DISEÑO DE UN MODELO DE SISTEMA PARA LIMPIEZA DE VAGONES CON CARBON PEGADO

MICHAEL VANEGAS TRIVIÑO
SEBASTIAN MESA PEREZ

UNIVERSIDAD EAFIT
ESCUELA DE INGENIERÍA
DEPARTAMENTO DE INGENIERÍA MECÁNICA
MEDELLÍN
2011
DISEÑO DE UN MODELO DE UN SISTEMA PARA LIMPIEZA DE VAGONES
CON CARBON PEGADO

MICHAEL VANEGAS TRIVIÑO
SEBASTIAN MESA PEREZ

Trabajo de grado para optar por el título de Ingeniero Mecánico

Asesor: Sergio Aristizabal
Ingeniero De Producción

UNIVERSIDAD EAFIT
ESCUELA DE INGENIERÍA
DEPARTAMENTO DE INGENIERIA MECÁNICA
MEDELLIN
2011
DEDICATORIA

Dedicamos este trabajo especialmente a nuestros padres cuyo trabajo y esfuerzo durante todos estos años, han contribuido enormemente a nuestros logros y nos han permitido estudiar y optar por el título de Ingenieros.
AGRADECIMIENTOS

A la empresa contratista EPROQ.MECANICA LTDA. por la oportunidad en el periodo de práctica, por todo lo aprendido y por el desarrollo de este proyecto.

Agradecemos a Sergio Aristizabal, asesor principal del trabajo de grado, por sus importantes aportes durante el desarrollo de este, y por el tiempo y dedicación brindados.

A Abel Ortiz, Gerente de Contrato Ferrocarril; EproQ.Mecanica LTDA. por su incondicional apoyo, disposición y enseñanzas.

A Luis Javier Castro, Ingeniero analista de planeación Cerrejón Limited. por sus valiosos aportes.
CONTENIDO

Pág.

INTRODUCCIÓN .. 10
ANTECEDENTES ... 11
EXPLICACIÓN CLARA Y CONCRETA DEL PROBLEMA ... 13
JUSTIFICACIÓN ... 14
1. OBJETIVOS .. 16
 1.1 OBJETIVO GENERAL .. 16
 1.2 OBJETIVOS ESPECÍFICOS ... 16
 1.3 NIVEL DE OBJETIVOS .. 17
2. ALCANCE .. 18
3. MARCO CONCEPTUAL ... 19
 3.1 CONCEPTOS BÁSICOS .. 19
 3.2 DISEÑO DE MÁQUINAS .. 19
 3.3 MANTENIMIENTO .. 20
4. ESTADO DEL ARTE .. 21
 4.1 PARAMETROS ACTUALES .. 22
 4.1.1 Procedimiento limpieza de vagones .. 22
 4.1.2 Fotografías operación de limpieza vagones .. 24
5. DISEÑO METODOLOGICO ... 26
 5.1 INVESTIGACIÓN Y RECOLECCIÓN DE INFORMACIÓN .. 26
 5.1.1 Primera propuesta ... 26
 5.1.2 Segunda propuesta .. 35
 5.1.3 Tercera propuesta .. 38
6. DESARROLLO DEL DISEÑO METODICO ... 41
 6.1 DESCRIPCION DEL MODELO .. 41
 6.2 ESPECIFICAR Y CLARIFICAR LA TAREA ... 41
 6.3 DESARROLLO DE UNA LISTA DE REQUERIMIENTOS PDS (PRODUCT DESIGN SPECIFICATION) .. 42
 6.4 DETERMINAR ESTRUCTURAS Y FUNCIONES .. 45
1. Introducción ..4

1.1 Objetivos ...4

1.2 Limitaciones ..4

2. Estructura del trabajo de investigación ..5

2.1 Descripción de la investigación ...5

2.2 Marco teórico ...5

3. Material y método ..9

3.1 Material ..9

3.2 Método ...10

4. Resultados ...11

4.1 Análisis de los resultados ...11

4.2 Evaluación de la eficiencia ..12

5. Discusión ..13

5.1 Discusión de los resultados ..13

5.2 Conclusiones ..14

6. Conclusiones ...15

7. BIBLIOGRAFÍA ..16

8. ANEXOS ..17
LISTA DE TABLAS

Tabla 1. Datos Promedio de Duración y Vida Útil de recubrimientos de Caucho en un Camión Minero .. 27
Tabla 2. Estimación de vida útil para vagones del ferrocarril 28
Tabla 3. Estimación de Vida Útil de Recubrimientos para vagones de Ferrocarril. 29
Tabla 4. Tabla de costos ... 31
Tabla 5. Lista de requerimientos .. 43
Tabla 6. Valoración Obtenida ... 52
Tabla 7. Evaluación de alternativas 1 y 2 ... 53
Tabla 8. Evaluación de alternativa 3 ... 54
LISTA DE FIGURAS

Figura 1. Pique y remoción del carbón ...12
Figura 2. Desplazamiento del carbón a la parte media del vagón12
Figura 3. Desplazamiento del vagón nuevamente a las conformaciones del tren .13
Figura 4. Nivel de Objetivos..17
Figura 5. Bandera de Seguridad...22
Figura 6. Etiqueta y Candado ...23
Figura 7. Vagon con Carbón Pegado...24
Figura 8. Limpieza de vagones ...24
Figura 9. Procedimiento de Limpieza ...25
Figura 10. Recubrimiento de caucho en Camiones ...28
Figura 11. Relación vida útil y factor de utilización diario (FUD) para varios espesores de recubrimiento en caucho en vagones de Ferrocarril.....................30
Figura 12. Costos y vida útil por ft2 para recubrimientos Vagones Ferrocarril32
Figura 13. Costos por Vagon (FUD = 4.0) y Vida Útil del Recubrimiento............33
Figura 14. Costos y Vida Útil Liners por Flota de Vagones (FUD = 4.0)34
Figura 15. Plancha de Polietileno ...36
Figura 16. Acumulación de Carbón...36
Figura 17. Sistema de alineamiento del vagón ...38
Figura 18. Sistema de vibración ..39
Figura 19. Maquina Hidráulica Vibratoria ..39
Figura 20. Flujos de la función principal ..41
Figura 21. Flujos de entrada y salida de la función principal45
Figura 22. Flujos de entrada y salida de las funciones secundarias46
Figura 23. Estructura Funcional ..47
Figura 24. Matriz morfológica ...48
Figura 25. Matriz morfológica inicial ...49
Figura 26. Matriz Morfológica Reducida con Combinaciones50
Figura 27. Árbol de Objetivos ..52
Figura 28. Equilibrio Global del Sistema ..55
Figura 29. Vista frontal con estado de carga de sistema Trolley para movimiento transversal ..57
Figura 30. Diagrama de Cuerpo Libre Trolley base (vista frontal)60
Figura 31. Equilibrio de Viga Soporte de Grúa ..61
Figura 32. Perfil Vigas Soporte de Grúa A y B ...63
Figura 33. Estado de carga de la Viga BG ..65
Figura 34. Puntos Críticos en Viga Soporte de Grúa BG65
Figura 35. Esquema del sistema de acople para movimiento frontal..........66
Figura 36. Equilibrio del sistema de acople para movimiento frontal de la viga AE ...68
Figura 37. Equilibrio del sistema de acople para movimiento frontal de la viga BG ..69
Figura 38. Diagrama de cuerpo libre platina de soporte71
Figura 39. Equilibrio de Viga Marco IH ...72
INTRODUCCIÓN

La minería se ha convertido en una importante fuente de desarrollo socioeconómico para nuestro país, generando progreso y origen de empleo para un gran número de personas de diferentes regiones. Además de abrirnos puertas en los mercados más importantes a una escala global.

La gran demanda de Carbón térmico, debido al enorme desarrollo industrial que se ha generado y se expande con rapidez desde la revolución industrial. Ha llevado a Colombia a convertirse en un atractivo objetivo inversionista de multinacionales extranjeras dedicadas a la explotación de tan importante mineral, gracias a que se cuenta con grandes yacimientos de carbón para su explotación como lo es el departamento de La Guajira.

La explotación del mineral en este punto del país se ha enfocado en la implementación y cumplimiento de los estándares nacionales e internacionales para la debida explotación de carbón, evitando de esta manera y como primer objetivo el deterioro del medio ambiente de la región. La Gestión Ambiental comprende programas de preservación, medición y educación, en los recursos aire, agua, suelos y bosques, y fauna los cuales se llevan a cabo en sus instalaciones de la mina, el ferrocarril y el puerto, con la participación activa de todos los trabajadores.

1 www.cerrejon.com/secciones/CERWEB/HOME/MENUPRINCIPAL/NUESTRACIA/NUESTRAHISTORIA/seccion_HTML.html
2 http://www.cerrejon.com/secciones/CERWEB/HOME/MENUPRINCIPAL/NUESTROAMBIENTE/PROGRAMASAMBIENTALES/seccion_HTML.html
ANTECEDENTES

El método que adoptado por la compañía es un método artesanal y menos costoso que las propuestas de solución ofrecidas por compañías extranjeras.

Consta de un grupo de personas que tienen la tarea de picar y remover el carbón pegado dentro del vagón, con el fin de depositarlo en las tolvas de descargue del mismo. Procedimiento que puede tardar un día completo. Debido a la fuerte adherencia que obtiene el carbón por efecto de su misma composición atómica y efectos térmicos, además de la compactación a la que es sometido una vez es cargado en los silos.

Este procedimiento se realiza con herramientas muy sencillas como picos y palas ejercicio complejo y extenuante para los trabajadores debido a que se encuentran sometidos a altas temperaturas, debido al fuerte sol característico de la Guajira y del acero material de los vagones. Además de la nube de polvillo de carbón que se desprende al golpear el material de las paredes del vagón.

Esta es una labor que se desarrolla con todos los estándares de seguridad, a pesar de esto los trabajadores no están ajenos a sufrir accidentes y repercusiones en la salud a mediano y largo plazo, por las mismas condiciones del trabajo y lo contraproducente que puede llegar a ser el polvillo del carbón.

El procedimiento comienza picando el carbón pegado en los costados y desde la parte inferior con el fin de evitar que la enorme masa de carbón caiga sobre los trabajadores.
Realizado el pique se procede a ubicar el carbón en la parte media del vagón, donde se encuentran las tolvas de descargue.

Figura 2. Desplazamiento del carbón a la parte media del vagón
Al finalizar todo el proceso el vagón es adicionado a una de las 5 conformaciones de las locomotoras con el fin de llevarlo hacia puerto para su eventual descargue.

Figura 3. Desplazamiento del vagón nuevamente a las conformaciones del tren

EXPLICACIÓN CLARA Y CONCRETA DEL PROBLEMA

El tren es un sistema de transporte fundamental en el ciclo de explotación del carbón y exportación del mismo hacia diferentes partes del mundo. Este sistema transita por una vía férrea de 150 kilómetros que conecta la mina (zona de explotación) con puerto Bolívar (zona de embarque). El carbón se transporta en trenes hasta de 110 vagones que se cargan en los silos mediante un proceso continuo. El ciclo completo promedio de cargue, transporte, descargue en el puerto y regreso a la mina es de aproximadamente 12 horas. Diariamente se despachan 7 trenes. Adicionalmente, opera un tren de servicio para el transporte de suministros, materiales y repuestos³.

³ http://www.cerrejon.com/secciones/CERWEB/HOME/MENUPRINCIPAL/QUEHACEMOS/ELFERROCARRIL/seccion_HTML.html
Después de varios años de parametrización y seguimiento continuo a todo el proceso desde la extracción hasta la llegada del carbón al puerto de embarque, se determinó que se estaba generando un desbalance en las toneladas medidas en mina y las toneladas que llegaban a puerto bolívar. Luego de varios análisis minuciosos en toda la cadena del proceso se determinó que en los vagones del tren, estaba quedando gran parte del carbón embarcado en mina y este ciclo se repetía constantemente. Lo que generaba al mismo tiempo fallas en la programación y atraso en el cargue de los buques.

Por esta razón se destina a un grupo de trabajadores de la empresa contratista EPROQ.MECANICA LTDA. Encargada del mantenimiento de la vía férrea. Para que realizaran la limpieza manual de los vagones que se encontraran con carbón pegado.

JUSTIFICACIÓN

Esta es una problemática que puede afectar a gran escala las exportaciones de carbón, por esto es de gran importancia darle solución de una manera más eficiente y segura.

Implementando un sistema mecánico puede ayudar a que las toneladas de desfase en puerto que se generan por asunto del carbón pegado se reduzcan o se mantengan en cero. De esta manera se contribuye a que el alcance de la meta prevista por la Multinacional en toneladas anuales, no se vea afectada.

Por otro lado para esta labor se emplean 5 personas las cuales se turnan por determinados periodos de tiempo para remover el carbón pegado de los vagones con herramientas tales como picas y palas. Está labor puede durar en la mayoría
de los casos todo el día (1 vagón limpio x día). Este proceso aparte de extenuante presenta otras dificultades tales como:

- La complejidad del trabajo dentro del vagón, La superficie o piso interno no es plano debido a que el vagón internamente posee tolvas o compuertas para el descargue del carbón.

- Las temperaturas que pueden alcanzar los vagones internamente con la intensidad del sol en este ambiente son altas. Lo que hace que el trabajo sea mucho más lento y complejo.

- Además de la temperatura la indumentaria de seguridad exigida para dicha labor como arneses para trabajo en altura, camisa manga larga, botas de seguridad, mascarillas, capuchas, casco etc. dificultan el movimiento del personal dentro del vagón.

- El carboncillo (polvo de carbón) que se genera cuando se golpea el carbón sale en grandes volúmenes haciendo nula la visibilidad entre el personal dentro del vagón, además de que este carboncillo puede causar problemas respiratorios a mediano o largo plazo.

Por las anteriores razones consideramos que los más beneficiados con el desarrollo de este sistema serán los trabajadores. Debido a que dejarán de estar expuestos a condiciones de trabajo de riesgo, que pueden conllevar en un futuro a problemas de salud.

En segundo lugar será beneficiado la multinacional explotadora del carbón gracias a este sistema uno de los más complejos problemas en la cadena de la explotación como lo es la del carbón pegado en los vagones será controlada con mayor eficiencia.
1. OBJETIVOS

1.1 OBJETIVO GENERAL

- Diseñar un sistema de limpieza de vagones con carbón pegado para el tren transportador de carbón del Cerrejón.

1.2 OBJETIVOS ESPECÍFICOS

- Evaluar diferentes herramientas en el mercado actual, que puedan emplearse para la limpieza de vagones con carbón pegado.
- Determinar soluciones para los posibles sistemas mediante el uso de una matriz morfológica.
- Analizar los parámetros y variables que definen cada uno de los sistemas de orientación, posición, remoción, potencia.
- Modelar el prototipo propuesto.
- Concluir y presentar los logros y desarrollos obtenidos.
1.3 NIVEL DE OBJETIVOS

Figura 4. Nivel de Objetivos
2. ALCANCE

La investigación y desarrollo de este proyecto se dará por concluida en el momento que finalice la elaboración de un diseño modelado que eventualmente cumpla con las especificaciones de eficiencia y seguridad propuestas al comienzo del proyecto. Así como también la generación de planos el sistema para en un futuro llevar este modelo a la situación real.
3. MARCO CONCEPTUAL

3.1 CONCEPTOS BÁSICOS

3.2 DISEÑO DE MÁQUINAS

La formulación de un plan para satisfacer la necesidad de limpieza de carbón pegado en los vagones del tren es el objetivo de este proyecto, es por eso que el diseño de máquinas, basándose en diferentes asignaturas previamente cursadas, pretende dar la solución a la necesidad.

Las tareas siguientes serán realizadas en el desarrollo del proyecto con el fin de identificar la mejor solución. (Shigley & Mischke, 2002)

- Inventar soluciones alternas.
- Por medio del análisis y de pruebas, simular y predecir el desempeño de cada alternativa.
- Seleccionar la mejor alternativa de acuerdo con los requisitos o parámetros establecidos.
- Implementación del diseño.

El factor de seguridad, el factor de diseño, los esfuerzos permisibles la resistencia a la fatiga tendrán que ser analizados constantemente para determinar un buen diseño. La máquina estar trabajando durante un turno normal diario. Tendremos que hacer un énfasis en las partes que estén sometidas a fatiga.
3.3 MANTENIMIENTO

El sistema seguramente tendrá componentes en movimiento, desgaste, vibraciones y esfuerzos, debe ser sometida a una serie de actividades programadas periódicamente, para garantizar la confiabilidad del equipo así como la seguridad para el operario o entorno. El modelo final contiene un manual de mantenimiento donde están las actividades preventivas y predictivas a realizar con una frecuencia previamente estipulada. Los tipos de mantenimiento que utilizaremos son:

- **Correctivo**: Actividad humana desarrollada en equipos e instalaciones, cuando a consecuencia de alguna falla, han dejado de prestar la calidad de servicio esperada.

- **Preventivo**: Actividad humana desarrollada en equipos e instalaciones con el fin de garantizar que la calidad del servicio que estos proporcionan continúe dentro de los límites establecidos.

- **Predictivo**: Análisis de parámetros de funcionamiento cuya evolución permite detectar el fallo antes de que este tenga consecuencias más graves.

El diseño de la máquina debe incluir una cartilla donde se presente como se debe realizar cada uno de los procedimientos de mantenimiento y una lista de chequeo para cada uno de ellos.
4. ESTADO DEL ARTE

La explotación de Carbón es una de las operaciones de minería de exportación a cielo abierto más grande del mundo, localizada en la península y departamento de La Guajira, al noreste de Colombia. Los depósitos de carbón se encuentran en una extensión de 69.000 hectáreas.

La minería a cielo abierto es una operación en secuencia que se inicia con la limpieza de la superficie y retiro cuidadoso de la capa vegetal que se almacena para la futura rehabilitación de las tierras intervenidas. Luego, se llevan a cabo la perforación, voladura y remoción del material estéril hasta exponer los mantos de carbón. Este se transporta en camiones desde la mina hasta las pilas de almacenamiento y las trituradoras y luego se lleva a los dos silos que cargan el tren.

Los equipos y maquinarias empleados en la mina están entre los de mayor tamaño y capacidad en el mundo y son de tecnología avanzada. En la mina se encuentran también los talleres de mantenimiento para camiones, tractores y traíllas. Otras instalaciones son los talleres de reconstrucción, oficinas administrativas y un sistema de telecomunicaciones que opera vía satélite y microondas entre Bogotá, la mina y Puerto Bolívar4.

4 http://www.cerrejon.com/secciones/CERWEB/HOME/MENUPRINCIPAL/QUEHACEMOS/LAMINA/seccion_HTML.html
4.1 PARAMETROS ACTUALES

4.1.1 Procedimiento limpieza de vagones

La gestión de limpieza de vagones se desarrolla siguiendo unos procedimientos preestablecidos según las normas de seguridad exigidas por el Cerrejón y por las normas Internacionales en la operación de ferrocarriles, así como sigue:

Se solicita a despacho de trenes permiso para trabajar en el área o línea donde se encuentran los vagones con carbón pegado disponibles o el tren en cuya conformación estén los vagones contaminados. Informando al encargado la zona exacta donde se va a realizar la labor e información de lo que se va a hacer. Inmediatamente despacho le asigna un número que indica el permiso obtenido y el tiempo que se tiene para desarrollar dicha labor con el fin de no interrumpir el movimiento de los trenes cuando llegan a la mina a realizar el cargue.

Figura 5. Bandera de Seguridad
Seguidamente se procede a realizar el bloqueo respectivo por el personal que va a trabajar en el área, con la ayuda de banderas diseñadas para ajustarlas sobre los rieles de la vía férrea. Estas banderas deben estar a una distancia de 15 metros (min), una en cada lado de la vía y deben ser aseguradas por cada trabajador con la ayuda de un candando y una tarjeta de uso personal que señala el nombre del trabajador, empresa a la que pertenece y la labor que desempeña. Esta tarjeta solo puede ser removida por la persona a la que pertenece. Esto con el fin de señalar que habrá personal trabajando dentro de los vagones y no se realicen movimientos con otras máquinas o equipos en el área.

Figura 6. Etiqueta y Candado

Luego de terminar con el protocolo de seguridad se procede entonces a subir las herramientas empleadas correspondientes al vagón con la ayuda de sogas de seguridad.
4.1.2 Fotografías operación de limpieza vagones

Figura 7. Vagón con Carbón Pegado

La fotografía anterior muestra claramente el carbón que se adhiere a las placas frontales y traseras del vagón.

Figura 8. Limpieza de vagones
Finalizado este procedimiento 2 o 3 trabajadores (máximo) por cuestión de espacio dentro del vagón comienzan la tarea de picar y remover el carbón pegado hacia la parte media del mismo, con el fin de depositarlo en las tolvas de descargue. Procedimiento que puede tardar un día completo. Debido a la fuerte adherencia que obtiene el carbón por efecto de su misma composición atómica y efectos térmicos.
5. DISEÑO METODOLOGICO

5.1 INVESTIGACIÓN Y RECOLECCIÓN DE INFORMACIÓN

En primer lugar se da inicio al proyecto realizando una investigación y recolección de información, buscando en diferentes medios tales como: internet, revistas, libros y asesores, métodos aplicados actualmente o soluciones estudiadas por el Cerrejón LIMITED con el fin de buscar solución a dicho problema.

5.1.1 Primera propuesta

Alternativas y Análisis de Costos, Recubrimientos con Caucho Vagones de Ferrocarril Carbones del Cerrejón

Corrosion Engineering ofrece recubrimientos en Caucho con Molibdeno los cuales eliminan el apelmazamiento. Estos productos han sido utilizados con éxito en Tolvas de Camiones Mineros y Chutes donde el mineral procesado se acumula limitando la capacidad de carga y generando problemas de operación.

A continuación se presenta un análisis donde se estudia la posibilidad de implementar estas protecciones en Vagones de Ferrocarril operados por Carbones del Cerrejón.
Esto incluye estimados de costo, y vida útil extrapolando datos promedio históricos de Tolvas en Camiones Mineros.

A partir de los datos suministrados, se hace un estimado empleando valores aún más conservadores.

Tabla 1. Datos Promedio de Duración y Vida Útil de recubrimientos de Caucho en un Camión Minero

<table>
<thead>
<tr>
<th>Datos promedio de vida útil en un camión minero</th>
<th>Dato Suministrado</th>
<th>Dato Usado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duración Protección Tolva Camión de 450 Tons (Años)</td>
<td>6 a 8</td>
<td>6</td>
</tr>
<tr>
<td>Espesor de Liner en Tolva de Camión (in)</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Rango de Tamaño de Mineral (in)</td>
<td>1 a 28+</td>
<td>2</td>
</tr>
<tr>
<td>Cantidad de Cargas (Viajes) en un día</td>
<td>40-50</td>
<td>30</td>
</tr>
<tr>
<td>Días en el año</td>
<td>360</td>
<td>360</td>
</tr>
<tr>
<td>Cantidad de Cargas en un Año por Camión</td>
<td>N/A</td>
<td>10800</td>
</tr>
<tr>
<td>Cantidad de Cargas en vida útil del recubrimiento</td>
<td></td>
<td>64800</td>
</tr>
<tr>
<td>Cantidad de Cargas (Vida útil) por cada 1/4” de espesor de recubrimiento</td>
<td></td>
<td>3240</td>
</tr>
</tbody>
</table>
Figura 10. Recubrimiento de caucho en Camiones

Utilizando el dato de cantidad de cargas por cada $\frac{1}{4}''$ de recubrimiento para camiones mineros se hace un estimado de Vida útil para vagones de ferrocarril.

Tabla 2. Estimación de vida útil para vagones del ferrocarril

<table>
<thead>
<tr>
<th>ESTIMACION DE VIDA UTIL PARA VAGONES DEL FERROCARRIL</th>
<th>DATO USADO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cantidad de Cargas Diarias por Vagón ("Factor de Utilización Diario")</td>
<td>4</td>
</tr>
<tr>
<td>Días en el Año</td>
<td>360</td>
</tr>
<tr>
<td>Cantidad de Cargas en el año por Vagón</td>
<td>1440</td>
</tr>
<tr>
<td>Vida útil (años) por cada 1/4'' de espesor de recubrimiento (Usando datos tomados del Camión Minero)</td>
<td>2.25</td>
</tr>
</tbody>
</table>
El estimativo para determinar la vida útil de las protecciones para Vagones de Ferrocarril depende en gran medida del la cantidad de cargas diarias por vagón o como lo hemos llamado aquí: “Factor de Utilización Diario” (El dato en rojo en la hoja anterior). Se ha utilizado un valor igualmente conservador de 4 Cargas diarias por Vagón.

Tabla 3. Estimación de Vida Útil de Recubrimientos para vagones de Ferrocarril.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Toneladas Transportadas a Puerto Bolívar al año (Millones)</td>
<td>32</td>
</tr>
<tr>
<td>Capacidad Promedio de un Vagón de Ferrocarril (Toneladas)</td>
<td>100</td>
</tr>
<tr>
<td>Cantidad de Vagones en la Flota</td>
<td>528</td>
</tr>
<tr>
<td>Días del Año</td>
<td>360</td>
</tr>
<tr>
<td>Cantidad de Viajes necesarios al año (en # Vagones)</td>
<td>320000</td>
</tr>
<tr>
<td>Cantidad de Viajes al día (en # Vagones)</td>
<td>888.89</td>
</tr>
<tr>
<td>Cantidad de Viajes Promedio Diarios por Vagón (Factor de Utilización Diario)</td>
<td>1.68</td>
</tr>
</tbody>
</table>

Consideraciones del Estimativo de Vida Útil Realizado: “Factor de Utilización Diario”

En la siguiente gráfica se presentan los estimados de vida útil para diferentes “Factores de Utilización Diarios” (FUD) de manera que se puede identificar la vida útil esperada con los valores propios de Ferrocarril en Cerrejón. Para el resto de la presentación se asume el valor Conservador de FUD=4.0
Figura 11. Relación vida útil y factor de utilización diario (FUD) para varios espesores de recubrimiento en caucho en vagones de Ferrocarril.

Costos por ft2 utilizando un “Factor de Utilización Diario” de 4.0

Con los datos obtenidos se puede realizar un cuadro con los costos por ft2 de recubrimiento para diferentes espesores y la vida útil esperada en cada caso:
Tabla 4. Tabla de costos

<table>
<thead>
<tr>
<th>Espesor de Liner (in)</th>
<th>Vida Útil Estimada (Años)</th>
<th>Costo Caubo (ft2)</th>
<th>Costo Molibdeno por ft2 y 1/4" de espesor</th>
<th>Costo Tornillos (4.07 por unidad) por ft2</th>
<th>Costo Total (ft2)</th>
<th>Relación Costo/Vida Útil</th>
<th>Costo por Vagón (Rampas + Extremos Laterales) USD</th>
<th>Costo Por todos los Vagones (Millones USD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,25</td>
<td>2,3</td>
<td>N/A</td>
<td>5,425</td>
<td>1,36</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>0,5</td>
<td>4,5</td>
<td>39,55</td>
<td>10,85</td>
<td>1,36</td>
<td>51,76</td>
<td>11,5</td>
<td>22,05</td>
<td>11,64</td>
</tr>
<tr>
<td>0,75</td>
<td>6,8</td>
<td>43,83</td>
<td>16,275</td>
<td>1,36</td>
<td>61,46</td>
<td>9,1</td>
<td>26,18</td>
<td>13,82</td>
</tr>
<tr>
<td>1</td>
<td>9,0</td>
<td>50,42</td>
<td>21,7</td>
<td>1,36</td>
<td>73,48</td>
<td>8,2</td>
<td>31,30</td>
<td>16,53</td>
</tr>
<tr>
<td>1,5</td>
<td>13,5</td>
<td>59,32</td>
<td>32,55</td>
<td>1,36</td>
<td>93,23</td>
<td>6,9</td>
<td>39,71</td>
<td>20,97</td>
</tr>
<tr>
<td>2</td>
<td>18,0</td>
<td>63,93</td>
<td>43,4</td>
<td>1,36</td>
<td>108,69</td>
<td>6,0</td>
<td>46,30</td>
<td>24,45</td>
</tr>
<tr>
<td>2,5</td>
<td>22,5</td>
<td>68,22</td>
<td>54,25</td>
<td>1,36</td>
<td>123,83</td>
<td>5,5</td>
<td>52,75</td>
<td>27,85</td>
</tr>
<tr>
<td>3</td>
<td>27,0</td>
<td>81,73</td>
<td>65,1</td>
<td>1,36</td>
<td>148,19</td>
<td>5,5</td>
<td>63,13</td>
<td>33,33</td>
</tr>
<tr>
<td>3,5</td>
<td>31,5</td>
<td>95,24</td>
<td>75,95</td>
<td>1,36</td>
<td>172,55</td>
<td>5,5</td>
<td>73,50</td>
<td>38,81</td>
</tr>
</tbody>
</table>

| Area Aproximada a Recubrir (ft2) por Vagón (rampas + extremos en costados laterales) | 426 |
| Hilaria de Vagones | 528 |
Relación Costo Beneficio por ft² y Vida Útil utilizando un “Factor de Utilización Diario” de 4.0

Figura 12. Costos y vida útil por ft² para recubrimientos Vagones Ferrocarril

Datos Específicos Vagones Ferrocarril

Con los datos aproximados de ft² a proteger por Vagón y el Número de Vagones se puede estimar el costo (sin instalación) de las protecciones de Caucho.

Estos son los datos específicos:
Área aproximada a proteger por Vagón (Rampas + extremos laterales): 426 ft²

Número de Vagones en la Flota: 528

En las siguientes hojas se presentan los datos graficados para diferentes espesores de recubrimiento, vida útil esperada y costos por vagón y para toda la flota.

Figura 13. Costos por Vagón (FUD = 4.0) y Vida Útil del Recubrimiento
A continuación se presentan algunas consideraciones adicionales a tener en cuenta para la evaluación de esta propuesta:

- Los Costos reportados anteriormente corresponden al material (Liners de Caúcho con Molibdeno) y no incluyen costos de transporte o instalación.
- De acuerdo a la experiencia de estas protecciones en camiones mineros, se ha observado que la tasa de desgaste de las protecciones es mayor en los bordes donde el material se descarga (en este caso al borde de la compuerta en parte inferior del Vagón). Por este motivo, se propone un diseño con secciones pequeñas en estas áreas de manera que se evite el reemplazo de grandes secciones debido al desgaste focalizado en un solo punto.
- Los datos utilizados para estimar la vida útil de las protecciones están basados en los Registros históricos para Camiones Mineros los cuales manejan mineral de gran tamaño. En el caso de los Vagones de Ferrocarril, el mineral es pequeño y consecuentemente se podría esperar una tasa de desgaste inferior.

- Debido a la volatilidad en los precios del Molibdeno, los precios por ft2 podrían cambiar en el futuro repercutiendo de manera directa en los estimados de costos aquí Presentados.

5.1.2 Segunda propuesta

Para dar solución al problema del carbón pegado en los vagones se propone un sistema similar a la propuesta anterior, pero este con diferentes materiales.

- Revestimiento tipo LF 1000 – Combi.

- Planchas de 1200 x 2900 mm compuestos de polietileno de Ultra alto Peso Molecular, que garantizan una superficie de baja fricción, y respaldo en Caucho, que absorbe el impacto y facilita su adherencia.

- La sujeción de las planchas a la lámina de acero se haría por medio de adhesivo especial Trellbond.

- Espesor: 10 mm (4 caucho + 6 LF)
Durante inspección realizada por especialistas de Metso Minerals se verifica que las zonas a revestir serán las más críticas como muestra la imagen.
Datos:

- Área aproximada a recubrir por vagón es de 10,5 m².
- Se requieren 3 planchas LF 1000 – Combi para cubrir esta área.
- El peso del revestimiento por vagón es aprox. 105 kg.

El costo estimado para la aplicación de este sistema x Vagón:

<table>
<thead>
<tr>
<th>CANT.</th>
<th>DESCRIPCION</th>
<th>P. UNITARIO USD</th>
<th>P. TOTAL USD</th>
<th>TIEMPO ENTREGA</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Planchas Trellex LF 1000 combi Thickness 10mm (4mm rubber+6mm LF).</td>
<td>1,615.00</td>
<td>4,845.00</td>
<td>4-6 semanas</td>
</tr>
<tr>
<td>12</td>
<td>Pegamento Trellbond</td>
<td>30.00</td>
<td>360.00</td>
<td>4-6 semanas</td>
</tr>
</tbody>
</table>

Teniendo en cuenta que el número total de vagones es de: 528

La aplicación de este sistema tendrá un costo aproximado de: USD$2,750,000.00

En esta propuesta la compañía interesada correrá con los gastos de transporte y sostenimiento del personal que instalara el sistema.
5.1.3 Tercera propuesta

Wagon vibrator development

La tercera propuesta radica en la instalación de un sistema de vibración, que en el área de descargue se adhiere al carro produciendo niveles de vibración moderados con el fin de despegar el carbón adherido a las paredes del vagón.

Figura 17. Sistema de alineamiento del vagón
Figura 18. Sistema de vibración

Figura 19. Maquina Hidráulica Vibratoria
Características:

- Descarga de velocidad = 6000tp.
- Tolvas se ubican bajo el suelo.
- Sistema con un controlador de velocidad variable con el fin de mantener el ritmo de descarga constante.

Desventajas del sistema:

- Este sistema tiene un costo aproximado de 2 millones de dólares.
- La Instalación del sistema es bastante compleja.
- A mediano y largo plazo este sistema ocasiona daños estructurales en el vagón deformaciones y desajuste de todos los componentes por el repetido proceso de vibraciones al que estaría sometido.
6. DESARROLLO DEL DISEÑO METODICO

6.1 DESCRIPCION DEL MODELO

La remoción del carbón pegado en los vagones del tren carbonífero es un procedimiento desarrollado por fuera de la cadena de explotación de carbón. Pero es una acción esencial que puede afectar en gran medida las metas y los tiempos de entrega de carbón en el puerto de exportación. Lo que representa un ahorro para la empresa.

El procedimiento hoy en día se realiza artesanalmente, trabajadores con la implementación de picos y palas remueven el carbón que se adhiere a los vagones, disminuyendo la capacidad de carga de estos. Por lo tanto, el principal interés es la implementación de un sistema eléctrico o mecánico (hidráulico, neumático), con el cual se pueda desarrollar esta labor de una manera más eficiente y segura.

Para una comprensión más fácil de la función principal, se realizan los flujos de material, energía e información de la función principal.

Figura 20. Flujos de la función principal
6.2 ESPECIFICAR Y CLARIFICAR LA TAREA

 Diseñar y modelar un sistema u máquina capaz de remover el carbón que se adhiere a las paredes de los vagones del tren carbonífero.

6.3 DESARROLLO DE UNA LISTA DE REQUERIMIENTOS PDS (PRODUCT DESIGN SPECIFICATION)

La lista de requerimientos o PDS es un documento que responde a las preguntas:

- ¿Qué objetivos debe satisfacer la solución pretendida?
- ¿Qué propiedades debe tener?
- ¿Qué propiedades no debe tener?

Este documento representa las especificaciones con las cuales se podrá juzgar el éxito del diseño y contiene uno a uno los requerimientos que debe cumplir el diseño. Al principio estos requerimientos pueden ser muy generales, pero a medida que se avanza con el proyecto se deben ir refinando hasta obtener un objetivo específico. Preferiblemente con límites y valores bien definidos. (Pahl & Beitz, 2007)

La lista de requerimientos se muestra en la siguiente tabla:
Tabla 5. Lista de requerimientos

<table>
<thead>
<tr>
<th>TIPO</th>
<th>REQUERIMIENTO</th>
<th>PARAMETROS</th>
<th>REQUISITO</th>
<th>DESEO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operación</td>
<td>Cantidad de operarios para el manejo.</td>
<td>1 operario</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Operación</td>
<td>Manuales de operación disponibles.</td>
<td>1 Manual</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Operación</td>
<td>Manual Pre operacional disponible.</td>
<td>1 Manual</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Mantenimiento</td>
<td>Programación de mantenimiento de la máquina basado en el número de horas de trabajo.</td>
<td>300 horas</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Mantenimiento</td>
<td>Fácil acceso a las partes que componen el sistema para su mantenimiento.</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Costos</td>
<td>El costo del sistema no superara el rango especificado.</td>
<td>$ 50.000.000 hasta los $200.000.000 pesos colombianos.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Materiales</td>
<td>Materiales resistentes a altos esfuerzos y a medio ambiente extremos.</td>
<td>Aceros estructurales (A36) Aleaciones</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Ergonomía</td>
<td>Cabina de mando, cómoda para el operador que brinde visibilidad a todo el sistema.</td>
<td>180 grados de visibilidad</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Geometría</td>
<td>Medidas no definidas aun. El sistema debe acomodarse a las dimensiones del vagón.</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Seguridad</td>
<td>Alarmas visibles y sonoras.</td>
<td>Sirena y luz</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Seguridad</td>
<td>Debe cumplir con todas las normas previstas para operación de maquinaria.</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TIPO</td>
<td>REQUERIMIENTOS</td>
<td>PARAMETRO</td>
<td>REQUISITO</td>
<td>DESEO</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>---</td>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td>Seguridad</td>
<td>Botón parada de Emergencias.</td>
<td>2 Botones de parada. Para el operador y otro externo del sistema.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Montaje cumple con todos los requerimientos técnicos.</td>
<td>De acuerdo a parámetros del Cerrejón.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Señalización</td>
<td>Alaramas de precaución por movimientos</td>
<td>Sirena</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Señalización técnica visible y con especificaciones claras.</td>
<td>3 metros de cintas reflectivas. 5 señales mínimo, informativas y de advertencia.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Ensamble</td>
<td>La máquina debe estar bien anclada en sus apoyos.</td>
<td>Cuenta con 4 pernos de anclaje mínimo por apoyo.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Arme y desarme de baja complejidad.</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Transporte</td>
<td>El sistema debe ser apto para ser trasladado fácilmente con la ayuda de un montacargas, grúa o camión.</td>
<td>Sistema no pesara más de 5 toneladas por lo que se podrá transportar en un vehículo de mediana capacidad.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Energía</td>
<td>Sistema de Bajo consumo de energía</td>
<td>Menor a 100 galones semanales</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>
6.4 DETERMINAR ESTRUCTURAS Y FUNCIONES

Los requerimientos determinarán la función que representa la relación entre las entradas y salidas de una máquina, ensamblaje, etc. Teniendo la función e indicando el flujo de energía, materiales y señales en diagramas de bloques, se puede expresar una solución neutral que relacione entradas y salidas. Dependiendo de la complejidad de la función principal, esta se puede dividir en sub funciones que formaran una estructura que representará la función principal. (Pahl & Beitz, 2007)

6.4.1 Función principal

La formulación de la función principal lleva a identificar las entradas y salidas del proceso general de la máquina, mediante la representación gráfica de una caja negra de esta manera se puede conceptualizar nuestra idea y se muestra en ella los flujos de entrada y salida de energía, materia y información.

Figura 21. Flujos de entrada y salida de la función principal
6.4.2 Funciones Secundarias

Las funciones secundarias son las actividades que se realizan en la máquina, que son necesarias para que se pueda cumplir con la función principal, éstas al igual que la función principal se representan mediante una caja negra con entradas y salidas de energía materia e información.

Figura 22. Flujos de entrada y salida de las funciones secundarias
6.4.3 Estructura funcional

La estructura funcional muestra cómo dirige el flujo principal dentro de la operación de la máquina, sirve para visualizar el flujo principal y su relación con las funciones secundarias.

Figura 23. Estructura Funcional
6.5 MATRIZ MORFOLÓGICA

Se convierte en un importante instrumento con el fin de reunir las funciones y portadores que se encontraron. Y tiene como principal fin el de visualizar las diferentes alternativas que satisfacen una función y se hace de la siguiente manera.

Figura 24. Matriz morfológica

<table>
<thead>
<tr>
<th>Sub-functions</th>
<th>Solutions</th>
<th>1</th>
<th>2</th>
<th>...</th>
<th>j</th>
<th>...</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F_1</td>
<td>S_{11}</td>
<td>S_{12}</td>
<td>S_{1j}</td>
<td>S_{1m}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>F_2</td>
<td>S_{21}</td>
<td>S_{22}</td>
<td>S_{2j}</td>
<td>S_{2m}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>i</td>
<td>F_i</td>
<td>S_{i1}</td>
<td>S_{i2}</td>
<td>S_{ij}</td>
<td>S_{im}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>F_n</td>
<td>S_{n1}</td>
<td>S_{n2}</td>
<td>S_{nj}</td>
<td>S_{nm}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Phal & Beitz, 2007)

La Matriz sirve para encontrar diferentes alternativas de solución para la función principal la cual está compuesta de todas las sub funciones. El número de alternativas posibles depende del número de portadores y así, de las combinaciones o alternativas de solución sin repetir que nos permita el tamaño de la matriz.
6.5.1 Matriz Morfológica Inicial

La matriz morfológica debe ser depurada de manera que todos los portadores que no cumplan con unas características específicas, salgan de ella y queden solo los portadores viables para la solución final.

Figura 25. Matriz morfológica inicial
6.5.2 Matriz Morfológica Reducida con Combinaciones

Ya depurados los portadores, y debido a las muchas combinaciones posibles, éstos se combinan bajo criterio propio para crear alternativas de solución final.

Figura 26. Matriz Morfológica Reducida con Combinaciones
6.6 EVALUACIÓN DE PRINCIPIOS DE SOLUCIÓN

6.6.1 Determinación de alternativas

La combinación de portadores físicos consiste en identificar nuevas alternativas de solución para la función principal. Si estas alternativas se realizaran con todas las posibles combinaciones, generalmente resultaría una gran cantidad. Por motivos de practicidad y espacio, sólo se conformaron 4 alternativas que bajo los criterios de los diseñadores eran las más promisorias. Posterior a la identificación de las alternativas se realiza la evaluación de ellas para determinar la que mejor se acomode al caso de estudio.

6.6.2 Calificación

La evaluación de las alternativas sirve para encontrar la que probablemente se desempeñe mejor realizando la función principal. Esta evaluación consiste en identificar parámetros de calificación que están directamente relacionados con el PDS y con los que los diseñadores establezcan de manera que el diseño se pueda completar en la construcción. Los criterios de evaluación tienen asociados a ellos un porcentaje o peso de relevancia que se determinó a partir de un árbol de objetivos previamente analizado y así la alternativa que mejor cumpla con los objetivos tendrá un mayor peso. La siguiente tabla muestra el árbol de objetivos, la puntuación o valoración posible y la evaluación con los resultados obtenidos por cada una de las alternativas.
Figura 27. Árbol de Objetivos

Tabla 6. Valoración Obtenida

<table>
<thead>
<tr>
<th>Valoración</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insatisfactorio</td>
<td>0%</td>
</tr>
<tr>
<td>Apenas Tolerable</td>
<td>25%</td>
</tr>
<tr>
<td>Adecuado</td>
<td>50%</td>
</tr>
<tr>
<td>Bueno</td>
<td>75%</td>
</tr>
<tr>
<td>Ideal</td>
<td>100%</td>
</tr>
<tr>
<td>Criterio</td>
<td>Peso</td>
</tr>
<tr>
<td>--------------------------</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Costos de inversión</td>
<td>6%</td>
</tr>
<tr>
<td>Costos de mano de obra</td>
<td>4%</td>
</tr>
<tr>
<td>Costos de mantenimiento</td>
<td>2%</td>
</tr>
<tr>
<td>Costos de montaje</td>
<td>2%</td>
</tr>
<tr>
<td>Costos de operación</td>
<td>6%</td>
</tr>
<tr>
<td>Confiabilidad</td>
<td>9%</td>
</tr>
<tr>
<td>Disponibilidad</td>
<td>12%</td>
</tr>
<tr>
<td>Mantenibilidad</td>
<td>9%</td>
</tr>
<tr>
<td>Sistema de Control</td>
<td>6%</td>
</tr>
<tr>
<td>Eficiente</td>
<td>12%</td>
</tr>
<tr>
<td>Limpia</td>
<td>12%</td>
</tr>
<tr>
<td>Alarmas por fallos</td>
<td>5%</td>
</tr>
<tr>
<td>Riesgos Estructurales</td>
<td>5%</td>
</tr>
<tr>
<td>Sistemas Preventivos</td>
<td>10%</td>
</tr>
</tbody>
</table>

| 92.25 | 57 |
Tabla 8. Evaluación de alternativa 3

<table>
<thead>
<tr>
<th>Criterio</th>
<th>Peso</th>
<th>Alternativa 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Magnitud</td>
</tr>
<tr>
<td>Costos de inversión</td>
<td>6%</td>
<td>altos</td>
</tr>
<tr>
<td>Costos de mano de obra</td>
<td>4%</td>
<td>altos</td>
</tr>
<tr>
<td>Costos de mantenimiento</td>
<td>2%</td>
<td>altos</td>
</tr>
<tr>
<td>Costos de montaje</td>
<td>2%</td>
<td>altos</td>
</tr>
<tr>
<td>Costos de operación</td>
<td>6%</td>
<td>Medio</td>
</tr>
<tr>
<td>Confiabilidad</td>
<td>9%</td>
<td>alta</td>
</tr>
<tr>
<td>Disponibilidad</td>
<td>12%</td>
<td>alta</td>
</tr>
<tr>
<td>Mantenibilidad</td>
<td>9%</td>
<td>alta</td>
</tr>
<tr>
<td>Sistema de Control</td>
<td>6%</td>
<td></td>
</tr>
<tr>
<td>Eficiente</td>
<td>12%</td>
<td>alta</td>
</tr>
<tr>
<td>Limpia</td>
<td>12%</td>
<td>alta</td>
</tr>
<tr>
<td>Alarmas por fallos</td>
<td>5%</td>
<td></td>
</tr>
<tr>
<td>Riesgos Estructurales</td>
<td>5%</td>
<td>bajos</td>
</tr>
<tr>
<td>Sistemas Preventivos</td>
<td>10%</td>
<td></td>
</tr>
</tbody>
</table>

| | | | |
|----------------|-------|-----------|
| **Total** | **86.5** |

6.6.3 Principio de solución final

La alternativa que obtuvo una mejor calificación fue la número 1 (línea roja), así se continúa el proceso de diseño con esta alternativa.
7. CALCULOS

7.1 ESTRUCTURA

Debido a las condiciones climatológicas, de trabajo y esfuerzos a la que se va a encontrar sometido el sistema de limpieza, se escogió para el desarrollo del diseño de la estructura acero A36, de alta comercialización en el mercado y apto para el sometimiento continuo de trabajo brindando un alto desempeño y un alto índice de seguridad.

Figura 28. Equilibrio Global del Sistema
7.2 EQUILIBRO GENERAL SISTEMA RETROEXCAVADORA

Se usa el modelo de la figura 28 para el análisis estático del sistema de retroexcavadora. La carga crítica de falla de cucharon (dato catalogo) es aplicada en el punto P en la dirección perpendicular a la pila de carbón como se muestra en la imagen. El punto D representa el centro de gravedad del sistema y los puntos A y B son el patín y la bisagra del modelo. Las cargas del sistema son:

\[W = 32000 \text{ N} \quad (1) \]
\[P = 30451 \text{ N} \]

El sistema está en condiciones de equilibrio, luego se tiene que:

\[\sum M_A = 0 \quad (2) \]
\[P \sin\left(\frac{\pi}{6}\right) \times 3620 \text{mm} + 32000N \times 160 \text{mm} + F_{BY} \times 600 \text{mm} = P \cos\left(\frac{\pi}{6}\right) \times 2550 \text{mm} \]

Resolviendo para \(F_{BY} \)

\[F_{BY} = 11684N \quad (3) \]

Para el equilibrio de fuerzas se tiene:

\[\sum F_Y = 0 \quad (4) \]
\[F_{AY} + P \sin\left(\frac{\pi}{6}\right) = 32000N + 11684N \]
\[F_{Ay} = 28459N \]
\[\sum F_x = 0; \]
\[F_{Bx} = P \cos\left(\frac{\pi}{6}\right) = 26371N \]
7.3 CÁLCULOS DEL SISTEMA TROLLEY PARA MOVIMIENTO TRANSVERSAL

Los sistemas Trolley para movimiento transversal conectan la grúa con las vigas de soporte AE Y BG. El ensamble de cada Trolley consiste en 2 bases que soportan cada una 4 ejes con 4 ruedas. El estado crítico de operación del sistema se muestra en la figura 29. Cuando la grúa opera con su carga crítica, una carga horizontal \(P = 28459 \) N es transmitida a la viga de soporte AE por las cuatro ruedas del Trolley (ver figura 30), luego cada eje del sistema distribuye la carga \(P \) en cuatro partes iguales.

Figura 29. Vista frontal con estado de carga de sistema Trolley para movimiento transversal
7.3.1 Cálculo de Ejes del Sistema Trolley

Se usa el modelo del esfuerzo cortante en vigas de sección constante para calcular el esfuerzo crítico sobre el pin; la carga cortante máxima es $V_{MAX} = 7114.5\ N$. Se calculan las siguientes propiedades geométricas de la sección cortante del eje:

\[\phi = 18\ mm \]
\[V_{MAX} = 7114.5\ N \]
\[Q = A \bar{y} = \frac{\phi^3}{12} = 4608.8\ mm^3 \]
\[I = \frac{\pi \phi^4}{64} = 103435.5\ mm^4 \]
\[t = 38.1\ mm \]
\[c = 19.05\ mm \]

El esfuerzo cortante máximo τ_{crit} se determina a partir de la siguiente relación:

\[\tau_{crit} = \frac{V_{max} Q}{I t} = 8.32\ MPa \]

El esfuerzo normal de flexión se calcula a partir de la carga máxima $M_{max} = 448230\ MPa$ como:

\[\sigma_{crit} = \frac{M_{max} \cdot c}{I} = 82.33\ MPa \]

Se calcula el factor de seguridad FS del diseño como:

\[FS = \frac{S_y}{\sigma_{crit}} = 3 \]
7.3.2 Cálculo Platina Eje Trolley

La figura 30 muestra el diagrama de cuerpo libre de las platinas de la base del sistema Trolley. Los pasadores le trasmiten a la platina una fuerza total \(P = 14229.5 \) N. Se verifica la resistencia de la platina a los esfuerzos de tensión \(\sigma_t \) y de aplastamiento \(\sigma_c \).

El espesor \(b \) de la platina es de 25 mm, la longitud \(L \) es de 250 mm y el diámetro de los agujeros \(\Phi \) es de 38.1 mm.

Los esfuerzos sobre la platina se calculan de la siguiente manera:

\[
\sigma_t = \frac{P}{(L - 2\phi)b} = 3.27 \text{ MPa}
\]

\[
\sigma_c = \frac{P}{\phi b} = 14.93 \text{ MPa}
\]

Luego se procede a calcular el Factor de seguridad \(Fs \) del diseño de la platina usando el mayor de los esfuerzos \(\sigma_c = 14.93 \text{ MPa} \)

\[
Fs = \frac{Sy}{\sigma_{crit}} = 16.73
\]
7.4 CALCULO DE EQUILIBRIO Y RESISTENCIA DE VIGAS AE Y BG PARA EL SOPORTE DE GRÚA.

7.4.1 Viga Soporte Grúa AE

La figura 31 muestra el equilibrio de la viga soporte de la grúa AE. La viga está cargada en el centro con una fuerza $P = 28459 \text{ N}$, resultado del principio de acción y reacción ejercido por la grúa, y tiene una longitud $L = 4700\text{ mm}$. Resolviendo la condición de equilibrio se tiene:

$$\sum M_A = 0$$

$F_A = 14230\text{N}$
Del diagrama de momentos de la viga (Ver figura 31) se calcula el momento máximo en el centro de la viga como:

Figura 31. Equilibro de Viga Soporte de Grúa
La carga máxima M_{Max} se usa para verificar la resistencia del material. Para este propósito, se muestra el perfil de la viga AB (figura 32). Las siguientes propiedades geométricas se calculan para la sección usando la herramienta computacional SolidWorks®.

\begin{equation}
 c = 157 \text{ mm} \\
 h = 71 \text{ mm} \\
 I_{yy} = 93847212.33 \text{ mm}^4 \\
 I_{xx} = 14000895.81 \text{ mm}^4
\end{equation}

Se calcula el esfuerzo crítico es decir σ_{crit} para la viga como:

\begin{equation}
 \sigma_{\text{crit}} = \frac{M_{\text{max}} \cdot c}{I_{yy}} = 55.9437 \text{ MPa}
\end{equation}

El material de ambas vigas AE Y BG es acero A36. El esfuerzo de fluencia S_y es de 250 MPa. Por tanto se calcula el factor de seguridad F_s del disco de la viga AB como:

\begin{equation}
 F_s = \frac{S_y}{\sigma_{\text{crit}}} = 4.46
\end{equation}
7.4.2 Viga Soporte de Grúa BG

La figura 33 muestra el estado de carga de la viga para soporte de la grúa BG. La viga soporta un estado de doble flexión en los ejes x y y del sistema de referencia xyz causados por la carga $P1 = 26371$ N en la dirección y positiva y la carga $P2 = 11684$ N. La viga tiene una longitud efectiva $L = 4700$ mm.

Sean $M_{\text{Max}1}$ y $M_{\text{Max}2}$ los momentos máximos producidos por las cargas $P1$ y $P2$ respectivamente, se tiene que:
Los esfuerzos críticos \(\sigma_{\text{crit}1} \) y \(\sigma_{\text{crit}2} \) asociados a los dos estados de flexión se calculan como (ver figura 5 y Eq.11):

\[
\sigma_{z1} = \frac{M_{\text{Max}1} \cdot h}{I_{xx}} = 157,1329 \text{ MPa}
\]
\[
\sigma_{z2} = \frac{M_{\text{max}2} \cdot c}{I_{yy}} = 22,9672 \text{ MPa}
\]

Como se muestra en la figura 34, los puntos B y C en el plano transversal de la viga ambos estados de flexión se suman en magnitud y dirección. Por el contrario, en los puntos A y D el esfuerzo producido por uno de los estados de flexión alivia el esfuerzo producido por el otro.

Para cualquiera de los puntos B ó C de la sección transversal se tiene que:

\[
\sigma_{\text{crit}} = \sigma_{z1} + \sigma_{z2} = 180,1001
\]

Luego se calcula el factor de seguridad \(F_s \) del diseño de la viga AB como:

\[
F_s = \frac{S_y}{\sigma_{\text{crit}}} = 1,3881
\]
Figura 33. Estado de carga de la Viga BG

Figura 34. Puntos Críticos en Viga Soporte de Grúa BG
7.5 CALCULO SISTEMA DE ACOPLE PARA MOVIMIENTO FRONTAL

El sistema de acople para movimiento frontal (ver figura 35) conecta las vigas soporte de la grúa AE y BG con las vigas principales del marco de la estructura (ver anexo planos del montaje). El ensamble en el extremo de cada viga consiste de dos platinas de soporte, dos pines y dos ruedas.

Figura 35. Esquema del sistema de acople para movimiento frontal.

7.5.1 Sistema de Acople para Movimiento Frontal Viga AE

El sistema de acople para movimiento frontal se encarga de soportar y transmitir la carga vertical de \(P = 28460 \) N ejercida sobre la viga AE a las vigas principales del marco de la estructura. Se tienen sistemas de acople en cada extremo de la viga de soporte y la carga \(P \) se encuentra aplicada en el punto medio de la Viga AE, luego, cada sistema de acople soporta la mitad de la carga \(P \).
Cálculos del Pin de sujeción de la Viga AE

La pieza crítica del ensamblaje es el pin de sujeción que entra a la viga AE y la rueda (encargada de transmitir la carga a la viga principal del marco). La figura 36 muestra el modelo estático empleado para el cálculo de este eje. La distancia entre los puntos de cargas en el eje es despreciable y por lo tanto se usa el criterio del esfuerzo promedio para calcular el esfuerzo τ_{crit} sobre el pin de la siguiente forma:

$$\tau_{crit} = \frac{P}{A} = \frac{4P}{\pi \phi^2} = 9,1700 \, Mpa$$

(21)

Usando el criterio de falla de cortante máxima, se calcula el factor de seguridad F_s del diseño como:

$$F_s \times \tau_{crit} = \frac{S_y}{2}$$

(22)

$$F_s = \frac{S_y}{2 \tau_{crit}} = 13,88$$

7.5.2 Sistema de Acople para movimiento Frontal Viga BG

Al igual que en el sistema de acople para movimiento frontal de la viga AE, el sistema de la viga BG se encarga de soportar y transmitir la carga vertical de $P = 11684$ N ejercida sobre la viga, a las vigas principales del marco de la estructura. Cada sistema de acople en el extremo de la viga soporta la mitad de la carga P. Las piezas críticas del ensamblaje son el Pin de sujeción entre la viga BG y la rueda (encargada de transmitir la carga a la viga principal del marco) y las platinas de soporte mostradas en la figura 35 y la figura 37 muestra el modelo estático empleado para el cálculo del Pin.
Figura 36. Equilibrio del sistema de acople para movimiento frontal de la viga AE

Cálculo Pin de Sujeción Viga BG

Se usa el modelo del esfuerzo cortante en vigas de sección constante para calcular el esfuerzo crítico sobre el pin; la carga cortante máxima \(V_{\text{Max}} = 5842 \, N \) se toma el diagrama de fuerzas cortantes presentado en la figura. El esfuerzo cortante máximo \(\tau_{\text{crit}} \) se determina a partir de la siguiente relación:

\[
\tau_{\text{crit}} = \frac{V_{\text{Max}} Q}{I t}
\]

Donde:

\[
\phi = 25,4mm
\]
\[
V_{\text{Max}} = 5842N
\]
\[
Q = A \cdot Y = \frac{\phi^3}{12} = 1365,5mm^3
\]
\[
I = \frac{\pi \phi^4}{64} = 20432 \, mm^4
\]
\[
t = 25,4mm
\]
Reemplazando los valores en la Eq. 24 en la fórmula 23 se obtiene el siguiente favor para el esfuerzo crítico.

$$\tau_{crit} = 15,3724 \text{ Mpa}$$

(25)

El esfuerzo normal de flexion $$\sigma_{crit}$$ se calcula como:

$$\sigma_{crit} = \frac{M_{max} \cdot c}{I} = \frac{245364 \cdot 12,7}{20432} = 155,05 Nmm$$

(26)

Se calcula el factor de seguridad $$F_s$$ del diseño usando el máximo de los esfuerzos como:

$$F_s \cdot \sigma_{crit} = \frac{S_y}{2}$$

$$F_s = \frac{S_y}{2\sigma_{crit}} = 1,6123$$

(27)

Figura 37. Equilibrio del sistema de acople para movimiento frontal de la viga BG
Cálculos de Platina de Soporte

La figura 38 muestra el diagrama de cuerpo libre de las platinas de soporte del sistema de acople para movimiento frontal. El pin le trasmite a la platina con más carga una fuerza \(P = 9826 \) N. se verifica la resistencia de la platina a los esfuerzos de tensión \(\sigma_t \), cortantes \(\tau \) y de aplastamiento \(\sigma_c \).

El espesor \(b \) de la platina es de 25,4 mm, el diámetro externo \(D \) es de 118mm y el diámetro interno \(D_p \) es de 25,4 mm. Los esfuerzos sobre la platina se calculan como:

\[
\begin{align*}
\sigma_t &= \tau = \frac{P}{(D - D_p)b} = 4,1777 \text{ Mpa} \\
\sigma_c &= \frac{P}{D_p b} = 15,2303 \text{ Mpa}
\end{align*}
\]

Luego se calcula el factor de seguridad \(F_s \) del diseño de la platina usando el mayor de los esfuerzos \(\sigma_c = 15,2303 \text{ Mpa} \) como:

\[
F_s = \frac{S_y}{\sigma_c} = 16,4146
\]
Figura 38. Diagrama de cuerpo libre de soporte.

7.6 CALCULO DE VIGA MARCO PRINCIPAL H I

La figura 39 muestra el equilibrio de la viga marco principal H I. La viga está cargada con dos fuerzas $P_1 = 14230 \text{ N}$ y $P_2 = 5842 \text{ N}$, equidistantes de su centro, que generan un par de rotación y tiene una longitud $L = 4700 \text{ mm}$. Se obtiene la carga máxima $M_{Max} = 18974216.2$ a partir del diagrama de momentos internos (ver figura 39).
Figura 39. Equilibrio de Viga Marco IH

\[V(x)\]
- 5110.9 N
- 3637 N
- 9119.1 N

\[M(x)\]
- 18974216.25 Nmm
Para verificar la resistencia del material se calculan las siguientes propiedades geométricas de la sección transversal (ver anexo planos) usando la herramienta SolidWorks®.

\[
c = 150mm
I_{yy} = 130785971mm^4
\]

(30)

Se calcula el esfuerzo crítico \(\sigma_{crit} \) para la viga como:

\[
\sigma_{crit} = \frac{M_{max}*c}{I_{yy}} = 21.76 \text{ MPa}
\]

(31)

El factor de seguridad \(F_s \) del diseño de la viga IH es:

\[
F_s = \frac{S_y}{\sigma_{crit}} = 11.48
\]

(32)

7.7 CALCULO COLUMNAS CRÍTICA JK

La columna critica JK recibe por ley de acción y reacción una carga crítica de compresión \(P = 5110.9 \text{ N} \) de la viga critica HI. Apartir de la geometría de la viga y aplicando la fórmula de Perry-Robertson, como criterio de pandeo, se calcula la carga crítica de la columna como:

\[
P_{crit} = A \left[\frac{S_y + (K + 1)\sigma_e}{2} - \sqrt{\frac{S_y + (K + 1)\sigma_e}{2} - S_y\sigma_e} \right]
\]

(33)
Donde:

\[A = 6900 \text{ mm}^2 \] es el área transversal de la columna.
\[I = 4510000 \text{ mm}^4 \] es el menor segundo momento de inercia del área.
\[L = 4700 \text{ mm} \] es la longitud de la columna.
\[E = 25000 \text{ Mpa} \] es el módulo de elasticidad del acero.
\[Le = 0,7 \] es la longitud efectiva para una viga doble empotrada.
\[K = \sqrt{\frac{I}{A}} \] es el mínimo radio de giro de la columna.

\[K = 0,3 \sqrt{\frac{L_e}{100k}} \]

Substituyendo los valores en la Eq. 33 se obtiene la carga crítica \(P_{crit} = 602912,4 \) se calcula el factor se seguridad \(F_s \) de la columna HI como:

\[F_s = \frac{P_{crit}}{P} = 117,9 \]
8. CONCLUSIONES

La clarificación de las tareas a desarrollar además de una completa lista de requerimientos construyó una base muy sólida sobre la cual se desarrolló el proyecto y facilitaron la orientación a la solución del problema.

El proceso de diseño metódico fue fundamental debido a que permitió estudiar las variables de los procesos, entenderlas y así encontrar diferentes alternativas de solución para las necesidades planteadas. Luego, la depuración de las alternativas permitió escoger las opciones más prometedoras para la solución de los problemas.

El sistema tendrá que ser diseñado teniendo muy en cuenta las condiciones ambientales presentes en la zona de trabajo, además de las áreas de aplicación y punto de acción del sistema, teniendo a la seguridad como objetivo fundamental para su desarrollo. Que además de prestar un servicio efectivo para el cliente, se desarrolle cumpliendo con exigentes estándares de seguridad, Mantenibilidad y confiabilidad para su operación.

Los análisis de materiales y estructuras, así como de mecanismos a implementar en el sistema y elaboración de planos se desarrollaron con la seriedad que el proyecto amerita. Con el fin de brindar un alto nivel de confiabilidad dado el caso se opte por la construcción del sistema. Manejando altos niveles de factores de seguridad y resistencia a los diferentes esfuerzos a la que podrá ser sometida, en situaciones ambientales y laborales reales.

Sitio Web EL CERREJÓN. Disponible en:
www.cerrejon.com/secciones/CERWEB/HOME/MENUPRINCIPAL/NUESTRACIA/NUESTRAHISTORIA/seccion_HTML.html
http://www.cerrejon.com/secciones/CERWEB/HOME/MENUPRINCIPAL/NUESTR OAMBIENTE/PROGRAMASAMBIENTALES/seccion_HTML.html
http://www.cerrejon.com/secciones/CERWEB/HOME/MENUPRINCIPAL/QUEHAC EMOS/ELFERROCARRIL/seccion_HTML.html
ANEXOS

PLANOS