Publicación:
A Riemannian geometry in the q-exponential Banach manifold induced by q-divergences

Fecha

2013-01-01

Autores

Loaiza, G.
Quiceno, H.R.

Título de la revista

ISSN de la revista

Título del volumen

Editor

SPRINGER

Proyectos de investigación

Unidades organizativas

Número de la revista

Resumen

For the family of non-parametric q-exponential statistical models, in a former paper, written by the same authors, a differentiable Banach manifold modelled on Lebesgue spaces of real random variables has been built. In this paper, the geometry induced on this manifold is characterized by q-divergence functionals. This geometry turns out to be a generalization of the geometry given by Fisher information metric and Levi-Civita connections. Moreover, the classical Amari's a-connections appears as special case of the q-connections ?(q). The main result is the expected one, namely the zero curvature of the manifold. © 2013 Springer-Verlag.

Descripción

Palabras clave

Citación