Villegas Gutiérrez, Jairo Alberto2022-10-262022http://hdl.handle.net/10784/31865El desarrollo e interés por las técnicas numéricas para la obtención las soluciones aproximadas a las ecuaciones diferenciales parciales han aumentado mucho en las últimas décadas. Entre estos se encuentran los métodos sin malla. Recientemente se han utilizado funciones de base radial en métodos sin malla aplicados a soluciones numéricas de ecuaciones diferenciales parciales, siendo los trabajos pioneros los de Kansa, Fasshauer, Wendland y Bohamid entre otros. En este artículo, empleamos el método, utilizando dos RBF, TPS y MQ, para obtener una solución numérica a la ecuación de Burgers acoplada.The development and interest in numerical techniques for obtaining approximate solutions to partial differential equations have increased very much in the last decades. Among these are meshless methods. Recently radial base functions have been used in meshless methods applied to numerical solutions of partial differential equations, pioneers' works being those of Kansa, Fasshauer, Wendland and Bohamid among others. In this paper, we employ the method, using two RBFs, TPS and MQ, to obtain a numerical solution to coupled Burgers equation. The development and interest in numerical techniques for obtaining approximate solutions to partial differential equations have increased very much in the last decades. Among these are meshless methods. Recently radial base functions have been used in meshless methods applied to numerical solutions of partial differential equations, pioneers' works being those of Kansa, Fasshauer, Wendland and Bohamid among others. In this paper, we employ the method, using two RBFs, TPS and MQ, to obtain a numerical solution to coupled Burgers equation.spaTodos los derechos reservadosEcuación de BurgersSplines de placa delgadaMulticuadráticoMétodo sin mallaFunciones base radialMeshless Method for the Numerical Solution of Coupled Burgers EquationmasterThesisinfo:eu-repo/semantics/openAccessECUACIONES DIFERENCIALESMATEMÁTICAS PARA INGENIEROSBurgers EquationTPSMQMeshless MethodRBFAcceso abierto2022-10-26Vallejo-Sánchez, Johny AlexanderVillegas Gutiérrez, Jairo Alberto515.35 V182