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Grupo de Investigación en Ingenieŕıa de Diseño - GRID
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Abstract

This thesis describes the energy management strategy for racing solar cars, the racing
strategy is treated as an optimal control problem with random variables and uncertain
predictions. A computational model is developed for estimating the vehicle performance
under specific circumstances. Two evolutionary heuristic optimization methods are imple-
mented and tested for this case, their effectiveness, convergence and efficiency is measured
and compared to exhaustive search approaches. The dependency on solar radiation is
validated using the computational model with different test cases. In order to reduce
the uncertainties on the solar radiation estimation, satellite images are used as inputs to
image processing and machine learning techniques, their efficacy is compared. Finally, a
validation case is executed and different scenarios are evaluated with the inclusion of the
proposed methods, the experimental performance of a vehicle obtained using the strategy
in the World Solar Challenge 2015 is exposed and compared to the predicted results from
the simulation.

Keywords: Solar Car, Race strategy, Energy management, Heuristic optimization,
Solar resource.
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List of Abbreviations

The different abbreviations, acronyms and symbols used repeatedly throughout the thesis
are listed and defined in the table below, arranged by order of appearance within the
document.

CO2 . . . . . . . . .Carbon Dioxide particles
WSC . . . . . . . .Bridgestone World Solar Challenge
ESC . . . . . . . . .European Solar Challenge
ASC . . . . . . . . .American Solar Challenge
GA . . . . . . . . . .Genetic Algorithms optimization method
DP . . . . . . . . . .Dynamic Programming
BB-BC . . . . . .Big Bang-Big Crunch optimization method
W/m2 . . . . . . .Watts per square meter
GHI . . . . . . . . .Global Horizontal Irradiance
RMSE . . . . . . .Root-Mean-Square Error
Kc . . . . . . . . . . .Clear Sky Index
GHIclr . . . . . . .Clear Sky GHI
nRMSE . . . . . .Normalized Root-Mean-Square Error
ANN . . . . . . . .Artificial Neural Network
MP . . . . . . . . . .Multilayer Perceptrons
ES . . . . . . . . . . .Exhaustive Search
LS . . . . . . . . . . .Local Search
SOC . . . . . . . . . State Of Charge
CNN. . . . . . . . .Convolutional Neural Network
HSV . . . . . . . . .Hue-Saturation-Value color format
RGB. . . . . . . . .Red-Green-Blue color format
MBE . . . . . . . .Mean Bias Error
ClrSky . . . . . . .Clear Sky GHI
SClrSky. . . . . . Scaled Clear Sky GHI
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Introduction

The current growth of world population, the high rate of consumption of different resources
and the environmental degradation, generate the necessity of seeking sustainable ideas
and solutions for different human activities. The well-known renewable energy sources,
specially the solar and wind, are gaining field on the global energy market with an annual
growth of more than twice the rate of energy demand for the past 10 years (REN21 [2017]).
On the other hand, the second sector with major participation on the CO2 emissions from
fuel combustion is the transportation (25%), according to the 2015 data presented by
International Energy Agency (IEA [2017]).

Electric vehicles present a solution to the CO2 emission problem on the road transport
only if the electric energy source is based on renewable energies. If this condition does
not happen, the real gain depends on the overall efficiency improvement and the emitting
source is just transferred from the vehicle to the generation plant. In order to guarantee
real zero emissions and energy autonomy, solar cars bring the proposal of having electric
vehicles with an integrated solar panel acting as its main energy source. This way, the
vehicle is obtaining energy from the sun while moving or parking under sunlight, Figure 1
illustrates the main components of the vehicle. During the last three decades, different
competitions have been developed around the world to compare different solar vehicle
prototypes presented by university-company partnerships.

The solar vehicles main feature is their energy efficiency. According to the low energy
captured by the solar panel, very low consumption might be achieved while travelling in
order to guarantee their energy autonomy. The vehicle effectiveness is achieved with high
efficiency drivetrains and batteries, aerodynamic design, low weight components, among
other issues (see Minak et al. [2017], Tamura [2016], Paterson et al. [2016], Betancur
et al. [2017b], Vinnichenko et al. [2014]). In addition to the above, a clever driving speed
should be imposed to the vehicle in order to optimize its performance according to its
limited energy storage and collection. The vehicle energy planning on a given path is
defined as energy management strategy. In most cases, this strategy is resumed on defining
the velocity of the vehicle according to a desired objective function, nevertheless, other
optimization variables may include certain vehicle design parameters, charging duration
or number of occupants during the race.
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Figure 1: Solar car main components. The principal energy source is the solar panel,
although it may also be charged connected to the grid as an electric vehicle.

With the necessity of defining a practical methodology to tackle the energy management
optimization of racing solar cars, this thesis presents a useful solution based on the state of
the art approaches of the main disciplines involved. It includes the mathematical modelling
of the vehicle energy fluxes, the optimization methods and the estimation of the solar
resource as the main input of the solar panel model.

The energy management strategy is, broadly speaking, the formulation of an optimiza-
tion problem on which the objective function depends on the race particularities (e.g., to
minimize the race time for a fixed distance or to maximize the race distance on a given
time). The optimization variable is defined as the vehicle velocity, it may be time or
position dependant. Therefore, an optimal velocity profile should be defined in order to
optimize the vehicle performance on race, given the vehicle properties, road and predicted
environmental conditions.

While executing the strategy, the real conditions may differ from the ones estimated
on the initial race strategy, mainly because of unexpected road events, vehicle failures
or weather variations. Although precise predictions of the race should be considered,
the strategy may be recalculated several times during the race. For these “on race”
recalculations an efficient and fast code is needed, in order to obtain “on time results”.

The manuscript is divided in 4 chapters, each one independent of each other. To the
cost of some redundancies, each chapter may be read separately. A brief description of the
different chapters is given below.
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Chapter 1: Background and related work

This first chapter presents the state of the art of solar car races, the energy management
for land vehicles and the solar cars racing strategy. The principal solar car races are
exposed and their energy management objective is defined, a difference between the races
regarding the objective function is found.

The hybrid vehicles and electric trains control methods are described and compared
to solar car necessities. Although the trains and hybrid vehicle models do not consider a
solar input, the energy consumption is roughly equivalent.

Regarding the solar car racing strategy state of the art, a comparison between the
analytic and numerical optimization methods for solar cars energy management is presented.
Finally, the climate prediction for solar cars is discussed, a satellite image inclusion is
recommended and image processing techniques together with machine learning procedures
to estimate the solar resource are discussed.

Chapter 2: Solar car energy management: model and

heuristic optimization

The computational model for simulating a solar car performance during the race is described
including the energy input, consumption and storage systems. Resorting to this model, a
heuristic optimization method based on genetic algorithms is proposed and its efficiency
and effectiveness is compared to others reported in literature. The 2015 World Solar
Challenge - WSC (World Solar Challenge [2018]) is the validation scenario for the proposed
models. Different assumptions regarding the discretization of the velocity variable are
also tested. A climate dependence analysis is driven through a case study of two different
solar radiation scenarios, high dependency of the optimization function on this variable is
demonstrated.

Chapter 3: Solar resource estimation

According to the motivation of this work, a complete chapter regarding the estimation
of the energy income via solar radiation is included. This chapter provides a detailed
description of the related work and proposed method to predict the energy received by
the solar panel taking into account date and time, position variation and meteorological
conditions.

Given the necessity of predicting the solar irradiance in different times and locations,
geostationary satellite images together with the clear sky radiation are proposed as the
main input to the model. Two different approaches are tested, first an image processing
technique including color equalization, cloud segmentation, and cloud index estimation is
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implemented an tested. In the other hand, different architectures of neural networks are
implemented towards a machine learning approach, satisfactory results are achieved.

Chapter 4: Solar car energy management including

meteorologic and probabilistic variables

The results and conclusions from Chapters 2 and 3 are used to define the racing strategy
of the vehicle “PRIMAVERA 2” from the “EPM-EAFIT Solar Car Team” on the 2015
WSC in Australia. Using the vehicle properties, a proper meteorologic estimation and
considering random occurrences, a racing strategy is calculated to be followed during the
race. Experimental results are exposed and explained. Although unexpected events took
place, the strategy recalculation during the race proposed new solutions to minimize the
racing time. Competitive results are obtained in the race due to the strategy plan.



Chapter 1

Background and related work

The content of this chapter has been partially published in Betancur et al. [2017c].

1.1 Solar car competitions

Solar cars represent engineering challenges where the main purpose is to develop a vehicle
with enough efficiency to travel long distances using only solar energy. Resorting a project-
based learning methodology, universities from all over the world make up solar car teams
including students from different disciplines and educational levels, resulting in an efficient
educational methodology, linking teaching with the professional sphere (de Los Rios et al.
[2010]). Solar car races and challenges are organized for these teams to bring their proposal
and test the vehicles under certain conditions. The most recognized competitions are
described in the following sections.

1.1.1 World Solar Challenge - WSC

This competition is held every two years, giving the competitors enough time to design,
build and test a new car for every event according to the changing regulations. The
event takes place in Australia with the main objective of travelling 3022 kilometres in a
maximum of 7 days between the cities of Darwin and Adelaide. To the date, three different
categories are conceived in this competition: Challenger, Cruiser and Adventure (World
Solar Challenge [2018]).

The Challenger class is a single-seater category where the vehicles are judged based on
the total time to cover the race length using only solar energy and with limited panel and
battery capacity. The first to arrive without using external energy sources is the winner. In
this case the race strategy objective is to find the optimal velocity that minimizes the race
time with a fixed distance and subject to different energy, road and logistic restrictions.

The Cruiser class is aimed to evaluate more “conventional” vehicles. Cars with two or
more seats are judged from two different perspectives: energy efficiency in terms of people

7
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transported per energy used and practicality defined by a panel of judges, the battery size
is not limited in this case. The practicality must be achieved since the design as it includes
ease of access and use, style, interior space among other considerations. Regarding the
energy efficiency, the race objective function is defined by the ratio between the persons
carried per kilometre and the total external energy used. Therefore, a racing strategy may
include the optimal estimation of the battery size, number of persons per race section,
number of recharging stops and velocity.

Vehicles that do not comply with the Challenger or Cruiser regulations but still wish
to join the event are assigned to Adventure class. No competition or qualification is
considered for this class.

1.1.2 European Solar Challenge - ESC

The European solar challenge is a biannual event that invites different solar cars from
Europe and other continents to compete on a series of challenges. The competition is done
in a Formula-1 Circuit on Zolder, Belgium. Although there is not a defined division on
the event, the cars can be classified as Challenger and Cruiser class according the WSC
regulations (See 1.1.1).

The race event entails four different challenges which are distributed over three days.
Through the participation in each of the four different challenges the teams can achieve a
score which will be weighted according to every challenge weight and an overall result is
calculated at the end. The main challenge is called “Longrun”, its objective is to meet the
maximum number of laps on the circuit during 24 continuous hours. The racing strategy
in this case is to define the optimal speed in order to maximize the distance travelled for a
fixed time and subject to different energy and race restrictions.

1.1.3 American Solar Challenge - ASC

This challenge is a solar car race across the United States. Is held every two years with
different routes for every event. Unlike the WSC, the ASC is a rally-style event where the
vehicles are timed in a series or predetermined stages, the total race length varies around
3000 kilometres. This way, all the teams stay together during the entire race. The total
elapsed time, summing all the stages is the evaluation criteria, therefore, the winner is the
vehicle with the shortest time. Accordingly, the race strategy objective is to minimize the
sum of all the stage times, subject to the race conditions.
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1.1.4 Other races

In addition to the previous competitions, there are other races with specific conditions
and restrictions. The “Sasol Solar Challenge” in South Africa and the “Carrera Solar
Atacama” in Chile are long distance competitions in the outback of these countries, as the
WSC and the ASC, they are carried out in open roads.

On the other hand, Japan leads the on-circuit solar car races with the annual Suzuka
solar car race, in the Suzuka International circuit. Although this is also an endurance race,
special emphasis is made on the vehicle dynamics in order to control the vehicle and find
the most energy efficient path along the circuit (Atmaca [2015]).

1.2 Energy management strategy for land vehicles

The energy management strategy for electric land vehicles has been reported as an optimal
control and optimization problem. For Hybrid Electric Vehicles (HEV), the main objective
is fuel economy improvement and pollution reduction. Their energy management strategy
is based on the power source decision according to the user demand and road conditions
(Musardo et al. [2005]). In this case, the control does not include a how-to-drive strategy
as it only decides the instantaneous powertrain ratio between the electric motor and the
internal combustion engine.

Regarding train operation control, several studies have been reported and disclosed.
The principal optimization objective in these cases is to minimize the energy consumption
of a train that travels between two points and subject to a defined trip time and some
other driving conditions (Vanderbei [2001]). Compared to solar cars, the train energy
management includes less uncertainties, mainly due to the absence of the solar energy
input and road traffic conditions. The train energy consumption calculation is similar
to electric and solar vehicles, especially because the high dependence on the velocity is
maintained. Howlett and Pudney (Howlett [1996, 2000], Howlett et al. [2009]) have applied
optimal control techniques to mathematically find optimal driving patterns that minimize
the energy spent. Chang and Sim [1997] firstly proposed the use of Genetic Algorithms
(GA) for optimizing the train coasting segments between two stations with a multiobjective
optimization to include the spent energy, the punctuality and the passengers comfort on
the objective function. From there, on the last two decades, several applications of GA
and other heuristic methods to minimize the train energy consumption on different cases
have reported successful results (Han et al. [1999], Lu et al. [2013], Ghaviha et al. [2016]).
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1.3 Solar Cars Racing Strategy

The competition strategy of the solar cars raises a set of questions that aim to maximize
their performance. Given a specific vehicle, for a defined route, with competition and
environmental restrictions and random variables that affect its performance, it must
be decided how to operate it in order to optimize its energy performance. Due to the
competitive nature, most solar car teams reserve their development and progress. Although
information about race strategy of some solar car projects is published, its confidential
nature restricts the details and complete descriptions of the recent developments.

Solar car racing strategy can be treated as a control optimization problem where, in the
most general case, a velocity pattern for the vehicle must be found in order to minimize the
time to complete a defined distance considering race, energy and environmental conditions.
The route planning and selection (Hasicic et al. [2017]) are excluded from the race strategy
considering that solar car races have a strictly defined path.

Regarding solar cars in general, the most relevant publications are “Speed of Light”
(Roche [1997]) and “The Leading Edge” (Tamai [1999]), These two books include some
basic information and a general description about racing strategy. On 1998, Shimizu et al.
[1998] described the racing strategy of the “Honda Dream” solar car during the 1990,
1993 and 1996 WSC races. They divided the racing strategy on three principal topics:
a “Supervision support system”, a “Cruising simulation program” and a “Power/Speed
optimizing control algorithm”.

The aim of this work is on the optimization algorithm, including by nature, the
simulation program. The supervising support system that is mainly related to telemetry
hardware and software is of prime importance for the energy management strategy because
a closed-loop control must be implemented due to the different uncertainties of the long
races, nevertheless this system is out of the scope of this work.

To find a solution to the optimization problem, two different techniques may be consid-
ered: The use of analytic methods based on optimal control theory or the implementation
of numerical methods. The analytic solution of this problem has been mainly studied by
Peter Pudney and Phil Howlett and disclosed in a series of evolving publications (Howlett
et al. [1997], Howlett and Pudney [1998], Pudney and Howlett [2002]). Given specific
conditions, different strategies are proposed: speedholding (Howlett et al. [1997]), critical
speed strategy (Pudney and Howlett [2002]), constant power for steep inclines or regenera-
tive braking for steep declines (Howlett and Pudney [1998]). According to Pudney and
Howlett [2002], taking into account a more realistic model of the battery, the speedholding
must be replaced by the critical speed strategy. Other specific situation is discussed when
intermittent clouds are present on a level road, in this case high speed under clouds and
low speed under the sun (“sun chasing” strategy) is recommended by Shimizu et al. [1998]
and Pudney [2000], but the contrary solution is suggested by Daniels and Kumar [1999].
Although these last three conclusions are demonstrated and validated, they differ on initial
conditions and vehicle parameter assumptions, resulting on opposite solutions. On the
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other hand, numerical approaches for solar car racing strategies propose to create a more
detailed race simulation model, including complex mathematical definitions and random
variables, and then find the optimal velocity of the vehicle using a numerical method.
This way, a more case-specific solution is achieved and several recalculations can be made
during the race, reaching real-time optimal control in some cases (Guerrero Merino and
Duarte-Mermoud [2016]). Dynamic Programming (DP) strategies have been reported by
Scheidegger [2006] and Daniels and Kumar [1999], both propose the problem division in
long (entire race) and short term (30-minute intervals) strategy. They include the solar
radiation prediction as a stochastic variable and take it into account for the long term
energy planning. Nevertheless, several assumptions are made to this variable in order to
include it on a stochastic DP algorithm. The DP optimization method for the short term
is based on a shortest path problem with a time discretization, using the energy consumed
on a given time interval as the control function and the travelled distance as the cost
function to be maximized on every time step.

A race optimization approach based on optimal control is done by Guerrero Merino
and Duarte-Mermoud [2016] with a three scales division. The long term strategy roughly
predicts the entire race energy collection and defines a daily consumption, this scale
demands a previous estimation of the number of days to reach the finish line and is
calculated once per day. The medium term strategy is called daily planning, the race
day is divided in 15-minute segments and an optimal energy consumption is defined for
the current state and remaining daytime, this stage is recalculated several times during
the day. Finally, the short term strategy is called continuous planning, it uses the real-
time telemetry data (position, velocity and State Of Charge-SOC) as the initial state
to maximize the distance to be travelled according to the energy budget defined on the
medium term strategy. Pseudospectral methods are used on this short term strategy to
discretize the time variables and reduce the computing time of the control optimization
process. The meteorological variables are mentioned as uncertain inputs of the simulation
and are approximated based on historical data.

The Boulgakov’s thesis (2012) presents a detailed description of the vehicle charac-
terization and mentions the race strategy, simplifies the problem assuming the constant
speed during the whole journey but it does not go into details of the optimization method
used. In this thesis, special emphasis is made on meteorology, it is mentioned that they
take into account a climate prediction, supplied by a meteorology company, with variables
such as winds, radiation, precipitation and cloudiness. Finally, they clarify that they only
implemented the radiation module due to time restrictions before the race.

De Geus (2007) narrowly described the strategy of the “Nuon Solar Team” of the TU
Delft University and sponsored by N.V. Nuon Energy from the Netherlands. This team
has won seven times of nine total participations in the WSC and is always referenced by
the other competitors. The publication mentions, without going into detail, that Nuon has
used DP and divided the strategy into overlapping optimization subproblems. A long-term
optimization as well as Scheidegger [2006] and the medium term for each race day. It is
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also mentioned that they used genetic algorithms as an optimization method. To include
the climate, they used a database of more than 20 weather stations distributed along the
route. The update of this database in the race is done through satellite internet.

Besides Nuon, other evolutionary algorithms are reported for solar car strategies. The
Solar Car Team of University of Michigan reports the use of genetic programming to solve
their strategy problem on a weather forecasting disclosure (Shao et al. [2016]).

On 2013, Yesil et al. [2013] proposed an heuristic optimization using the Big Bang-Big
Crunch (BB-BC) method (Erol and Eksin [2006])) for the 2013 WSC, they do not compare
the results with other methods and experimental validation is missing. Nevertheless they
reported a satisfactory outcome with their implementation. Following this disclosure, Onol
et al. [2017] developed a sensitivity analysis of different vehicle variables based on the
same BB-BC optimization. The influence on the total race time induced by 15% variations
on the vehicle mass and aerodynamic coefficient is simulated and quantified. Regarding
solar irradiation variations, a new simulation with induced cloudy conditions is executed,
for this case, the battery is drained before the end of the race forcing solar charging stops.
The optimization method efficiency and convergence is not reported.

According to the aforementioned descriptions, several approaches have been made from
different points of view to the solar cars racing strategy. There are methods based on
simplifications to arrive at optimization problems with mathematical solution. Nevertheless,
in most of the real cases, the solar car racing strategy includes so many variables to take
into account that mathematical solutions move away from real cases by their level of
idealization.

On the other hand, optimization models are proposed based on numerical methods. In
most of the cases, these methods do not have a mathematical approach that guarantees
that a global optimum will be reached, but they allow to solve more complex problems
and include more variables in the model. The implementation of evolutionary algorithms
to optimize the race strategy has been reported by different projects. These optimization
methods become an attractive solution due to their ability to include complex models,
variations and nonlinear functions to the race simulation while the optimization algorithm
will still find a competitive solution. Besides, the growing computational capacity, including
parallel computing, opens field for the efficient application of these methods.

1.4 Meteorological variables

Wind speed and solar radiation directly affect the performance of the solar vehicle and
their accurate prediction is a decisive factor for the race strategy success. For solar cars
applications, these meteorological variables must be predicted on the short-term future
(1 to 6 days) and for the different locations that the vehicle may reach. Therefore, for
example the WSC strategy demands a meteorological prediction for 6 days over the 3022
kilometres road.
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1.4.1 Wind speed

For the energy consumption model, the wind velocity vector with respect to the vehicle
advance direction might be estimated. A crosswind affects the vehicle aerodynamic drag
and strongly influences its stability (Volpe et al. [2014]) while the head and tailwinds
also bias the aerodynamic drag and therefore the energy consumption. The inclusion of
wind speed variables has not been reported in detail nor there is evidence of its successful
implementation in solar car racing strategies. As stated by Guerrero Merino [2013], historic
data is recommended to statistically estimate a wind velocity average speed and direction
for the race days over certain locations. Onol et al. [2017] on the other hand, highlight the
unpredictability of this variable and recommend real time data processing from weather
stations to reduce the uncertainty.

Concerning wind energy production applications, several models using time series or
numerical weather prediction are reported with satisfactory results for a short term window
(Giebel et al. [2011]). Time series are commonly used for short term predictions (up to 6
hours ahead) while numerical models may give insights up to 48 hours. Compared to wind
turbines, the solar car demands an estimation for a moving target and a greatly lower
height going from 0.4 to 10 meters above the ground. Therefore, the wind velocity may be
considered as the most stochastic variable, its prediction requires small scale atmospheric
models and big uncertainty for a time horizon of more than 8 hours is reported.

1.4.2 Solar radiation

The solar irradiance is defined as the power density received by a surface by means of
the solar radiation, in Watts per square meters (W/m2). This value, calculated as the
sum of direct and diffuse components, is called Global Horizontal Irradiance (GHI). Then,
the electrical power produced by a solar panel may be estimated by multiplying the GHI
by the collector effective area and its global efficiency. In this way, predicting the energy
produced by the solar car involves a forecasting of the GHI for the different positions and
times of the vehicle in race.

On this state of the art, it should be clarified that the term “estimation” is referred to
the calculation of the instantaneous or average variable of interest in the present or past
time, while “prediction” refers to the forecast of future values.

Historical data averages and regression models are commonly used for predicting the
solar irradiance on solar car strategies. Onol et al. [2017] use the GHI historical average
on five locations over the route to predict the race days.

Shao et al. [2016] predict an hourly average GHI for the University of Michigan Solar
Car Team using machine learning and big geospatial data. More precisely, a quantile
regression structure is implemented in order to define probability confidence ranges for
the irradiance, resulting on different quantiles predictions for varied scenarios. The GHI
forecast is achieved using a combination of two meteorological models: The Global Forecast
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System model (GFS) developed by the National Oceanic and Atmospheric Administration
(NOAA) and the European Center for Medium-Range Weather Forecast (ECMWF) model.
These two models are cleverly combined through a specific-case machine learning approach,
where the system is trained using measured data from March 2015 to the first two weeks
of May 2015 and validated with the last two week of May 2015. As expected, the P50
quantile obtained from this implementation shows better results than the independent
GFS and ECMFW models.

Additionally to its applicability in solar car races, the precise estimation and prediction
of GHI over large areas has gained significant importance due to the solar photovoltaic
energy growth. Meteorological stations are able to measure local irradiance with high
precision and frequency but they are spatially fixed and their distribution is not enough
to generate valid interpolations over large areas between them.

For any location, on a given date and time with a complete clear sky (no clouds), the
GHI can be calculated and estimated with a Root Mean Square Error (RMSE) under
6% (Gueymard [1993]) using a clear sky model. The clear sky models found in literature
differ between them on the complexity of the atmospheric models included, passing from a
simple air mass calculation (Leckner [1978]) to more complete atmospheric transmittance
considerations based on the different aerosol particles present (REST2 - Gueymard [2008]).

Regarding the clouds inclusion, the clouds effect on the GHI is commonly represented
using the Clear Sky Index (Kc), this index is defined as the ratio between the measured
and the clear sky GHIs (See Equation 1.1).

Kc =
GHI

GHIclr
(1.1)

Where GHI represents the observed and GHIclr the clear sky estimated global hori-
zontal irradiances. In this sense, solving the Equation 1.1 for GHI, the solar irradiance
estimation is defined as the combination of two factors: the clear sky irradiance that can
be precisely determined and the clear sky index that mainly depends on the clouds and
introduces uncertainty to the estimation.

High quality satellite images are continuously available for the entire world and include
implicit information about the Kc over large areas, allowing the detection of clouds, rain,
among other influential atmospheric conditions. Image processing techniques have been
implemented in order to identify and estimate these meteorological conditions, also the
application of machine learning methods based on satellite images has been reported with
satisfactory results (Pelland et al. [2013]).

According to Kleissl [2013], an estimation for hourly solar radiations using semi-
empirical satellite models can achieve a normalized Root Mean Squared Error (nRMSE,
see Equation 3.5) in the range of 7%-20% for arid and semiarid areas. In tropical, more
cloudy or mountain regions, this expected nRMSE may increase to the range of 15%-35%.

Several projects have reported the GHI estimation and prediction using satellite images.
In 1986 Cano et al. [1986] introduced a novel method (called HELIOSAT) based on the use
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of satellite images in order to obtain a reference map of the albedo (I.e. reflectance) of each
coordinate of a scene, afterwards, the images are compared to the reference albedo map,
and a Kc index is calculated. Rigollier et al. [2004] proposed several improvements to the
HELIOSAT by introducing more physical and optical variables to the calculation, instead
of sensor scale variables, this method is called HELIOSAT-2. Upon the approach presented
by Cano et al. [1986], Boulifa et al. [2015] constructed a method based on the intensity
level of each pixel within the satellite image, using Meteosat Visible High Resolution
(HRV) images, and calculated a cloud index from the different levels of intensity in the
image, although the HELIOSAT and HELIOSAT-2 methods are more complex and robust,
this method presents the advantage of directly obtaining an indicator of the cloud scene
from the information contained in the image without further processing and calculations.

From satellite images and resorting to machine learning, Artificial Neural Networks
(ANN) have been satisfactory implemented in this field (Yadav and Chandel [2014], Voyant
et al. [2017]). These approaches are regression models based on statistical techniques that
might be trained using a large set of known dependent variables (or outputs) and their
corresponding independent variables (or inputs), this way a generalization is expected to
predict other outputs given new inputs. Therefore, a data procurement and preprocessing
is demanded and is commonly the most time-expending task of these procedures.

Methods using neural networks to estimate the solar irradiance with satellite images
have been mainly focused on Multilayer Perceptrons (MP) architectures (Linares-Rodriguez
et al. [2013], Marquez et al. [2013], Quesada-Ruiz et al. [2015]). Zarzalejo et al. [2005]
firstly proposed the use of ANN and satellite images to estimate the hourly solar radiation
over Spain, their network input is the cloud index derived from satellite image processing
and their outcome is called atmospheric transparency index which is equivalent to the Kc

index explained before. Linares-Rodriguez et al. [2013] proposed an ANN based on MP to
estimate the daily solar radiation over Andalusia (Spain), satellite images on 11 different
wavelengths taken every 15 minutes and a clear sky GHI are used as input. A RMSE
of 6.74% on a daily basis is achieved, outperforming previous methods. More recently,
Quesada-Ruiz et al. [2015] proposed an hourly GHI estimation with an ANN improvement
with respect to previous works, an ensemble of different ANNs is proposed in order to first
classify the image scene in three groups according to the sky conditions and then send it to
the corresponding ANN (overcast, intermediate or clear sky). A nRMSE of 13.5% for the
hourly GHI estimation is reported with the combination of these two MP neural networks,
one that classifies the scenes according to the cloud index and other that calculates the
GHI for any cloud condition. The ANN input parameters are 11 channels of the satellite
images (including visible and infrared ranges) and the GHIclr. All the disclosures discussed
above, used data for training and validation from the Meteosat geostationary satellite
which covers the European, African and West Asia regions.

Marquez et al. [2013] combined the GHI estimation using ANN with a short term (up
to 120 min) prediction for the 30-minutes average GHI. The cloud indexation and velocity
are obtained from the time series of previous images and included in the ANN, the RMSE
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of the GHI prediction ranges from 50Wm−2 for 30 minutes to 80Wm−2 for a 120 minutes
forecast.

According to the project necessities, satellite images are proven to include the informa-
tion to accurately estimate and predict the GHI in the short term future. Although most
validations are made over European regions, the approximations presented above may be
the start point to a valid GHI estimation for solar car races.



Chapter 2

Solar car energy management:
model and heuristic optimization

The content of this chapter has been published in Betancur et al. [2017c].

Solar cars are known for their energy efficiency, and different races are designed to
measure their performance under certain conditions. For these races, in addition to an
efficient vehicle, a competition strategy is required to define the optimal speed, with the
objective of finishing the race in the shortest possible time using the energy available. Two
heuristic optimization methods are implemented to solve this problem, a convergence and
performance comparison of both methods is presented. A computational model of the race
is developed, including energy input, consumption and storage systems. Based on this
model, the different optimization methods are tested on the World Solar Challenge 2015
race strategy under two different environmental conditions. A suitable method for solar
car racing strategy is developed with the vehicle specifications taken as an independent
input to permit the simulation of different solar or electric vehicles.

2.1 Introduction

Solar car races are well-known as universities and college competitions with the aim of
promoting alternative energies and energy efficiency. Nevertheless, major engineering
developments are required to have a competitive vehicle and several developments that
have emerged in these races are now applied in different industrial sectors. High efficiency
electric motors and drivers (Yamazakii et al. [2017]), low consumption tires, solar panel
Maximum Power Point Trackers (MPPTs), solar panel encapsulations and telemetry
systems are some of the technological products raised on racing solar cars Connors [2007].

The WSC is one of the most popular solar vehicle races where recognized universities
and industries from all over the world join forces to compete every two years. The main
objective is to cross Australia from Darwin to Adelaide (3022 km) using only solar energy.

17
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The success on this challenge demands both an efficient vehicle and an adequate control
strategy during the entire race (World Solar Challenge [2018]).

The vehicle must be designed, built and raced with the purpose of being energy efficient.
The main features of the car are based on two properties: reliable and autonomous. For
the autonomy, the car should capture as much as possible energy from the sun and spend
the lowest possible energy when traveling. The design and manufacture processes take into
account: reliability, safety, solar panel efficiency, aerodynamics, weight reduction, among
other important considerations (see Minak et al. [2017], Tamura [2016], Paterson et al.
[2016], Betancur et al. [2017b], Vinnichenko et al. [2014]).

With the vehicle conceived, the final step is to define the race strategy in order to obtain
the best performance and take advantage of its capabilities. The narrow gap between the
energy input from the solar panel and the consumption of the motor creates the necessity
of optimizing the driver decisions seeking a good energy management. The race plan must
define the speed on the entire path, taking into account the vehicle properties, the road
characteristics, the weather conditions, and all the factors that can affect the vehicle or
the race development. The solar car racing strategy problem has been narrowly disclosed
academically due to the competitive nature of cars racing. Since the early 90’s, less than
10 studies about this topic have been formally published. On the contrary, train optimal
control has been widely studied and disclosed for decades. Although several differences are
remarkable, the energy efficiency operation is the main objective of both applications and
different approaches can be applied on solar cars. Following the state of the art reported in
Sections 1.2 and 1.3, a heuristic optimization approach is proposed and the optimization
results are compared with previous approaches.

In this work, the racing strategy of the EPM-EAFIT solar car for WSC 2015 is presented.
Section 2.2 describes the race model in order to simulate the vehicle performance for a
given conditions. Once the race model is complete, an optimization process is linked to
this model and the best driving parameters are found in order to minimize the objective
function, i.e. racing time (See Section 2.3). Three different optimization methods are
tested and results are exposed on Section 2.4.

2.2 The Race Model

The first step for optimizing a solar car performance is to model the vehicle behavior on
the race. With this race model, the consequences of different strategy inputs on the race
performance are obtained.

For a solar car simulation, three main models should be coupled together: battery,
motion equations (energy consumption) and solar panel (energy input). The environmental
conditions affect the energy input via radiation and temperature and the energy output
mainly because of the wind that influences the drag force. Then, they are considered into
an independent module of the race model. Figure 2.1 illustrates the interactions between
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modules on the model.

Battery Solar panel 

Drivetrain Climate 

Figure 2.1: The car model overview of the four main coupled models simulating the solar
vehicle performance on a given race.

In order to accurately estimate the vehicle performance in the race, the model should
include all the car characteristics such as weight, roll coefficient, aerodynamic properties
among others. Also external information like road slope, sun position, sun irradiation,
wind and others should be considered. This model must be tuned up and validated with
experimental tests of the vehicle to expect valid results.

One of the main inputs of the race model is the velocity set point for the whole race.
This is a user (driver) input that affects the outcome on the competition. The velocity
set point is a curve that indicates the speed of the car during the race. According to
the practical limitations in the race, this velocity is defined to be an integer number in
kilometers per hour (km/h) and bounded by the speed limits of the road. Moreover,
although the velocity set point can change every instant, it is practical to keep it constant
for certain periods of time, generating this way a vector that contains the velocity set
point for defined segments of the race. Then, the size of this velocity vector is the same
number of divisions of the race made for the optimization process.

2.2.1 Drivetrain

The energy consumption of the vehicle is simulated using the drivetrain model. The main
forces that directly oppose the vehicle movement are: aerodynamic drag, tyre rolling
resistance and gravity component due to the road slope. The instantaneous power needed
on the drive wheels can be calculated as defined in Equation (2.1) where Pm stands for
the instantaneous motor power, v for the instantaneous velocity, m for the vehicle mass, a
for the acceleration, CdA is the vehicle drag area coefficient, ρ the air density, vw the wind
velocity component on the vehicle forward direction, Crr the tyre roll coefficient, g the
gravity acceleration and θ the road slope.

Pi = v

(
ma+

1

2
CdAρ(v − vw)2 + Crrmg +mg sin θ

)
(2.1)
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For road sections with constant slope and velocity, the wheel power remains constant
and the consumed energy (Ei) can be calculated according to the time (ti) on the respective
section and the drivetrain efficiency under these conditions (ηm). Equation (2.2) defines
the consumed energy estimation for constant speed sections.

Ei =
Pmti
ηm

(2.2)

In the case of Csiro motors, the instantaneous drivetrain efficiency is estimated according
to the study reported on Al Zaher [2010].

2.2.2 Solar Panel

The photovoltaic solar panel energy generation is simulated taking into account the sun
elevation angle (φ), the estimated solar irradiance at ground level (Ii) (See Section 2.2.4),
the panel and electronic circuit efficiency (ηs) and the panel effective area (As) that
considers the instantaneous canopy shadows over the cells. The electric power produced
by the solar panel (Ps) is calculated as defined on Equation (2.3).

Ps = IiAsηs sin(φ) (2.3)

The solar panel efficiency is experimentally determined taking into account the forced
convection cooling of the cells due to the vehicle movement as reported in Vinnichenko
et al. [2014].

2.2.3 Battery

A battery model is developed according to the specific cells datasheets and duty cycle
experiments. Based on the charge and discharge data integration, the input and output
energy are calculated and the battery overall efficiency (ηb) is estimated according to
Equation (2.4) where Eout and Ein represent the total energy obtained from the discharge
and charge test cycles. The energy stored in the battery (Eb) is defined by Equation (2.5)
where Ps and Pm are the instantaneous solar panel power and drivetrain power respectively,
the charge and discharge efficiencies are assumed both equal to

√
ηb.

ηb =
Eout

Ein

(2.4)

dEb
dt

=

{√
ηb(Ps − Pm), if (Ps − Pm) > 0
1√
ηb

(Ps − Pm), otherwise
(2.5)
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2.2.4 Climate

The more relevant climate factors that affect the vehicle simulation are the solar irradiance
(See Equation (2.3)) and the wind velocity vector (See Equation (2.1)). The stochasticity
of these two variables is removed in order to guarantee repeatability of the optimization
process. Nevertheless, a clever estimation of both parameters is included in the simulation.

The solar irradiance (Ii) is calculated according to the air mass factor and the Lambert’s
law (also known as Beer–Bouguer–Lambert’s Law) to define the atmospheric transmittance
(Iqbal [2012], Leckner [1978]). Cloudless sky is assumed and the model is validated experi-
mentally. Equation (2.6) defines the radiation estimation, I0 represents the extraterrestrial
solar radiation, τa the total atmospheric extinction or attenuation coefficient and AM the
air mass factor (defined on Equation (2.7)).

Ii = I0e
−τaAM (2.6)

AM =
1

sin(φ)
(2.7)

On the other hand, the wind velocity vector is estimated and included according to the
monthly averages reported online by the Australian Government Bureau of Meteorology
(Australian Government, Bureau of Meteorology [2017]).

2.3 Optimization Process

A heuristic optimization approach, as described in Section 1.3, is selected for defining the
race strategy. The main purpose is to find the best velocity in order to minimize the solar
car racing time. To have an accurate race model, the optimization step is implemented
as depicted in Figure 2.2. Different velocity vectors are produced by the optimization
algorithm and evaluated in the race model.
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Vehicle properties

User inputs

Environment data

Race model Vehicle performance

Optimization

Figure 2.2: The purpose of the optimization process is to find the optimal user input for
the race model in order to minimize the objective function

The number of race divisions for the velocity vector defines the search space size.
When the velocity is assumed constant all over the race, the optimization variable is a
1-dimensional vector and a global optimum solution can be found with an exhaustive
search. On the other hand, with large velocity vectors, a larger search space is created and
clever optimization techniques are needed to find a near-optimal solution. Then, different
optimization techniques are used depending on the optimization variable size.

2.3.1 Exhaustive Search

To be sure of finding a global optimum, the first optimization method is the well-known
Exhaustive Search (ES), also named brute-force search. The purpose is to test all the
possible solutions and choose the best one. In the case of a 1D velocity vector, it is
possible to test all the integer numbers between velocity bounds and pick the best, if
the optimization variable is greatly larger it results as non-viable to test all the possible
combinations.

2.3.2 Genetic Algorithms

As proposed by John Holland (1975), Genetic Algorithms (GA) is an evolutionary method
based on natural populations and genetic studies to mimic a biological evolution process.
With a combination between the natural selection process in which “most fit individuals
survive” and random events such as coupling and mutating, an evolution towards an
optimal solution is guaranteed. Since the 1970s, new implementations, variations and
improvements have been developed showing the large capabilities of this method. For the
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solar car race strategy problem, a GA is implemented following recommendations given by
Sastry et al. (2014).

2.3.3 Big Bang-Big Crunch

An alternative evolutionary optimization method already implemented on solar car strategy
by Yesil et al. (2013) is called Big Bang-Big Crunch (BB-BC). It was first developed by
Erol and Eksin (2006) reporting an efficiency improvement with respect to a general GA
method. The general aim of this method is to iteratively generate random individuals
around a center of mass (big bang) and recalculate the center of mass according to the
weighted average fitness of the population (big crunch). On every iteration, the radius for
new individuals generation is reduced in order to progressively diminish the search space.
Equation (2.8) defines the way to calculate this value, where x̄c is the center of mass, n is
the population size, x̄i is an individual of the population and fi its fitness value.

x̄c =

∑n
i=1

1
fi
x̄i∑n

i=1
1
fi

(2.8)

An implementation of the standard BB-BC algorithm is also made and tested for this
project.

2.3.4 Algorithm Hybridization

To improve the optimization performance, a combination of different methods is proposed.
In this case, a Local Search (LS) step (Gonzalez [2007]) is included after the GA and BB-BC
processes as reported on Ishibuchi and Murata [1996]. One-directional variations are made
iteratively to the solution given by the evolutionary algorithm, more precisely the velocity
of every section of the race is modified (±1km/h) and this solution is evaluated. This
has the purpose of evaluating the candidate solutions in the vicinity of the evolutionary
algorithm result, if the objective function result is improved, this new solution is saved
and the process is iteratively repeated.

2.4 Results

To solve the problem of finding an optimal speed for the EPM-EAFIT Solar Car, for
the 2015 WSC, different approaches are implemented and compared. Two environmental
cases are proposed: a fully clear sky race (Clear sky case) and a race with one cloudy day
that diminishes the entire day irradiance to a 60% of the clear sky one (Cloudy day case).
Figure 2.3 illustrates the solar irradiance estimation for both cases.
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Figure 2.3: Solar irradiance for the first 5 days of the race. In the case of Cloudy day, the
irradiance of day 3 is reduced to the 60% of the clear sky estimation.

Regarding the optimization method, five main approaches are analyzed for the two
environmental cases:

• Constant speed during all race (1D optimization variable) with exhaustive search
optimization.

• Race length divided into halves, two different speeds (2D) and exhaustive search
optimization.

• Race length divided in three parts, three different speeds (3D) and exhaustive search
optimization.

• Race divided in 10 segments (10D optimization variable) according to mandatory 30
min control stops defined by the race and GA evolutionary method optimization.

• Race divided in 10 segments (10D optimization variable) according to mandatory 30
min control stops defined by the race and BB-BC evolutionary method optimization.

The ES is not implemented with more than 3D vectors due to the large number
of possible combinations, in these cases the time required to finish the calculation is
considerable. The GA and BB-BC methods are both implemented with 10D vectors and
a constant population of 720 candidates, this resulted from experimental grid search of
different population sizes. The initial population is created with a random number generator
between the minimum velocity and the road speed limit with a uniform distribution.
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Every GA iteration involves:

1. Evaluation of the fitness function (race simulation) for every candidate. The best
individual is saved.

2. Selection of the most fit individuals. The best half of the population is saved for
crossover.

3. Crossover. Random pairs of individuals (parents) are selected from the saved
population and four new candidates (sons) are obtained with a linear combination
of every pair.

4. Random mutations are included on the population. An aleatory number from an
uniform distribution between −10 and 10 km/h is added to a 10% of the new
population.

These steps are repeated until the maximum number of iterations is reached. Also, an
early convergence criteria is defined to stop the iterations.

For the BB-BC implementation, the steps 2 and 3 from GA are replaced by the
calculation of the center of mass and random generation of new individuals around it, as
it is explained on Section 2.3.3. The other steps are performed as explained for GA. For
both methods a limit of 50 iterations is defined. The hybridization proposed on Section
2.3.4 is evaluated with the GA+LS and BB-BC+LS algorithms.

The obtained results for a given specific solar car properties, road and the Clear sky
weather conditions are shown on Table 2.1, the results for the same vehicle properties and
road but Cloudy day weather conditions are shown on Table 2.2. The listed results are the
average of 15 runs of every algorithm. The typical convergence graph for the two different
weather cases is presented on Figure 2.4. Both the race simulation and the optimization
method are programmed in C++ using Microsoft Visual C++ editor and compiler under
Windows operative system, then executed serially (not on parallel) on a laptop with Intel
Core i7 @ 2.3GHz processor.

Table 2.1: Optimization methods results for Clear sky race.

Optimization
Method

Optimization
Vector Size

Obj. Function
Value [h]

Computing
Time [s]

Total Race
Simulations

Exhaustive search (1) 1 38.189 0.28 61
Exhaustive search (2) 2 38.189 14.85 3721
Exhaustive search (3) 3 38.077 926.46 226981
Genetic Algorithms 10 38.104 137.29 36000

GA+LS 10 38.074 145.16 36810
BigBang-BigCrunch 10 38.174 141.34 36000

BB-BC+LS 10 38.093 150.65 38430
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Table 2.2: Optimization methods results for Cloudy day race.

Optimization
Method

Optimization
Vector Size

Obj. Function
Value [h]

Computing
Time [s]

Total Race
Simulations

Exhaustive search (1) 1 40.176 0.39 61
Exhaustive search (2) 2 39.929 21.13 3721
Exhaustive search (3) 3 39.792 1284.1 226981
Genetic Algorithms 10 39.818 116.44 28800

GA+LS 10 39.788 120.89 29610
BigBang-BigCrunch 10 39.878 197.96 36000

BB-BC+LS 10 39.796 209.01 38025
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Figure 2.4: Race optimization using Big Bang-Big Crunch and Genetic Algorithms methods
for Clear sky and Cloudy day cases. After 50 iterations, the local search step is included
for both methods.

2.5 Case Study

The optimal speed found is only valid for the vehicle properties defined on the race model
input. This optimal speed produces a curve that indicates the optimal State Of Charge
(SOC) of the battery during the entire race. Figure 2.5 illustrates the SOC behavior
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according to the best solution found using GA+LS and considering the two environmental
cases. The optimal velocity vectors are also depicted.
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Figure 2.5: Optimal State of charge of the battery and velocity vector for different
environmental conditions: Clear sky conditions (Top) and Cloudy day conditions (Bottom)
The control stops (dotted lines) indicate 30 min mandatory stops, the discontinuous lines
indicate the km where the night is spent.
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2.6 Conclusions

The solar car racing strategy planning is the activity to define the best user inputs in
order to optimize the energy management and, therefore, minimize an objective function.
In this case, the objective function was the time to arrive to the finish line, namely race
time, subject to limited energy and other vehicle, road and environmental constraints.

The selected optimization algorithm depended on the size of the search space and the
time required to run one single simulation. In this case, one race simulation needed between
4 and 6 milliseconds (ms) of computing time. Then, it was possible to estimate the time
needed to execute a defined number of simulations. When an exhaustive search was not
practical due to the expensive running time, an evolutionary method was recommended.

In the two cases of study, the GA showed faster convergence and better result than
the BB-BC, moreover a monotonic decreasing tendency over the iterations was observed
in the graph. Both evolutionary tested methods did not find a global optimum solution,
this was verified with the LS step added after, given the small improvements obtained
with this hybridization in all the cases.

Enlarging the search space by increasing the number of race divisions produced better
solutions than 1, 2 or 3D optimization variables, taking into account that in the case
of 10D velocity vectors finding the global optimum solution was not guaranteed with
the methods used. No difference was obtained with the change of 1D to 2D, but a 3%
(equivalent to 7 min on race) reduction was reached with the 10D vector. The ES method
with 3D vectors remarkably exceeded the total race simulations executed (with respect to
the other test cases) and, therefore, the total computing time.

The optimal velocity found, was the one that makes the battery SOC end near empty.
A 30 min recharging stop was considered if the battery is drained before the finish line but
this was evaded in the optimal strategies found. Although a non constant velocity was
proved to be better, the 10 optimal velocities for the race kept between 78 and 83 km/h
on the Clear sky case and between 75 and 84 km/h on the Cloudy day one. In practical
terms if the speed control of the car is manual, this can lead to the same speed all the race.

The 40% solar irradiance reduction on a complete day represented an increase in the
race time of almost 2 h, going from a racing time of 38.068 to 39.771 h according to the
GA+LS optimization results. The consequences of different environmental cases can also
be estimated using this process.

The time efficiency of this optimization method makes it a feasible option to recalculate
the strategy during the race after deviations from the predicted behavior or climate
prediction changes, a new optimal strategy is obtained in less than 3 min of computing
time. This method can be applied to other objective functions and any type of electric
vehicle with a given characterization. Other interests can maximize the distance with
limited energy or limited time, minimize the external energy used on a given path or
optimize the recharging times for a given route.



Chapter 3

Solar resource estimation

A new method based on Convolutional Neural Networks (CNN) for the estimation of
the ground solar irradiance is proposed and tested on the continent of Australia. The
3 visible bands from the Himawari-8 geostationary satellite images together with the
clear sky irradiance estimation are used as input. The inclusion of a set of contiguous
pixels on the input data to improve the estimation is validated. A comparison with
Multilayer Perceptron (MP) neural networks and image processing techniques based on
pixel intensities is performed. Regarding the estimation accuracy, the CNN and MP neural
networks achieved similar results and both outperformed the image processing on this
task.

3.1 Introduction

Since the last two decades, the solar energy installed capacity has shown an exponential
growth. To the date, the photovoltaic panels cost is still declining resulting on more
economically viable solar energy projects. The main advantage of solar energy is the global
homogeneity distribution of solar radiation, in comparison with other renewable energy
sources such as wind, hydraulic or tidal.

Although the long term statistics may define valid annual or monthly solar radiation
cumulatives, the short term prediction and real-time estimation still includes uncertainties
mainly produced by the stochastic weather conditions.

These variations affect the solar energy production inducing high fluctuations on the
energy grid that may be controlled by the operators or cushioned according to the grid
stability. Accordingly, active control services are needed to guarantee the integration of
these variable energy sources on the grid.

The precise estimation of Global Horizontal solar Irradiance (GHI), defined as the
sum of direct and diffuse irradiances, over large areas has gained significant importance
due to the solar photovoltaic energy growth. Meteorological stations are able to measure
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local irradiance with high precision and frequency but they are spatially fixed and their
distribution is not enough to generate valid interpolations over large areas between them.

In this chapter, a comparison between the GHI estimation from image processing
techniques and machine learning methods, specifically several variants of artificial neural
networks, is executed and compared to the state of the art references mentioned in
Section 1.4.2. For training and validation, GHI measurements are obtained from 7
meteorological stations distributed over the Australian territory and the visible range
satellite images are obtained from the HIMAWARI-8 geostationary satellite operated by
the Japan Meteorological Agency (See Japan Meteorological Agency [2017]).

Convolutional Neural Networks (CNN), are a variation of MP that include a series of
convolutional layers. This way, machine learned filters are automatically applied to the
input data to obtain better results. In different applications of image related tasks, CNN
architectures have proved to excel MP (LeCun et al. [2015]). CNNs have been used to
detect and classify objects within images (Krizhevsky et al. [2012]), to colorize black and
white images (Zhang et al. [2016]) among other image and non image related tasks. In the
medical field CNNs have also been used to detect brain tumors using MR images(Havaei
et al. [2017]), and to classify skin cancer(Esteva et al. [2017]).

To the best of the authors knowledge, the use of CNN is not reported on GHI estimations.
The state of the art approaches using ANN and satellite images (over several channels) to
estimate the GHI only include the target pixel as input data. However other authors use
the neighbor pixels (Mefti et al. [2008]), but they do not use machine learning techniques.
Therefore, this chapter describes the implementation of a CNN architecture on this area
and compares its performance and accuracy with MP neural networks and image processing
techniques, the relevance of including the neighbor pixels is also studied.

This chapter is structured as follows. In the next section, a description of the satellite
images and observed data used as input, training and validation is presented. In Section
3.3, The methodology for the different estimations of GHI is explained. The results of
the different estimations are presented in Section 3.4. Finally, the results discussion and
conclusions are made in Section 3.5.

3.2 Data

Two main data types are used, on the one hand GHI observations on different locations in
the Australian continent; on the other hand, their corresponding satellite image.

Measurements of GHI are obtained from the Bureau of Meteorology of Australia
(Australian Government, Bureau of Meteorology [2017]) at seven different locations as it is
shown in Figure 3.1. The dates range from August 2015 to December 2015 at 10 minutes
intervals.
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 Broome

 Darwin

 Alice Springs

 Adelaide

 Melbourne

 Wagga-Wagga

 Rockhampton

Figure 3.1: Observed GHI data locations on the Australian continent

Satellite images taken by the Himawari-8 geostationary satellite are obtained from
the National Institute of Information and Communications Technology (NICT). The first
three bands are used, corresponding to 0.47, 0.51 and 0.64 µm wavelengths, which coincide
with the visible light. The spatial resolution of these images is 1km per pixel. The images
also span from August 2015 to December 2015, taken at 10 minutes intervals. An example
of an image is shown in Figure 3.2.

Figure 3.2: Original (right) and equalized (left) satellite images from Himawari-8 visible
bands.

The satellite images are equalized, by converting them to the HSV color space, the
equalization process is applied over the V (Value) channel, and then converted back to the
RGB color space. An example of an equalized image is shown in Figure 3.2. Crops for
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each station are taken from the satellites images centered at each meteorological station
corresponding pixel, the pixel location is calculated from the geographical coordinates
following the Himawari-8 data specification Japan Meteorological Agency [2017]. A total
crop size of 15x15 pixels is obtained by spanning 7 pixels in each direction (See Figure
3.3). The total data resulted in 79004 observations: 65249 used for training and validation,
and 13755 for testing.

Target Pixel

15

15

Figure 3.3: 15 pixel image crop example. The center pixel corresponds to the location
where the GHI estimation is desired. For the case of Himawari-8 images, the pixel resolution
is 1km.

An additional input for the GHI estimation is the clear sky irradiance (GHIclr). This
variable is calculated using the ESRA clear sky model (Rigollier et al. [2000]) following
Engerer and Mills [2015] conclusions for the Australian continent. The Linke turbidity
factor is defined as TL = 3.323809, obtained as the Australian yearly average from the
data provided by SoDa (Wald et al. [2002]) and assumed constant in time and space over
the entire continent.

3.3 Methodology

In order to estimate the GHI from the satellite images for the Australian continent,
two principal approaches are proposed. An image processing process based on the pixel
intensity to determine the clear sky index (Kc) and a machine learning technique trained
with a portion of the data, validated with other portion and finally tested with the same
data as the other methods. The two methodologies are explained below.
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3.3.1 Image processing

The satellite images include implicit information about the Kc index for every pixel.
The presence of visible clouds is the main responsible of the variation of this coefficient.
Therefore, this process considers a cloud identification followed by the quantification of
their intensity in the pixels of interest.

The cloud identification is carried out using a segmentation technique proposed by
Otsu [1979]. The intensity levels of the image pixels, which range from 0 to 255, are
divided into two classes, corresponding to pixels with or without clouds. An optimal
threshold level is found based on the entropy of the image, for which every pixel over
it is considered as value 255 and every pixel under the threshold level is considered as
value 0. Building up from this method, a 3-channel segmentation is executed, where the
remaining pixels are those whose values are greater than the threshold in all of the three
channels. This is possible given that clouds present similar values on the three considered
wavelengths, reflecting a similar amount of energy in any of them.

After the segmentation is performed, a cloud index coefficient n(i, t) is calculated. This
coefficient is estimated for the pixel of interest as the fraction between a minimum value
in each of the channels in the original image (no cloud reflection) and the maximum value
that corresponds to a white intense cloud. It is important to note, that the water masses
absorb the majority of incident energy, so the ocean was ignored given that our interest is
the continental territory, therefore the minimum value corresponds to a minimum pixel
intensity value of a continental location. The cloud index is calculated from these two
values and the desired pixel intensity as proposed by Boulifa et al. [2015] and depicted on
equation 3.1.

n(i) =
Ci − Cmin
Cmax − Cmin

(3.1)

Where n(i) corresponds to the cloud index for the i pixel, Ci, Cmax, Cmin correspond
to the intensity level of the pixel i, the maximum intensity value of the image, and the
minimum one, respectively. Once the cloud index has been calculated, the following step
is to estimate the clear sky index, according to equation 3.2 proposed by Rigollier et al.
[2004].

kc =


1.2 if n ≤ −0.2

1− n if n ∈ (−0.2, 0.8]

2.0667− 3.6667n+ 1.6667n2 if n ∈ (0.8, 1.1)

0.05 if n ≥ 1.1

(3.2)

The obtained Kc is then substituted in equation 1.1 to obtain the estimated GHI
according to the weather conditions depicted in the image and the estimated GHIclr.
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3.3.2 Neural Networks

A CNN architecture is proposed and tested in comparison to a MP network as proposed
by Quesada-Ruiz et al. [2015] and Linares-Rodriguez et al. [2013]. For both architectures,
the output is a single unit representing the GHI while the input is a satellite image crop or
pixel corresponding to the location of interest and the clear sky term. The architectures
follow the general form seen in Figure 3.4.

Input

RGB Channels

Estimation
Solar Irradiance

Hidden Layers

Clear Sky
Term

Figure 3.4: General structure of the proposed neural networks to estimate the GHI. The
inputs are the RGB channels of the image crop and the clear sky GHI

In order to test the inclusion of neighbor pixels, the MP architecture is implemented
with two different input conditions. In the first case only the corresponding pixel is counted
following Quesada-Ruiz et al. [2015] and Linares-Rodriguez et al. [2013] implementation,
with the difference of only taking into account the 3 visible channels (instead of 11).
Therefore, a total of 4 independent inputs parameters are considered in this case (the 3
RGB channels and the corresponding pixel clear sky GHI). In the second case, in order to
include the effect of neighbor pixels, an image crop of 15x15 pixels (as shown in Figure
3.3) is taken into account. Hence, a total of 676 independent inputs is considered in this
situation (3 channels for each of the 225 pixels and the clear sky term).

The CNN architecture is also tested with the same 676 inputs of the aforementioned
MP. More specifically, this CNN includes one convolutional layer with kernel size 2, stride
1 and 16 output channels with the Rectified Linear Unit (ReLU) as the activation function.
This layer is followed by an average pooling layer with kernel size 3 and stride 2, finally
closed by a fully connected layer with 10 neurons.

Both MP cases include one hidden layer with 10 neurons also using ReLU activation
function.



3.4 Results 35

3.4 Results

Two scenarios are defined to test the results: instantaneous GHI every 10 minutes and
hourly average GHI computed from 6 instantaneous samples. Six different methods for
estimating the GHI are tested:

1. ClrSky - Clear Sky Model (ESRA)
2. SClrSky - Scaled Clear Sky obtained by multiplying the ClrSky by the average ratio

of the measured GHI and the clear sky GHI over the training data, this factor is
0.8291.

3. ImProc - Image Processing technique as explained in Section 3.3.1
4. CNN - Convolutional neural network with 15x15 pixel crop and the clear sky GHI

as input, as explained in Section 3.3.2
5. MP1px - MP neural network with 1 pixel and the clear sky GHI as input, as explained

in Section 3.3.2
6. MP15px - MP neural network with 15x15 pixel crop and the clear sky GHI as input,

as explained in Section 3.3.2

The results are compared using the Mean Bias Error (MBE), the Root Mean Square
Error (RMSE) and the normalized RMSE (nRMSE) in percentage. Equations 3.3, 3.4

and 3.5 describe their calculations. GHI, ĜHI are the observed and estimated values
correspondingly, GHI is the average of the observed values and n stands for the total
number of observations.

MBE =
1

n

n∑
i=1

(GHIi − ĜHIi) (3.3)

RMSE =

√√√√ n∑
i=1

(GHIi − ĜHIi)2

n
(3.4)

nRMSE =
RMSE

GHI
∗ 100 (3.5)

These errors are computed over the 13755 observations defined as testing data. Obtained
results can be seen in Table 3.1.

The comparison between the observed and estimated GHI for a clear sky day and
cloudy day for 10 minute sampling is depicted in Figure 3.5, the corresponding comparison
for hourly average GHI of the same days is depicted in Figure 3.6.
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10 minute Hourly
MBE RMSE nRMSE MBE RMSE nRMSE

Method (Wm−2) (Wm−2) (%) (Wm−2) (Wm−2) (%)

ClrSky -91.9 217.5 45.1 -95.5 196.5 39.2
SClrSky 6.2 188.6 39.1 6.5 162.3 32.4
ImProc -70.2 186.4 38.7 -72.8 155.6 31.0

CNN -10.5 129.9 27.0 -10.6 78.6 15.7
MP1px 12.0 140.1 29.1 12.6 87.3 17.4

MP15px -1.7 130.4 27.1 -1.2 79.5 15.9

Table 3.1: GHI Estimation errors for the 6 different methods and 2 different scenarios:
instantaneous GHI for every 10 minutes (left columns) and Hourly average GHI (right
columns).
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Figure 3.5: 10-minute measured and estimated GHI for a clear sky day on Alice Springs
during October 15, 2015 (Left) and a cloudy day on Melbourne during October 12, 2015
(Right)
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Figure 3.6: Hourly average from measured and estimated GHI for a clear sky day on Alice
Springs during October 15, 2015 (Left) and a cloudy day on Melbourne during October
12, 2015 (Right)
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3.5 Conclusions

As reported in literature, the satellite images include useful information in order to reduce
the uncertainty on the solar GHI estimation. For the Australian continent satisfactory
results are achieved using artificial intelligence techniques and Himawari-8 visible range
satellite images.

Neighbor pixels included on the MP neural networks improved the estimation accuracy
with respect to using only the corresponding pixel. The high resolution of the used images
(1km x 1km per pixel) demands the consideration of neighbor pixels to identify clouds
located more than 1km away, that may still affect the local GHI.

The CNN and the MP15px neural networks present very similar performance on
the estimations, taking into account that both of them consider exactly the same input
parameters. The MBE suggests a slight difference in favor of the MP15px. A computational
efficiency test may be a second comparison factor.

The MBE obtained with the ClrSky and the ImProc methods shows that these
estimations are, on average, much greater than the observations, this may induce to large
errors on the calculations of solar energy received in larger time samples based on these
estimations.

As depicted in Figures 3.5 and 3.6, the estimation error is greater on cloudy days, on
clear sky days the estimation is more precise. The increase of the sampling time yields a
decrease on the RMSE errors due to the smoothing of the curve and reduction of noise of
the variables.

Compared to the results reported by Quesada-Ruiz et al. [2015], a similar RMSE is
achieved on the hourly estimation using only the 3 visible range bands from the satellite
images and more pixels.



Chapter 4

Solar car energy management for the
WSC 2015

4.1 Introduction

The energy management optimization model is used to define the race strategy of the
“EPM-EAFIT PRIMAVERA 2” solar car on the WSC version of 2015. This vehicle is
designed and built according to the competition regulations with the main objective of
minimizing the energy consumption at high speed and maximizing the energy capture
from the sun while guaranteeing the reliability and safety of the driver. The vehicle is
depicted in Figure 4.1.

Figure 4.1: PRIMAVERA 2 solar car, designed and built in EAFIT university by the
EPM-EAFIT solar car team on 2015.

In this chapter, the strategy calculation and execution is widely described, the method-
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ology used is based on the methods and conclusions presented in the two previous chapters.
The experimental results are analyzed and the unexpected events are listed. Finally, The
race performance is compared to the strategy plan.

The stochastic nature of climatic variables (e.g. GHI and wind) and the possibility of
other random events (e.g. road work, traffic or vehicle failures) generate an uncertainty to
define the exact strategy for solar cars before the WSC race. As found in the literature
and clarified in the chapters 1 and 2, the race strategy must be recalculated frequently
during the race according to the current state and new estimates of future variables.

The 2015 WSC race was started from Darwin on October 18 at 8:15 am with the
goal of reaching Adelaide by traveling 3022 kilometers through the Stuart Highway in the
shortest possible time. The strategy for this race (as defined in chapters 1 and 2) is posed
as an optimization problem where the speed of the vehicle must be chosen at each moment
to minimize the total race time, and subject to different optimization constraints.

Concerning the weather, the race strategy planning demands a prediction of the solar
radiation that the vehicle will receive during the 5 or 6 days that it should take to travel.
As described in the chapters 1 and 3, the prediction of this variable in the short or medium
term includes an error that increases with the size of the time frame to be predicted.
Therefore, no team is completely aware of the climatic conditions of the race before
starting.

After the vehicle characterization, its main properties are validated in simulations
and a race plan is executed to define the strategy and estimate its performance in the
race. For this, two climatic conditions are proposed: an optimistic one considering clear
sky conditions and a more realistic one based on the scaled clear sky radiation that was
calculated in chapter 3.

In this chapter, the strategy planning process is explained as follows. Section 4.2 exposes
the input data for the model, including the vehicle properties and the radiation scenarios.
Section 4.3 briefly describes the methodology used for the race strategy optimization.
Section 4.4 shows the optimal strategies found according to the inputs used. The real
performance of the vehicle in race is presented in Section 4.5.3 and conclusions are listed
in Section 4.5.

4.2 Data

The input data for the optimization algorithm is divided in two main groups: the vehicle
properties and the environment data (See Figure 2.2).

4.2.1 Vehicle properties

Concerning the vehicle data, several experiments as recommended by Boulgakov [2012]
were executed as well as solar panel testing. The aerodynamic characterization was done
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experimentally rather than using CFD results, this allowing possible shape alterations as
explained in Betancur et al. [2017a]. The resulting properties used for the model are listed
in table 4.1.

Battery Capacity [Wh] 5100
Crr, Roll coefficient [adim] 0.005
CdA, Drag Area coefficient [m2] 0.102
Vehicle mass [kg] 283
Regenerative brake efficency [adim] 0.4
Solar panel area free of shades [m2] 4.4926569
Solar panel area with canopy shades [m2] 1.4566635
Solar panel effiency [adim] 0.15
Drivetrain efficiency [adim] 0.97
Battery efficiency [adim] 0.9

Table 4.1: “Primavera 2” solar car properties used for the WSC 2015 strategy program

4.2.2 Climatological data

The environmental inputs required for the model are the air density (See Equation 2.1),
the wind velocity in the forward direction (See Equation 2.1), the solar irradiance (See
equation 2.3) and the sun elevation angle (See equation 2.3). These 4 variables are spatial
and time dependant, nevertheless small variation on the air density allows its definition as
constant, with a value of 1.185 kg/m3.

The road is divided in 3022 sections (of 1km each) as a discretization of the spatial
dimension. The wind velocity in the forward direction of the road is assumed constant in
time and is calculated for every section using the monthly average (based on historical
data) reported online by the Australian Government Bureau of Meteorology (Australian
Government, Bureau of Meteorology [2017]) for certain weather stations. The wind
direction and speed statistics for October is used to define the most likely wind vector
for the locations listed in Table 4.2. Finally, a linear interpolation is used to estimate the
wind vector for the 3022 race sections.

Regarding the solar variables, the sun position is calculated during the simulation
for every road section based on the geographic location, date and exact time using the
Sun-position algorithm proposed by Blanco-Muriel et al. [2001] due to its ease of use and
efficiency.
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Station km

Darwin 0

Pine Creek 225

Katherine 317

Daly Waters 590

Elliot 735

Tennant Creek 989

Barrow Creek 1194

Alice Springs 1496

Kulgera 1785

Marla 1950

Coober Pedy 2183

Port Augusta 2723

Adelaide 3022

Table 4.2: Weather stations with historical wind data and corresponding location on race
(in kilometers).

The solar irradiance is defined using the GHI as explained in Chapter 3. Two scenarios
are defined according to the results reported in Section 3.4, a Clear Sky GHI (ClrSky)
calculated using the ESRA model (Rigollier et al. [2000]) and a Scaled Clear Sky GHI
(SClrSky) obtained by multiplying the clear sky by the attenuation factor of 0.8291 obtained
in Chapter 3. The estimated GHI for the 3022 km and the first 6 days of race for both
cases is displayed in figure 4.2.
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Figure 4.2: Estimated GHI for the 3022 kilometers and the first 6 days of race of the WSC
2015, using the ClrSky (left) and the SClrSky method (right).
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4.3 Methodology

The optimal racing strategy is calculated using the race simulation program and the
genetic algorithm optimization method for the race divided in 10 segments of constant
speed between control stops. Please refer to Sections 2.2 and 2.3 for more information
regarding the race simulation and the optimization method.

According to the two different irradiance predictions described in Section 4.2, two
strategies are calculated, the other input data for both strategies is maintained constant.
After the comparison of the resulting strategy plans, one of the two strategies is selected
based on the analysis of recent satellite images and short term weather predictions (obtained
from external weather reports) for the first section of the race.

Owing to the lack of information to predict random stops or failures, the race strategy
is calculated excluding these events and a complete recalculation of the optimal strategy
is recommended if they significantly affect the strategy plan execution.

As explained above, the optimization method is executed prior to the race to define
the initial strategy. During the race, the strategy is recalculated on the night stops if
several deviations from the previous strategy are noticed. For the recalculation, different
parameters are updated according to the vehicle performance, the solar panel efficiency,
the drag area coefficient and the roll coefficient may be updated using historical data from
the race. The information collected from the race is considered as the most recent and
valid test of the vehicle, therefore the vehicle parameters are updated for the strategy
recalculations using this race data.

After the race, the experimental results are compared to the strategy plan. The
main race variables to compare are velocity and SOC with respect to the race position
(kilometer) and race position with respect to the time. Moreover, using the satellite image
based convolutional neural network procedure described in Chapter 3, the real radiation
is estimated after the race and compared to the radiation predicted on the optimization
model.
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4.4 Results

4.4.1 Optimization results

The main results of the initial strategies calculated for the two irradiance cases are
presented in Table 4.3. A difference of 3.1 race hours (7.4%) is obtained from both
strategies. Although it may seem insignificant, this difference represents reaching the finish
line a day later and very likely some positions in the race results.

A more detailed description of both strategies is presented in Figure 2.5. The ClrSky
case that considers a higher energy input, suggests a higher velocity and, therefore, a
shorter race time. The suggested velocity in this case is maintained with few variations
during the race ranging from 77 to 86 km/h. On the other hand, the SClrSky may be
considered a more conservative strategy where less energy is obtained from the solar panel
and more energy is saved for the last 300 km of the race where the velocity is increased,
taking advantage of the energy captured in the extra night. In this case the velocity is
maintained between 70 and 76 km/h until the last section of the race where is increased to
88 km/h. Although, both strategies tend to finish the race with empty battery, this second
one leaves almost 20% of the SOC due to the energy obtained on the last day end stop.

The strategy to be used is selected based on different insights of the future irradiance.
Although some prediction approaches, as the ones mentioned in Section 1.4.2, might have
reduced the uncertainty for a short term future (at least a couple of days), the project
scope and schedule made its implementation unfeasible. According to the satellite images
obtained prior to the race start (e.g. Figure 4.4.1), clear sky conditions prevailed for the
north of Australia, corresponding to the first part of the race. Therefore, the selected
initial strategy is the first one exposed considering the ClrSky irradiance.

Radiation input Race time Arrival day Arrival time
[h] [#] [hh:mm]

ClrSky 41.91 5 14:53
SClrSky 45.01 6 08:59

Table 4.3: Main results of optimal strategies considering clear sky and scaled clear sky
conditions. The race time includes all the 30-minutes control stops.
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Figure 4.3: Optimal strategy represented by the state of charge of the battery and velocity
vector for different environmental conditions: ClrSky (Top) SClrSky conditions (Bottom).
The control stops (dotted lines) indicate 30 min mandatory stops, the discontinuous black
lines indicate the km where the night is spent.
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Figure 4.4: Satellite image of Australia taken on October 18 at 7:32 AM (Darwin time).
The race start is in Darwin (North) and the road is described by the red line. (Image
obtained from http://www.bom.gov.au/australia/satellite/)

4.4.2 Experimental results

Experimental results exposed in this section correspond to the real performance of the
vehicle during the 2015 WSC. The vehicle main variables (e.g. position, velocity, SOC,
panel power, motor power, etc.) are measured and stored every minute. The cruising
velocity may be set on the vehicle cruise control but several disturbances were found due
to traffic conditions, road turns, winds or vehicle minor failures, therefore the average
velocity between stops is used to compare the results.

As explained in Section 4.4.1, the strategy considering ClrSky irradiance is selected
to begin the race. According to this strategy, an optimal cruising velocity is defined and
an estimated battery SOC curve should be accomplished. Once in race, constant control
of three variables is made: SOC, velocity and position. This, in order to analyze the
deviations from the defined strategy and propose corrections on the velocity. The SOC
and velocity are plotted for every position on race (i.e. kilometer) in Figure 4.5 while the
position is plotted for the time of the day in Figure 4.6.

Four unexpected events happened during the race:

1. High traffic of vehicles and solar cars was witnessed on the first 300 km after the
departure. This can be seen on the velocity plot of Figure 4.5 where the average
speed for the first section is lower than the suggested one.

2. A strong gust of lateral wind in km 800 pushed the vehicle out of the road an a

http://www.bom.gov.au/australia/satellite/
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45-minute stop to repair and check the vehicle was forced. After this stop, the SOC
was 15% higher than the expected for the same km and the vehicle was 1 hour
delayed with respect to the strategy plan (see Figures 4.5 and 4.6). Although the
recommended solution is to completely recalculate the strategy in this moment, it
resulted impossible due to logistical and software limitations. Therefore, the velocity
was incremented in order to recover time.

3. A failure in the connection of a solar panel cable caused the loss of 33% of the
solar panel between hours 13:00 and 16:40 of the third day, corresponding to the
section between km 1496 and 1756. The failure was solved and the panel was 100%
functional from there on.

4. Strong headwinds and high traffic in the afternoon of the fifth day, after km 2719,
forced the vehicle to slow down until the night stop.

The race strategy is fully recalculated in km 1756 during the third night stop after
solving the failure on the solar panel connection (see Figures 4.5 and 4.6). For this
strategy recalculation the vehicle CdA is changed from 0.102 to 0.12 m2 according to the
consumption observed during the previous days, the other input data for the simulation
including the solar irradiance remained constant. This new strategy includes the current
SOC, position and time as an input and using the same optimization algorithm provides
the optimal speed for the remaining sections of the race. A comparison between the main
results of the initial and recalculated strategies is presented in Table 4.4.

Race time Arrival day Arrival time
[h] [#] [hh:mm]

Initial strategy 41.91 5 14:53
Recalculated strategy 43.20 5 16:10

Race results 46.32 6 09:47

Table 4.4: Main results of the optimal strategies used and the final race performance.
Both strategies consider clear sky conditions. The race time includes all the 30-minutes
control stops.

After the strategy recalculation on km 1756, the SOC prediction for every km is
followed while the vehicle average velocity remains lower than the desired one (See Figure
4.5). This lower velocity leads to an incremental delay with respect to the strategy plan.
The last control stop in km 2719 is achieved at 13:07 of the fifth day, 1 hour and 17
minutes later than the expected. This delay summed to the the high traffic and headwind
conditions on the afternoon of day 5 forces an extra night stop before the race end. The
fifth night stop at km 2985 provides enough energy for the remaining 127 km to the end,
allowing to finish the race at 09:47 in the morning of the sixth day with a remaining 20%
of the battery SOC.
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The race is finished in the ninth position among 29 participants in the Challenger class.
The first vehicle (Nuon Solar Team from TU Delft, Netherlands) finished the race in the
morning of the fifth day with a total race time of 37.93 h, resulting 8.42 racing hours
ahead.
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Figure 4.5: Race performance and racing strategy represented by the continuous and
dashed lines respectively. The plots indicate the state of charge of the battery (Top) and
vehicle velocity (Bottom) for the entire race. The race velocity plot is the average between
successive stops.
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Figure 4.6: Race performance and racing strategy represented by the continuous and
dashed lines respectively. The plot indicates the position (in kilometers) for every time of
the racing days.

In order to validate the irradiance input used, the real GHI for the 3022 km and the
first 6 days of race is calculated after the race using the corresponding series of satellite
images and the ClrSky estimation on the convolutional neural network algorithm (CNN)
presented in Chapter 3. A total of 786 RGB satellite images with a 10-minute sampling
time are used. The race distance is divided in 3022 sections and the GHI is obtained
for every image and kilometer. The vehicle position on the resulting irradiance map is
presented in Figure 4.7.

The ClrSky and SClrSky models used in the strategy program are compared to the
CNN estimated GHI for the positions of the vehicle in race. Figure 4.8 compares the
irradiances obtained using the vehicle position on the GHI distributions presented in
Figures 4.2 and 4.7. The MBE, RMSE and nRMSE errors (defined in Section 3.4) between
both predictions and the CNN estimation are shown in table 4.5.

MBE RMSE nRMSE
Wm−2 Wm−2 (%)

ClrSky 19.68 94.65 11.57
SClrSky -143.69 171.66 20.99

Table 4.5: Estimation errors for the ClrSky GHI with respect to the calculated CNN GHI.
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Figure 4.7: Global Horizontal Irradiance calculated after the race using satellite images
and CNN for the 3022 kilometers and the 6 days of the WSC 2015. The vehicle position
during the race is described by the black line.
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Figure 4.8: Global Horizontal Irradiance according to the vehicle position in race. The
ClrSky GHI is calculated prior to the race and used in the strategy program, the CNN
GHI is estimated after the race using satellite images.
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4.5 Conclusions and perspectives

An optimization method for solar cars racing strategy is proposed, implemented, tested
and validated. The inclusion of stochastic variables is discussed and special emphasis is
made on the solar irradiance prediction and estimation using satellite images. Artificial
intelligence techniques are used for the optimization algorithm (heuristic optimization
methods) and the solar irradiance estimation (machine learning) with satisfactory results.
The proposed method is experimentally validated in the 2015 World Solar Challenge race
in Australia, the strategy plan and real results are compared and discussed. Satisfactory
results are obtained using the race strategy although unexpected and unpredictable events
occurred during the race.

4.5.1 Heuristic optimization method

Calculated optimal strategies may be considered as the optimal energy management plan,
where the available energy is cleverly used to minimize the racing time. This explains why
all the calculated optimal strategies aim to finish the race with the empty battery. As
discussed in Chapter 2, the calculated strategy is not the global optimum for the given
inputs. This is caused by two main factors, the assumption of constant velocity between
control stops that limits the search space to 10-dimensional vectors and, in the other hand,
the use of an heuristic optimization method that results in non global-optimum solutions.
Regarding the race division in 10 segments with constant velocity, the high computational
cost of optimizing for finer segment divisions, compared to the possible small improvement
in the objective function (as the one stated with the change of 3D to 10D vectors in
Chapter 2), makes this refinement a non cost-effective solution. Although, the genetic
algorithm method used for the optimization may not calculate the global optimum, the
monotonic convergence reported in Chapter 2, added to the randomness nature of the
optimization process, guarantees the validity of the obtained solution.

4.5.2 Meteorological prediction

The vehicle and environmental data used as input for the optimization model defines
the resulting optimal strategy as it is proved in Chapters 2 and 4. A high sensitivity to
changes in solar radiation is appreciated in Table 4.3 and Figure 2.5, where a reduction
of 17% on the solar irradiance prediction leads to an increment of 7.4% on the total race
time, an average reduction of 8.2% on the optimal velocity and an extra night stop on
race. This difference on the solar irradiance is obtained using the ClrSky and SClrSky
assumptions described in Chapter 3. The sensitivity of the optimal strategy with respect
to other variables may be calculated, as reported for the irradiance, by inducing variations
on the input data and comparing the obtained solutions.

Selecting the appropriate inputs for the strategy involves the prediction of uncertain
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meteorological variables (i.e. solar irradiance and wind velocity) that affect the energy
consumption and intake, as it is exposed in Section 2.2. Special effort must be made on
the study of the solar irradiance and wind vectors to make clever decisions when predicting
their values for the entire race. Prior to the race, two options for the solar radiation input
were considered, the ClrSky assuming that no clouds would be present during the entire
race and the SClrSky considering that clouds would be present and the received irradiance
is scaled according to the average of historical data. These assumptions may be considered
as optimistic and conservative cases for the strategy. In this case, the ClrSky was selected
following external forecasts and satellite image sequences just before the race. This may
be considered a successful decision given that there were no cloudy days during the race
as reported in Table 4.5 and Figures 4.7 and 4.8.

The use of machine learning procedures to estimate the solar irradiance from satellite
images produced satisfactory results, as it is stated in Chapter 3. Although approximation
errors, as the ones mentioned in the state of the art, were obtained, the Convolutional
Neural Networks resulted in a suitable method for this regression problem. As reported in
Section 1.4, satellite images are also used to predict short-term future radiation, however
the implementation of this procedure is left as future work due to the limited scope of the
project.

4.5.3 Experimental results

A 3022 kilometer race is an endurance challenge for a prototype vehicle and a team. The
fact of racing during more than 5 continuous days from 8:00 to 17:00 brings with it the
possibility of having unexpected and unpredictable events at any time. In this case the
wind gust that caused the 45-minute stop and the loss of a third of the solar panel during
4 hours were the two main unexpected events that affected the strategy plan. In the other
hand, non-predicted winds that caused higher energy consumption and high traffic in
urban areas may be considered other unexpected factors.

The strategy recalculation during the race is the proposed solution to unexpected
deviations on the strategy plan. Although, an efficient and automatic manner of recalcu-
lating the race strategy was not implemented for this race, the strategy was successfully
recalculated on km 1756. Special effort must be made on solving this necessity to be able
to make clever decisions rapidly.

Following the race strategy requires keeping track of two main variables, the race
position with respect to the time and the battery SOC with respect to the position, while
the velocity is the control variable. As stated in Chapter 2 and 4, in most of the cases an
optimal race strategy meets two conditions, finishing the race with empty battery and
homogeneous (near constant) velocity for all the race (see Figures 2.5 and 4.3). The results
reported in Figure 4.5 suggest that the strategy followed in the race approaches these
conditions.

The 8.42 hours difference between the own result and the first vehicle to finish may be
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attributed to several causes apart from the strategy itself: a more energy-efficient vehicle
both in consumption and collection, a more accurate prediction of the weather conditions,
the different unexpected events and the position in the starting grid. It can be seen that
the initial strategy using optimistic weather predicted a race time of 41.91 h, still greater
than the winner time (37.93 h).

The solar irradiance received by the vehicle during the race was barely affected by
clouds, therefore the ClrSky model was the most approximate prediction of this variable
(See Figure 4.8). Nevertheless, for future cases no generalizations must be assumed due
to the randomness nature of the weather, a completely cloudy day may induce several
variations as reported in Chapter 2.

Although a high correlation on the SOC distribution and total race time may be
appreciated between the calculated strategy considering SClrSky GHI (Figure 4.3) and
the race results (Figure 4.5), where both include a fifth night stop near the finish line,
there is no causal relationship between them. As mentioned above, the race delays are
attributed to random events apart from the GHI, and the most approximate model to the
received irradiance on race was the ClrSky.

4.5.4 Future work

As future work, the solar irradiance prediction for a short term future is proposed. The
satisfactory results obtained on the GHI estimation using deep learning procedures with
satellite images, suggest that these techniques, together with cloud motion estimation,
may give accurate GHI predictions according to the necessities on solar car racing.

On the other hand, the implementation of this strategy program with a user-friendly
interface and high computational efficiency will result in a tool that makes the difference
in solar vehicle races.

The experimental validation of this model is suggested in new races. For instance, the
Cruiser class of the recent WSC forces modifications on the optimization function and
control variables as it includes variable battery size, number of occupants and charging
stops. Nevertheless, the structure of the vehicle model and optimization algorithm proposed
may be applied to this case.
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learning in engineering higher education: two decades of teaching competences in real
environments. Procedia-Social and Behavioral Sciences, 2(2):1368–1378, 2010.

NA Engerer and FP Mills. Validating nine clear sky radiation models in australia. Solar
Energy, 120:9–24, 2015.

Osman K Erol and Ibrahim Eksin. A new optimization method: big bang–big crunch.
Advances in Engineering Software, 37(2):106–111, 2006.

Andre Esteva, Brett Kuprel, Roberto A Novoa, Justin Ko, Susan M Swetter, Helen M
Blau, and Sebastian Thrun. Dermatologist-level classification of skin cancer with deep
neural networks. Nature, 542(7639):115–118, 2017.

Nima Ghaviha, Markus Bohlin, and Erik Dahlquist. Speed profile optimization of an
electric train with on-board energy storage and continuous tractive effort. In Power
Electronics, Electrical Drives, Automation and Motion (SPEEDAM), 2016 International
Symposium on, pages 639–644. IEEE, 2016.

Gregor Giebel, Richard Brownsword, George Kariniotakis, Michael Denhard, and Caroline
Draxl. The state-of-the-art in short-term prediction of wind power: A literature overview.
ANEMOS. plus, 2011.

Teofilo F Gonzalez. Handbook of approximation algorithms and metaheuristics. CRC Press,
2007.

Enrique Guerrero Merino and Manuel A. Duarte-Mermoud. Online energy management
for a solar car using pseudospectral methods for optimal control. Optimal Control
Applications and Methods, 37(3):537–555, 2016. ISSN 1099-1514. doi: 10.1002/oca.2210.
URL http://dx.doi.org/10.1002/oca.2210.

Enrique Eduardo Guerrero Merino. Control óptimo de veh́ıculos eléctricos con enerǵıa
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