Universality of geometric quantum computing three-state model
Fecha
2005-04-01
Autores
Título de la revista
ISSN de la revista
Título del volumen
Editor
Universidad EAFIT
Resumen
Descripción
The three-state model is a geometric quantum computing model. It is illustrated that this is a universal quantum computing model, based on the work developed by Niskanen, Nakahara and Salomaa [16]. The universals U (2) and U (2n≥ 1) of the model are obtained from the construction of the Rx (α) and R (α) rotation gates, and the Hadamard H and B phase (η) gates ), respectively. For each gate, it is explicitly presented operator Holonomy ΓAy (γ) and γ cycle on which it is constructed.
El modelo de tres estados es un modelo de computación cuántica geométrica. Se ilustra que éste es un modelo de computación cuántica universal, con base en el trabajo desarrollado por Niskanen, Nakahara y Salomaa [16]. Las universalidades U(2) y U(2n≥ 1) del modelo se obtienen a partir de la construcción de las compuertas de rotación Rx(α) y R(α), y de las compuertas de Hadamard H y de fase B(η), respectivamente. Para cada compuerta, se presenta explícitamente el operador de holonomía ΓAy(γ) y el ciclo γ sobre el cual es construída.
El modelo de tres estados es un modelo de computación cuántica geométrica. Se ilustra que éste es un modelo de computación cuántica universal, con base en el trabajo desarrollado por Niskanen, Nakahara y Salomaa [16]. Las universalidades U(2) y U(2n≥ 1) del modelo se obtienen a partir de la construcción de las compuertas de rotación Rx(α) y R(α), y de las compuertas de Hadamard H y de fase B(η), respectivamente. Para cada compuerta, se presenta explícitamente el operador de holonomía ΓAy(γ) y el ciclo γ sobre el cual es construída.