bars reinforces the energy propagation in the other directions,
specially the vertical direction for the first eigenvalue and the horizontal direction
for the second eigenvalue. We can think of these sinusoidal bars as wave guides.
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Stage 1: First eigenvalue. Stage 1: Second eigenvalue.

Stage 2: First eigenvalue. Stage 2: Second eigenvalue.

Stage 3: First eigenvalue. Stage 3: Second eigenvalue.

Stage 4: First eigenvalue. Stage 4: Second eigenvalue.

Stage 5: First eigenvalue. Stage 5: Second eigenvalue.

Figure 38: Dispersion contour evolution: stages while building an open cell.
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In the case of the polar iso-frequency plot shown in Figure 41, we obtain the direc-
tivity behavior for a single angular frequency (each color corresponds to a frequency
value). For stage 1 and 2, the first eigenvalue shows that at low frequencies the en-
ergy is distributed along the horizontal and vertical directions. At higher frequencies
the energy propagation tends to be in all directions. For the second eigenvalue, the
first frequencies confine the energy around the horizontal direction of the material
and the angle of energy propagation becomes wider as frequency increases.

Stages 3 and 4 are also similar. For both eigenvalues, the energy of lower fre-
quencies is propagated in all directions, but as the frequency increases, the energy is
distributed around the horizontal direction of the material. Stage 5 is different. The
energy propagation at low frequencies is given in all directions for both eigenvalues.
After increasing the frequency, the first eigenvalue presents energy propagation in
the vertical direction and the second eigenvalue in the horizontal direction.

In Figures 42 and 44, we can identify what directions and magnitudes of the
incident waves reach the highest values of the group and phase velocity. The axes in
Figures 43 and 45 have different scales in order to appreciate the values variation.

For the first four stages in the first eigenvalue, the velocity values (both the group
and phase velocities) are higher for waves with an incidence along the horizontal
axis, having larger angles as we pass to the next stage. In the open cell, the fastest
waves have a narrow incidence angle along the vertical axis. This is consistent and
complements the directivity plots. The case of the second eigenvalue is the same for
all stages: the highest values correspond to wave vectors close to the origin and with
an incidence angle around the horizontal axis.
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Stage 1: First eigenvalue. Stage 1: Second eigenvalue.

Stage 2: First eigenvalue. Stage 2: Second eigenvalue.

Stage 3: First eigenvalue. Stage 3: Second eigenvalue.

Stage 4: First eigenvalue. Stage 4: Second eigenvalue.

Stage 5: First eigenvalue. Stage 5: Second eigenvalue.

Figure 42: Group velocity magnitude, evolution: stages while building an open cell.
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Stage 1: First eigenvalue. Stage 1: Second eigenvalue.

Stage 2: First eigenvalue. Stage 2: Second eigenvalue.

Stage 3: First eigenvalue. Stage 3: Second eigenvalue.

Stage 4: First eigenvalue. Stage 4: Second eigenvalue.

Stage 5: First eigenvalue. Stage 5: Second eigenvalue.

Figure 43: Group velocity magnitude, evolution: stages while building an open cell.
Each contour is presented with relative scale.
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Stage 1: First eigenvalue. Stage 1: Second eigenvalue.

Stage 2: First eigenvalue. Stage 2: Second eigenvalue.

Stage 3: First eigenvalue. Stage 3: Second eigenvalue.

Stage 4: First eigenvalue. Stage 4: Second eigenvalue.

Stage 5: First eigenvalue. Stage 5: Second eigenvalue.

Figure 44: Phase velocity evolution: stages while building an open cell.
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Stage 1: First eigenvalue. Stage 1: Second eigenvalue.

Stage 2: First eigenvalue. Stage 2: Second eigenvalue.

Stage 3: First eigenvalue. Stage 3: Second eigenvalue.

Stage 4: First eigenvalue. Stage 4: Second eigenvalue.

Stage 5: First eigenvalue. Stage 5: Second eigenvalue.

Figure 45: Phase velocity evolution: stages while building an open cell. Each contour
is presented with relative scale.
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3 Dispersion diagrams of the stable configurations

The analysis that follows corresponds to low frequencies, therefore, the band struc-
tures show the first nine eigenvalues and the dispersion diagrams are analyzed for
the first two (Figure 31). As shown in Figure 46 there are no complete band gaps in
any stable phase. By contrast pseudo gaps appear in XM : waves with an incidence
angle from 0◦ to 45◦. The remarkable feature of these band structures is that there
is not a significant difference between the phases. The geometrical differences in this
case have a weak influence on the band structure, at least at low frequencies.

The previous idea is also evidenced, although partially, in the dispersion contours
of Figure 47. For the open and closed cell, the contours of both eigenvalues are sim-
ilar, however, the differences are highlighted in the polar histograms of Figure 48.
In these plots, the closed cell shows a strong directionality around the vertical axis
for the first eigenvalue; the angle opening is about ±30◦ around the vertical axis. In
the case of the open cell, we have that the energy propagation is given mainly in a
narrow angle around the vertical axis, but also is distributed in the other directions
(also notably around the horizontal direction). For the second eigenvalue, both, the
closed and open cells propagate energy horizontally in a very similar way.

The intermediate phase is more interesting: for the first eigenvalue, it is highly
directional around the horizontal axis with an angle opening about ±30◦. The sec-
ond eigenvalue also propagates energy horizontally, but in a wider angular region as
compared the other phases.

The contrast in directionality when comparing the intermediate cell with the
other two phases, suggests the possibility of a waveguide device for low frequencies.
This is an important result to take into account for future applications and the idea
should be explored through a time domain analysis.
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(a) Open Cell

(b) Intermediate Cell

(c) Closed Cell
.

Figure 46: Dispersion curves for each phase of the cell.
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First Eigenvalue Second Eigenvalue

Figure 47: Dispersion contours for the first two eigenvalues. Each row corresponds
to one type of cell (open, intermediate and closed) and each column to the specified
eigenvalue.
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Figure 48: Polar histograms for the first two eigenvalues. Each row corresponds to
one type of cell (open, intermediate and closed) and each column to the specified
eigenvalue.
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The iso-frequency directivity in Figure 49 is a simple way to read the dispersion
contours in Figure 47, in terms of the material directionality. These show what
directions of energy propagation are chosen for an individual frequency value.
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Figure 49: Polar polar iso-frequency directivity. Each row corresponds to one type
of cell (open, intermediate and closed) and each column to the specified eigenvalue.
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The “fastest” waves in terms of the group and phase velocities (Figures 50 and
51, respectively) are highlighted with yellow. What should be observed is that the
“lowest” waves in the first eigenvalue, for the intermediate cell, have diagonal inci-
dences, while in the closed cell they have horizontal incidence. The second eigenvalue
shows that wave vectors lose velocity very quickly as its magnitude increases.

First Eigenvalue Second Eigenvalue

Figure 50: Group velocity magnitude. Each row corresponds to one type of cell
(open, intermediate and closed) and each column to the specified eigenvalue.
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First Eigenvalue Second Eigenvalue

Figure 51: Phase velocity. Each row corresponds to one type of cell (open, interme-
diate and closed) and each column to the specified eigenvalue.

4 Considering pre-stresses

The analysis from the previous section revealed that it is possible to take advantage
of the differences in the directivity between each phase suggesting the possibility of
applications in wave guides. However, wave filtering has not been observed since
there are not observable complete band gaps. On the other hand, the band struc-
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ture does not change between phases. We can assume that the geometry variations
between the three phases of the cell, determine the differences in the energy distri-
bution at low frequencies.

Now, in order to consider the effect of a phase transition, we analyse the conse-
quences of the remaining pre-stresses after the open cell collapses to the closed cell.
We study if these pre-stresses change the dispersion diagrams and alter the propa-
gation properties found for a closed cell in the last section. The model used in the
estimation of the pre-stresses consists of an open cell with periodic boundary16. We
imposed the displacement needed to reach a phase transition. Figure 52 shows the
resulting Von Mises stress.

Figure 52: Von Mises pre-stress after the open cell collapsed to the closed cell.

During the phase transition, the force-displacement curve of saw-tooth shape
was reproduced (Figure 53). The computed pre-stress used for Bloch analysis, cor-
responds to the step marked with the red dot in the curve. This dot is located when
the force equals zero, i.e., a stability point, just in the transition to the closed cell.

16The boundary conditions were applied through Dummy nodes ( [120]).
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Figure 53: Force-Displacement curve of the open cell while being compressed and
reaching the closed stable configuration.

We conclude that there are almost no changes in the dispersion diagrams, an
the only relevant observation is that the eigenvalues are lower when considering the
pre-stresses. This is supported by the comparison shown in Figures 54 and 55. We
don’t present the remaining dispersion diagrams used in previous sections, as they
will be almost the same: they are derived from the dispersion contours.
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(a) Closed Cell

(b) Closed Cell with Pre-stresses
.

Figure 54: Band structure for a closed cell, with and without pre-stresses.
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First Eigenvalue Second Eigenvalue

Figure 55: Dispersion contours comparison: Closed cell with and without pre-
stresses.

5 Modifying the topology

This section considers the effects of a topological change in a closed cell. This in
an attempt to alter drastically the band structure and the dispersion diagrams and
thus, find mechanisms to switch the propagation properties between phases. Figure
56 shows the primitive cells: the closed cell and the cell with topological modifica-
tions, the resulting cellular materials are also presented (Figure 57).

78



(a) Closed cell (b) Closed cell with topo-
logical modifications

Figure 56: Primitive cells: closed configuration, with and without topological modi-
fications.

(a) Closed cell

(b) Closed cell with topological modifications

Figure 57: Lattices for the closed configuration, with and without topological modi-
fications.
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The cellular materials reveal a particular condition that surely affects the band
diagrams: the material with topological modifications has continuous vertical bars
while the typical material in closed configuration does not.The differences are ob-
served from the band structures in Figure 58. The number of pseudo band gaps is
smaller in the modified cell along XM than the typical closed cell. Also the complete
band structure resembles the one of stages 1 and 2 when an open cell is built(Figure
36). This last characteristic makes sense since the cellular material with modified
topology is a combination of both, a rectangular grid and the sinusoidal bars.

The dispersion contours (Figure 59) also reinforce the observation that stages
1 and 2 are very similar to this case of modified topology. Thus, the directional-
ity contrast between the typical cell and the modified cell, is obvious. The polar
histograms in Figure 60 show how the energy is now distributed almost only in the
vertical and horizontal directions, with preference along the horizontal direction. It is
clear that the continuity of bars facilitates the energy propagation in these directions.

The differences in the wave propagation are also observed in the iso-frequency
directivity plot of Figure 61. For the modified cell, at lower frequencies, the waves
propagate energy either around the horizontal or vertical directions for both eigen-
values. At higher frequencies the energy flux is directed almost in all directions. It
has already been discussed how the typical closed cell confines the energy around the
vertical direction for the first eigenvalue, and around the horizontal direction for the
second eigenvalue.

In general, the modified topology exhibits the “fastest waves” for group and
phase velocity (Figures 62 and 63). The energy is propagated faster for waves with
a narrow angular incidence around the horizontal and vertical axes. In the case of
phase velocity, we observe that waves with diagonal incidence have faster wave fronts.
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(a) Closed Cell

(b) Closed Cell with Pre-stresses
.

Figure 58: Band structure for a closed cell, with and without topological modifica-
tions
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First Eigenvalue Second Eigenvalue

Figure 59: Dispersion contours comparison: Closed cell with and without modifica-
tions.
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Figure 60: Polar histograms comparison: Closed cell with and without modifications.
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Figure 61: Iso-frequency directivity comparison: Closed cell with and without mod-
ifications.

84



First Eigenvalue Second Eigenvalue

Figure 62: Group velocity comparison: Closed cell with and without modifications.
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First Eigenvalue Second Eigenvalue

Figure 63: Phase velocity comparison: Closed cell with and without modifications.
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Conclusions
• Complete band gaps in the case of elastic in plane motion requires specific com-

binations of geometry and material properties. This problem must be studied
in future works aimed at identifying the physical mechanisms that control the
band structure in this more general case.

• Directionality results for the first four stages during the process termed here
”building an open cell”, show the cells prefer a narrow region around the hori-
zontal direction for the energy propagation. The open cell with the sinusoidal
bars reinforces the energy propagation in the other directions.These sinusoidal
bars may be considered as wave guides.

• In a cellular material, the continuity of bars facilitates the energy propagation
in the direction of alignment of the bars.

• The geometrical differences between the stable phases (closed, intermediate and
open) have a weak influence on the band structure, at least at low frequencies.

• The contrast in directionality when comparing the intermediate cell with the
other two phases, suggests the idea of a waveguide device at low frequencies.
This is an important result to take into account in future applications and
therefore, a time domain analysis is really worth it.

• If pre-stresses are included, there are almost no changes in the dispersion dia-
grams. The only relevant observation is the decrease in the eigenvalues.

• The complete band structure of the closed modified cell resembles the one of
stage 1 or 2 when we built an open cell. This last characteristic makes sense
since the cellular material with modified topology is a combination of both a
rectangular grid and the sinusoidal bars.
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Comptes Rendu de lAcadémı́e des sciences Paris 91 (1880) 880 – 882.

[13] F. Bloch, über die quantenmechanik der elektronen in kristallgittern,
Zeitschrift für Physik A Hadrons and Nuclei 52 (1929) 555 – 600.

88

http://dx.doi.org/10.1115/1.4026911
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