The particle finite element method for transient granular material flow: modelling and validation

dc.citation.journalTitleComputational Particle Mechanics
dc.contributor.authorLarsson S.
dc.contributor.authorRodríguez Prieto J.M.
dc.contributor.authorGustafsson G.
dc.contributor.authorHäggblad H.-Å.
dc.contributor.authorJonsén P.
dc.contributor.departmentUniversidad EAFIT. Departamento de Ingeniería Mecánicaspa
dc.contributor.researchgroupMecatrónica y Diseño de Máquinasspa
dc.creatorLarsson S.
dc.creatorRodríguez Prieto J.M.
dc.creatorGustafsson G.
dc.creatorHäggblad H.-Å.
dc.creatorJonsén P.
dc.date.accessioned2021-04-16T20:20:48Z
dc.date.available2021-04-16T20:20:48Z
dc.date.issued2021-01-01
dc.description.abstractThe prediction of transient granular material flow is of fundamental industrial importance. The potential of using numerical methods in system design for increasing the operating efficiency of industrial processes involving granular material flow is huge. In the present study, a numerical tool for modelling dense transient granular material flow is presented and validated against experiments. The granular materials are modelled as continuous materials using two different constitutive models. The choice of constitutive models is made with the aim to predict the mechanical behaviour of a granular material during the transition from stationary to flowing and back to stationary state. The particle finite element method (PFEM) is employed as a numerical tool to simulate the transient granular material flow. Use of the PFEM enables a robust treatment of large deformations and free surfaces. The fundamental problem of collapsing rectangular columns of granular material is studied experimentally employing a novel approach for in-plane velocity measurements by digital image correlation. The proposed numerical model is used to simulate the experimentally studied column collapses. The model prediction of the in-plane velocity field during the collapse agrees well with experiments. © 2020, The Author(s).eng
dc.identifierhttps://eafit.fundanetsuite.com/Publicaciones/ProdCientif/PublicacionFrw.aspx?id=10275
dc.identifier.doi10.1007/s40571-020-00317-6
dc.identifier.issn21964378
dc.identifier.issn21964386
dc.identifier.otherWOS;000515975800001
dc.identifier.otherSCOPUS;2-s2.0-85079217630
dc.identifier.urihttp://hdl.handle.net/10784/29312
dc.language.isoeng
dc.publisherSpringer International Publishing AG
dc.relation.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85079217630&doi=10.1007%2fs40571-020-00317-6&partnerID=40&md5=a3eba0c4c094dffe0f79997b9c470246
dc.rightsSpringer International Publishing AG
dc.sourceComputational Particle Mechanics
dc.subjectConstitutive modellingeng
dc.subjectDigital image correlationeng
dc.subjectParticle finite element methodeng
dc.subjectStrain-rate-dependent strengtheng
dc.subjectTransient granular material floweng
dc.titleThe particle finite element method for transient granular material flow: modelling and validationeng
dc.typeinfo:eu-repo/semantics/articleeng
dc.typearticleeng
dc.typeinfo:eu-repo/semantics/publishedVersioneng
dc.typepublishedVersioneng
dc.type.localArtículospa

Archivos

Bloque original
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
s40571-020-00317-6.pdf
Tamaño:
2.98 MB
Formato:
Adobe Portable Document Format
Descripción:

Colecciones