A Riemannian Geometry in the q-Exponential Banach Manifold induced by q-Divergences.
dc.contributor.author | Quiceno, H. R. | |
dc.contributor.author | Loaiza, Gabriel | |
dc.contributor.department | Universidad EAFIT. Escuela de Ciencias y Humanidades. Grupo de Investigación Análisis Funcional y Aplicaciones | |
dc.contributor.eafitauthor | Gabriel Loaiza (gloaiza@eafit.edu.co) | spa |
dc.date.accessioned | 2014-11-07T20:31:52Z | |
dc.date.available | 2014-11-07T20:31:52Z | |
dc.date.issued | 2013 | |
dc.description.abstract | For the family of non-parametric q-exponential statistical models, in a former paper, written by the same authors, a differentiable Banach manifold modelled on Lebesgue spaces of real random variables has been built. In this paper, the geometry induced on this manifold is characterized by q-divergence functionals. This geometry turns out to be a generalization of the geometry given by Fisher information metric and Levi-Civita connections. Moreover, the classical Amari’s α-connections appears as special case of the q −connections ∇ (q). The main result is the expected one, namely the zero curvature of the manifold. | spa |
dc.identifier.uri | http://hdl.handle.net/10784/4401 | |
dc.language.iso | eng | eng |
dc.publisher | Springer | spa |
dc.publisher.department | Escuela de Ciencias y Humanidades | spa |
dc.publisher.program | Grupo de Investigación Análisis Funcional y Aplicaciones | spa |
dc.relation.ispartof | Geometric Science of Information: Lecture Notes in Computer Science Volume 8085, 2013, pp 737-742 | spa |
dc.relation.isversionof | http://dx.doi.org/10.1007/978-3-642-40020-9_82 | spa |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | spa |
dc.rights.local | Acceso restringido | spa |
dc.subject.keyword | q-Exponential | spa |
dc.subject.keyword | Banach Manifold | spa |
dc.subject.keyword | Geometry | spa |
dc.title | A Riemannian Geometry in the q-Exponential Banach Manifold induced by q-Divergences. | spa |
dc.type | info:eu-repo/semantics/bookPart | |
dc.type.hasVersion | Obra publicada | spa |
dc.type.local | Capítulo o parte de un libro | spa |