2019-10-0401/12/20062256-43221692-0279http://hdl.handle.net/10784/14063Based on the genesis of a generalized theory of uncertainty, this article deals with the importance of using a fuzzy logic approach in economics and finance, with the purpose of defining the non stochastic character of uncertainty of one of the main financial decision-making criteria: current net value. To achieve this objective we have designed fuzzy triangular numbers, in order to get the fuzzy current net value; incorporating the gradual nature of financial decision making and the granularity of the human thinking process. We describe an example related to investment project finance valuation using fuzzy interest rates. In this article, we propose that there are some aspects of the state or nature that limits the complete application of well defined probability distributions for the purpose of parameter estimation of investment valuation which are unknown, due to questions like the “private” risk profile of a firm or project, the illiquidity of some of its assets, the absence of precise portfolio replication strategies, and other factors. In these cases, we can use fuzzy triangular numbers or fuzzy random numbers.A partir de la introducción de la génesis de la teoría de la incertidumbre, el artículo destaca la importancia del uso de la lógica borrosa en economía y finanzas, para luego pasar a expresar la incertidumbre no estocástica de uno de los criterios de decisión clásicos: el valor presente neto. Esto se logra mediante el diseño de aproximaciones triangulares de números borrosos, en orden a obtener el valor presente borroso; con ello se logra incorporar la gradualidad y la matización del pensamiento de quien decide en el proceso de determinación financiera. Se expone un ejemplo relacionado con la valoración financiera de proyectos de inversión, usando tasas de interés borrosas. Se concluye afirmando que en algunos casos es posible que las distribuciones de probabilidad de los parámetros fundamentales para la valoración de las alternativas de inversión sean desconocidas, debido a cuestiones como el carácter de riesgo “privado” de la firma o proyecto, su falta de bursatilidad, la ausencia de carteras réplicas precisas, etc.; caso en el cual podría ser de mucha utilidad recurrir al uso de números triangulares borrosos o de modelos basados en números híbridos (aleatorios y borrosos).text/htmlspaCopyright © 2006 Juan Carlos Gutiérrez BetancurAplicación de los conjuntos borrosos a las decisiones de inversiónarticleinfo:eu-repo/semantics/openAccessUncertainty modelingfuzzy triangular numbersfuzzy interest ratesfuzzy net present value.Incertidumbrenúmeros triangulares borrosostasas de interés borrosasvalor presente neto borrosoAcceso abierto2019-10-04Juan Carlos Gutiérrez Betancur